Sistema Renal

566 Berne y Levy. Fisiología APLICACIÓN CLÍNICA Las células mesangiales están implicadas en el desarrollo de la enferm

Views 110 Downloads 0 File size 2MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

566

Berne y Levy. Fisiología

APLICACIÓN CLÍNICA Las células mesangiales están implicadas en el desarrollo de la enfermedad glomerular mediada por inmunocomplejos. Puesto que la membrana basal glomerular no rodea completamente todos los capilares glomerulares (v. fig. 32-9), algunos complejos inmunitarios pueden entrar en el área mesangial sin atravesar la membrana basal glomerular. La acumulación de inmunocomplejos induce la infiltración de células antiinflamatorias en el mesangio, y promueve la producción de citocinas proinflamatorias y autocoides por las células en el mesangio. Estas citocinas y autocoides aumentan la respuesta inflamatoria, lo cual puede originar cicatrices en las células y eventualmente obliterar el glomérulo.

Pxa  FPRa Pxv  FPRv

Ux  V Entrada Arteria renal Pxa  FPRa

=

Salida Vena renal + uréter (Pxv FPRv ) + (Ux  V)

1. La mácula densa del asa ascendente gruesa. 2. Las células mesangiales extraglomerulares. 3. Las células granulares productoras de renina y angiotensina-II de la arteriola aferente.

L Figura 32-12. Relación del equilibrio de masas para el

Las células de la mácula densa representan una región morfológicamente distinta del asa ascendente gruesa. Esta región pasa entre el ángulo formado por las arteriolas aferente y eferente de la misma nefrona. Las células de la mácula densa contactan con las células mesangiales extraglomerulares y con las células granulares de las arteriolas aferentes. Las células glomerulares de las arteriolas aferentes derivan de las células metanéfricas mesenquimales. Estas células contienen miofilamentos de músculo liso y, lo que es muy importante, fabrican, almacenan y segregan renina. La renina está implicada en la formación de la angiotensina-II y, finalmente, en la secreción de aldosterona (v. capítulo 34). El aparato yuxtaglomerular es un componente del mecanismo de retroalimentación tubuloglomerular que está implicado en la autorregulación de FPR y de GFR.

desde el líquido tubular hacia la sangre, y c) (en algunos casos) secreción de sustancias desde la sangre al líquido tubular. El primer escalón en la formación de la orina por el riñón es la producción de un ultrafiltrado del plasma a través del glomérulo. El proceso de filtración y regulación de GFR y FPR se expondrá más adelante en este capítulo. El concepto de aclaramiento renal, que es en teoría la base de la medición de GFR y FPR, se presenta en la siguiente sección. La reabsorción y la secreción se explicarán en los capítulos siguientes.

Inervación renal

Los nervios renales regulan FPR, GFR y la reabsorción de agua y sal por la nefrona. Los nervios proporcionan al riñón fibras nerviosas simpáticas que proceden del plexo celíaco. No hay inervación parasimpática. Las fibras adrenérgicas que inervan el riñón liberan noradrenalina y dopamina. Las fibras adrenérgicas discurren adyacentes a las células del músculo liso de las ramas mayores de la arteria renal (arterias interlobar, arcuata e interlobular) y las arteriolas aferentes y eferentes. Además, los nervios simpáticos inervan las células granulares productoras de renina de la arteriola aferente. La secreción de renina se estimula por el aumento de la actividad simpática. Las fibras nerviosas también inervan el túbulo proximal, el asa de Henle, el túbulo distal y el conducto colector; la activación de estos nervios aumenta la reabsorción de Na+ por estos segmentos de la nefrona.

EVALUACIÓN DE LA FUNCIÓN RENAL

Las acciones coordinadas de los diferentes segmentos de la nefrona determina la cantidad de una sustancia que aparecerá en la orina. Se realizan tres procesos principales: a) filtración glomerular; b) reabsorción de sustancias

32-555-577kpen.indd 566

riñón. Véase el texto para la definición de los símbolos.

Aclaramiento renal

El concepto de aclaramiento renal se basa en el principio de Fick (equilibrio de las masas o conservación de las masas). La figura 32-12 ilustra los diferentes factores necesarios para describir la relación del equilibrio de masas en el riñón. La arteria renal es la única vía de entrada al riñón, mientras que la vena renal y el uréter constituyen las dos vías de salida. La siguiente ecuación define la relación del equilibrio de masas: L Ecuación 32-1 • Pax r FPRa  (Pvx r FPRv) (Ux r V )

donde: Pax y Pvx son la concentración de la sustancia x en el plasma de la arteria renal y la vena renal, respectivamente, FPRa y FPRv son el ritmo del flujo plasmático renal en la arteria y la vena, respectivamente, U x es la concentración de la sustancia x en la orina, • V es el ritmo del flujo urinario. La relación permite cuantificar la cantidad de sustancia x excretada en la orina frente a la cantidad que vuelve a la circulación sistémica en el flujo sanguíneo venoso. Por ello, para cualquier sustancia que ni se sintetiza ni se metaboliza, la cantidad que entra al riñón es igual a la cantidad que sale del riñón en la orina más la cantidad que sale del riñón por la sangre venosa renal.

