Tornillos

Tornillos, sujetadores y diseño de uniones no permanentes Los métodos de unión de partes son extremadamente importantes

Views 179 Downloads 0 File size 163KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Tornillos, sujetadores y diseño de uniones no permanentes Los métodos de unión de partes son extremadamente importantes en la ingeniería de diseño de calidad, y es necesario comprender a fondo el desempeño de los sujetadores y uniones bajo todas las condiciones de uso y diseño.

8-1 Normas y definiciones de roscas La terminología de las roscas de tornillo, que se ilustran en la figura, se explica de la manera siguiente:     

El paso es la distancia entre dos cuerdas adyacentes, medida en forma paralela al eje de la rosca. El paso en unidades inglesas es el recíproco del número de cuerdas por pulgada N. El diámetro mayor d es el diámetro más grande de una rosca de tornillo. El diámetro menor (o raíz) dr es el diámetro más pequeño de una rosca de tornillo. El diámetro de paso dp es un diámetro teórico entre los diámetros mayor y menor. El avance l, que no se muestra, es la distancia que se desplaza una tuerca en forma paralela al eje del tornillo cuando a ésta se le da una vuelta.

En el caso de una rosca simple, como en la figura, el avance es igual al paso. Un producto con rosca múltiple es el que tiene dos o más roscas cortadas lado a lado (imagine dos o más cuerdas enrolladas juntas alrededor de un lápiz). Los productos estandarizados como tornillos, pernos y tuercas tienen roscas sencillas: un tornillo de

rosca doble tiene un avance igual al doble del paso, el avance de un tornillo de rosca triple es igual a 3 veces el paso, y así sucesivamente. La norma para roscas American National (Unified) ha sido aprobada en Estados Unidos y Gran Bretaña para su empleo en todos los productos roscados estandarizados. El ángulo de la rosca es 60° y sus crestas pueden ser aplanadas o redondas.

Las tablas 8-1 y 8-2 serán útiles cuando se deba especificar y diseñar partes roscadas. Existen dos series principales de roscas unificadas de uso común: UN y UNR. La diferencia entre ellas es simplemente que en la serie UNR se usa un radio de la raíz. Debido a los factores reducidos de concentración de esfuerzo en la rosca, las roscas de serie UNR presentan resistencias a la fatiga mayores. En las figuras 8-3a y b se ilustran las roscas cuadradas y Acme, respectivamente, que se emplean cuando se va a transmitir potencia. En la tabla 8-3 se listan los pasos preferidos para roscas Acme de la serie en pulgadas. Sin embargo, con frecuencia pueden usarse otros pasos, puesto que no existe la necesidad de una norma para tales roscas.

Algunas veces, las roscas Acme se modifican hasta una forma achatada para hacer los dientes más cortos, de lo cual resulta un diámetro menor más largo y un tornillo un poco más resistente.

8-2 Mecánica de los tornillos de potencia Un tornillo de potencia es un dispositivo que se utiliza en maquinaria para cambiar el movimiento angular a movimiento lineal y, por lo general, para transmitir potencia. Entre    

las aplicaciones familiares se incluyen: los tornillos de tornos los tornillos para prensas de banco prensas de sujeción gatos.

En la      

figura 8-5 se presenta un tornillo de potencia de rosca cuadrada con rosca simple con un diámetro medio dm un paso p un ángulo de avance λ el ángulo de la hélice ψ sometido a la fuerza de compresión axial F

Se desea encontrar la expresión del par de torsión requerido para elevar la carga, y otra expresión del par de torsión necesario para bajarla.

Para elevar la carga, una fuerza PR actúa a la derecha (vea la figura 8-6a), y para bajar la carga, PL actúa hacia la izquierda (vea la figura 8-6b). La fuerza de fricción es el producto del coeficiente de fricción f por la fuerza normal N, y actúa oponiéndose al movimiento. El sistema está en equilibrio bajo la acción de estas fuerzas, por lo que, para elevar la carga o bajarla, se tiene

si se observa que el par de torsión es el producto de la fuerza P y el radio medio dm/2, para elevar la carga se puede escribir

donde TR representa el par de torsión que se requiere para dos propósitos: superar la fricción en la rosca y elevar la carga. Se determina que el par de torsión necesario para bajar la carga, de acuerdo con la ecuación (f) es

Éste es el par de torsión que se requiere para superar una parte de la fricción al bajar la carga. Puede resultar, en casos específicos donde el avance sea grande o la fricción baja, que la carga baje por sí misma, lo que provoca que el tornillo gire sin ningún esfuerzo externo. En esos casos, el par de torsión TL, de acuerdo con la ecuación, será negativo o igual a cero. Cuando se obtiene un par de torsión positivo mediante esta ecuación, se dice que el tornillo es autobloqueante. Así, la condición para el autobloqueo es

Las ecuaciones anteriores se desarrollaron para roscas cuadradas, donde las cargas normales en las roscas son paralelas al eje del tornillo. En el caso de roscas Acme o de otros tipos, la carga normal en la rosca está inclinada hacia el eje debido al ángulo de la rosca 2α y al ángulo del avance λ. Como los ángulos de avance son pequeños, esta inclinación se puede despreciar y sólo se considera el efecto del ángulo de la rosca. Para tornillos de potencia, la rosca Acme no resulta tan eficiente como la rosca cuadrada, debido a la fricción adicional que provoca la acción de cuña, pero a menudo se prefiere porque es más fácil de maquinar y permite el empleo de una tuerca dividida, la cual se ajusta para compensar el desgaste. Por lo general, se debe utilizar un tercer componente del par de torsión en las aplicaciones de tornillos de potencia. Cuando el tornillo se cargue axialmente, debe usarse un cojinete de empuje o collarín de empuje entre los elementos rotatorio y estacionario, con objeto de soportar el efecto de la componente axial. En la figura 8-7b se ilustra un collarín de empuje común para el que se supone que la carga está concentrada en el diámetro medio del collarín dc. Si fc es el coeficiente de fricción del collarín, el par de torsión que se requiere es

8-3 Sujetadores roscados

8-4 Uniones: rigidez del sujetador

8-5 Uniones: rigidez del elemento

8-6 Resistencia del perno 8-7 Uniones a tensión: la carga externa 8-8 Relación del par de torsión del perno con la tensión del perno

8-9 Uniones a tensión cargada en forma estática con precarga

8-10 Uniones con empaque

8-11 Carga por fatiga de uniones a tensión

8-12 Uniones con pernos y remaches cargadas en cortante