Sujetadores Roscados y Uniones; Rigidez Del Sujetador

Sujetadores roscados Dispositivos que por lo general permiten el ensamblar y desensamblar componentes. Figura 8­9. Torn

Views 441 Downloads 6 File size 398KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Sujetadores roscados Dispositivos que por lo general permiten el ensamblar y desensamblar componentes.

Figura 8­9. Tornillo de cabeza hexagonal; observe la cara de la arandela, el filete debajo de la cabeza, el inicio de las roscas y el bisel en ambos extremos. La longitud de los tornillos siempre se mide desde la parte inferior de la cabeza.

Las amenazas que gobiernan a estos elementos se describen en 2 puntos:  

Sobrecargar a los sujetadores (métodos estadísticos). La fatiga (métodos determinísticos).

El diámetro de la cara de la arandela es igual que el ancho entre las caras planas de la cabeza hexagonal. La longitud de la rosca de tornillos de serie en pulgadas, donde d es el diámetro nominal, se expresa mediante

y para tornillos métricos, donde las dimensiones están en milímetros.

donde las dimensiones están en milímetros. La longitud ideal del tornillo es aquella donde sólo sobresalen una o dos roscas de la tuerca después de que se aprieta. Los agujeros de los tornillos quizás presenten rebabas o bordes agudos después de su formado, que podrían penetrar en el entalle e incrementar la concentración del esfuerzo. Por lo tanto, para prevenir este problema, siempre deben usarse arandelas debajo de la cabeza del perno. Deben ser de acero endurecido y cargadas en el perno de manera que el borde redondeado del agujero estampado esté de frente al tornillo. Algunas veces también es

necesario emplear arandelas debajo de la tuerca. El propósito de un tornillo es sujetar dos o más partes. La carga de sujeción estira o alarga el tornillo; la carga se obtiene haciendo girar la tuerca hasta que el tornillo se alargue casi hasta su límite elástico. Si la tuerca no se afloja, la tensión en el tornillo permanece como la fuerza de precarga o de sujeción. Cuando se aprieta, el mecánico debe, si es posible, mantener estacionaria la cabeza del tornillo y hacer girar la tuerca: de esta manera el cuerpo del tornillo no sentirá el par de torsión de fricción de la rosca. En la figura 8-10 hay otros estilos comunes de cabezas de tornillos.

Figura 8-10. Cabezas usuales de tornillos: a) cilíndrica ranurada; b) plana; c) hueca hexagonal. Este tipo de tornillos también se fabrica con cabeza hexagonal similar a la de la figura 8-9, así como en una variedad de otros estilos de cabeza. En la ilustración se utiliza uno de los métodos convencionales para representar las roscas.

Una variedad de estilos de cabezas de tornillos para metales se ilustra en la figura 8-11. Los tornillos para maquinaria de serie en pulgadas en general se encuentran disponibles en tamaños que oscilan desde el número 0 hasta aproximadamente pulg3. El material de la tuerca debe seleccionarse con cuidado para igualar al del perno. Durante el apriete, la primera rosca de la tuerca tiende a tomar toda la carga; pero ocurre la fluencia, con algún endurecimiento debido al trabajo en frío que se presenta, y a la larga la carga se divide en casi tres roscas de la tuerca. Por esta razón nunca deben reutilizarse tuercas usadas con anterioridad, pues ello puede ser peligroso.

Figura 8-12. Tuercas hexagonales: a) vista final, general; b) tuerca regular con arandela; c) tuerca regular biselada en ambos lados; d) tuerca hendida con arandela; e) tuerca hendida biselada en ambos lados.

Uniones: rigidez del sujetador Cuando se desea realizar una conexión que se pueda desensamblar sin el empleo de métodos destructivos y que sea suficientemente fuerte para resistir cargas externas de tensión, cargas debidas a momentos y cargas de cortante, o una combinación de ellas, una buena solución es la unión atornillada simple que tenga arandelas de acero endurecido. Una unión de ese tipo puede resultar peligrosa, a menos que se diseñe de manera adecuada y la ensamble un mecánico capacitado.