24/2/09 10:37:37

567

Capítulo 32 Elementos de la función renal El principio del aclaramiento renal llama la atención sobre la función excretora del riñón; sólo considera el ritmo al cual una sustancia se excreta en la orina, pero no el ritmo de retorno hacia la circulación sistémica por la vena renal. Por ello, en términos de equilibrio de masas (ecuación 32-1), el ritmo de excreción de orina de la sustancia x (UxrV) es proporcional a la concentración plasmática de la sustancia x (Pax): L Ecuación 32-2

PCr x FPR

PCr x GFR Sin reabsorción ni secreción tubular de creatinina

• Pax c Ux r V

Para igualar el ritmo de excreción urinaria de la sustancia x a su concentración en el plasma arterial, es necesario determinar el ritmo al cual se elimina del plasma por los riñones. El ritmo de eliminación es el aclaramiento (Cx). L Ecuación 32-3

• Pax r Cx  Ux r V

Si la ecuación 32-2 se ajusta y se asume que la concentración de la sustancia x en el plasma de la arteria renal es idéntica a la concentración de una muestra de plasma de cualquier vaso sanguíneo periférico, se obtiene la siguiente relación: L Ecuación 32-4 Cx =

◊ Ux ¥ V Pax

El aclaramiento se expresa como volumen/tiempo, y representa el volumen de plasma que ha sido eliminado de una sustancia y que se excreta en la orina por unidad de tiempo. Este último punto se ilustra mejor considerando el siguiente ejemplo. Si una sustancia aparece en la orina con una concentración de 100 mg/ml y el ritmo de flujo urinario es de 1 ml/min, el ritmo de excreción de esta sustancia se calcula como se expresa a continuación: L Ecuación 32-5

• Ritmo de excreción  Ux r V  100 mg/ml r 1 ml/min  100 mg/min

© ELSEVIER. Fotocopiar sin autorización es un delito.

Si esta sustancia presenta una concentración en plasma de 1 mg/ml, su aclaramiento de acuerdo con la ecuación 32-4 será: L Ecuación 32-6 . Ux × V 100 mg/ min = = 100 ml / min Cx = Pax 1 mg / ml

En otras palabras, 100 ml de plasma se «limpiarán» completamente de la sustancia x cada minuto. La definición de aclaramiento como el volumen de plasma del que se elimina toda la sustancia y que se excreta en la orina es algo confusa, ya que no es un volumen real de plasma sino más bien un volumen imaginario*. El concepto de aclaramiento es importante, ya que puede utilizarse para medir GFR y FPR y determinar si una sustancia es reabsorbida o segregada a lo largo de la nefrona. * Para la mayoría de las sustancias del plasma aclaradas por los riñones, sólo una pequeña proporción es removida y excretada en un único paso a través del riñón.

32-555-577kpen.indd 567

PCr x FPR

. UCr x V Cantidad filtrada = Cantidad . excretada PCr x GFR UCr x V

LFigura 32-13. Manipulación renal de la creatinina. La crea-

tinina se filtra libremente a través del glomérulo, y como primera aproximación, no se reabsorbe, segrega ni metaboliza en la nefrona. Obsérvese que no toda la creatinina que entra en el riñón por la arteria renal se filtra en el glomérulo (habitualmente, se filtra entre el 15 y el 20% de la creatinina plasmática). La porción que no se filtra retorna a la circulación sistémica por las venas renales. PCr: concentración de creatinina en plasma; FPR: flujo plasmático renal; UCr: concentración urinaria de creatinina; V: volumen urinario.