Figura 8-13. Conexión con perno cargada a tensión por las fuerzasP. Note el empleo de dos arandelas. Aquí se utilizó un método convencional simplificado para representar la rosca del perno. Observe cómo la parte roscada se adentra en el cuerpo dela unión, lo cual es usual y deseable. El agarre de la conexión es l.

Figura 8-14. Vista en sección de un recipiente a presión cilíndrico. Se emplean tornillos de cabeza hexagonal para sujetar la cabeza del cilindro al cuerpo. Observe el uso de un sello. El agarre efectivo de la conexión es l’.

En la figura 8-13 se ilustra una sección en corte a través de una unión atornillada en tensión. Note el espacio de holgura que proporcionan los agujeros de los pernos. Asimismo, observe cómo los hilos de los pernos se extienden hacia el cuerpo de la conexión. Como se mencionó con anterioridad, el propósito del perno consiste en sujetar dos o más partes. Apretando la tuerca se estira el perno, y de esta manera se produce la fuerza de sujeción, que se llama pretensión o precarga del perno. Existe en la conexión después de que la tuerca se apretó en forma apropiada, sin importar si se ejerce o no la fuerza externa de tensión P. Por supuesto, como los miembros se están sujetando, la fuerza de sujeción que produce tensión en el perno induce compresión en los elementos. En la figura 8-14 se muestra otra conexión sometida a tensión. En la unión se usan tornillos de cabeza roscados en uno de los elementos. Un

método alternativo a este problema (de no emplear una tuerca) sería utilizar birlos, que es una varilla roscada en ambos extremos. El birlo primero se atornilla en el elemento inferior; luego, el elemento superior se posiciona y se sujeta con arandelas y tuercas endurecidas. Los birlos se consideran como permanentes, por lo cual la unión se desensambla con sólo quitar la tuerca y la arandela. De esta manera, la parte roscada del elemento inferior no se daña al reutilizar las roscas. Constante de rigidez de un sujetador en cualquier conexión atornillada.

        

Dado el diámetro del sujetador d y el paso p o el número de roscas. El agarre es el espesor l. Espesor de la arandela de la tabla A-32 o A-33Longitud roscada LT Serie en pulgadas: Longitud del sujetador: L > l  H  Longitud de la parte útilsin rosca: ld =L – LT. Longitud de la parte roscada: lt =l­ld  Longitud del sujetador: L > h  1.5d  Longitud de la parte útil sin rosca:  l d=L−L T     Longitud de la parte útil  roscada:  lt=l ’−l d Área de la parte sin rosca: Ad = π d2 4 Área de la parte roscada: At, tabla 8­1 o 8­2 

El agarre l de una conexión consiste en el espesor total del material sujetado. En la figura 8-13 el agarre es la suma de los espesores de ambos elementos y ambas arandelas. En la figura 8-14 el agarre efectivo se presenta en la tabla 8-7. La rigidez de la parte de un perno o de un tornillo dentro de la zona de sujeción en general consistirá en dos partes, la de la parte del cuerpo sin rosca y la de la parte roscada. Así, la constante de rigidez del perno

equivale a la rigidez de dos resortes en serie. Con los resultados se encuentra que: 1 1 1 k 1k 2 = + o bien k= k k1 k2 k 1+k 2 para dos resortes en serie. De acuerdo con la ecuación (4-4), las relaciones del resorte de las partes roscada y sin rosca en la zona de sujeción son, respectivamente, AtE AdE kd= ¿ ld donde: k t=

At = área de esfuerzo sometida a tensión (tablas 8-1, 8-2) lt = longitud de la parte roscada de agarre Ad = área del diámetro mayor del sujetador ld = longitud de la parte sin rosca en agarre

Sustituyendo las rigideces en la ecuación, se obtiene: kb=

Ad . At . E Ad .