Relación de filtración glomerular

La GFR es igual a la suma de las relaciones de filtración de todas las neuronas funcionantes. Por ello, es un indicador de la función renal. Una disminución de la GFR generalmente significa que la enfermedad renal está progresando, mientras que el incremento, en general, sugiere recuperación. Así, conocer la GFR de un paciente es esencial para evaluar la gravedad y la evolución de su enfermedad renal. La creatinina es el producto del metabolismo de la creatina del músculo esquelético, y puede utilizarse para la determinación de la GFR**. La creatinina se filtra libremente desde el glomérulo al espacio de Bowman, y como primera aproximación, no se reabsorbe, segrega ni metaboliza por las células de la nefrona. Por ello, la cantidad de creatinina excretada en la orina por minuto es igual a la cantidad de creatinina filtrada en el glomérulo por minuto (fig. 32-13): L Ecuación 32-7 Cantidad filtrada  cantidad excretada • GFR r PCr  UCr r V

donde: PCr = concentración de creatinina en plasma U = concentración de creatinina en orina • Cr V = flujo de orina ** En condiciones experimentales, la GFR se mide normalmente con inulina, una molécula de polifructosa (MW = 5.000), Sin embargo, la inulina no se produce en el organismo y debe ser infundida. Por ello, no se utiliza en la mayoría de situaciones clínicas.

24/2/09 10:37:39

568

Berne y Levy. Fisiología

APLICACIÓN CLÍNICA En la práctica clínica se utiliza creatinina para determinar la GFR. Se sintetiza a un ritmo relativamente constante, y la cantidad producida es proporcional a la masa muscular. Sin embargo, la creatinina no es una sustancia perfecta para medir la GFR porque se segrega en una pequeña cantidad por el sistema secretor de cationes orgánicos en el túbulo proximal (v. capítulo 33). El error que se introduce por este componente secretor es, aproximadamente, del 10%. Por ello, la cantidad de creatinina excretada en la orina supera en un 10% a la cantidad que se espera por filtración. Sin embargo, el método utilizado para medir la concentración plasmática de creatinina (PCr) sobrestima el valor real en un 10%. Por ello, los dos errores se contrarrestan y, en la mayoría de circunstancias clínicas, el aclaramiento de creatinina da una medida razonablemente segura de GFR.

APLIC ACIÓN CLÍNIC A Un descenso en la GFR puede ser el primer y único signo de enfermedad renal. Así, es importante determinar la GFR cuando se sospecha enfermedad renal. Una reducción del 50% de las neuronas funcionantes reduce la GFR solamente alrededor del 25%. No se produce una reducción en el 50% de la GFR porque el resto de las neuronas compensan. Como la medición de GFR es molesta, la función renal se evalúa, habitualmente en la clínica, por la medición de PCr, que se relaciona de forma inversa con GFR (fig. 32-14). Sin embargo, como muestra la figura 32-14, la GFR debe reducirse de forma importante antes de que se pueda detectar un aumento en la PCr en una situación clínica. Por ejemplo, una reducción en la GFR de 120 a 100 ml/min va acompañada de un incremento de la PCr de 1,0 a 1,2 mg/dl. No parece un cambio significativamente importante en la PCr, pero la GFR en realidad descendió casi el 20%.

Si la ecuación 32-7 se resuelve para GFR:

6

L Ecuación 32-8 ◊ UCr ¥ V GFR = PCr

Esta ecuación tiene la misma forma que la del aclaramiento (Ecuación 32-4). Por ello, el aclaramiento de creatinina proporciona el modo de determinar la GFR. El aclaramiento se expresa en unidades de volumen/tiempo, y representa el volumen de plasma del que se ha eliminado una sustancia y se ha excretado en la orina en la unidad de tiempo. La creatinina no es la única sustancia que se puede utilizar para la determinación de la GFR. Cualquier sustancia que reúna los siguientes criterios puede servir como un marcador adecuado para medir la GFR. La sustancia debe: 1. Filtrarse con libertad a través del glomérulo hacia el espacio de Bowman. 2. No ser reabsorbida ni secretada por la nefrona. 3. No ser metabolizada ni sintetizada por el riñón. 4. No alterar la GFR. No toda la creatinina (u otras sustancias utilizadas para medir la GFR) que entra en el riñón en la arteria renal se filtra en el glomérulo. Por otra parte, no todo el plasma que penetra en el riñón se filtra. Aunque casi todo el plasma que entra al riñón por la arteria renal pasa a través del glomérulo, aproximadamente el 10% no lo hace. La parte del plasma filtrado se denomina fracción de filtración y se determina como:

Creatinina plasmática (mg/dl)

5

4

3

2

1

0 0

20

40

60

80

100

120

140

GFR (ml/min)

LFigura 32-14. Relación entre GFR y la [creatinina] en plasma (PCr). La cantidad de creatinina filtrada es igual a la cantidad de creatinina excretada; por ello, GFRrPCr = UCrrV. Puesto que la producción de creatinina es constante, la excreción debe ser constante para mantener el equilibrio. Por ello, si GFR desciende de 120 a 60 ml por min, PCr debe incrementarse de 1 a 2 mg/dl para mantener la filtración de creatinina y su excreción igual a su ritmo de producción.

pilares peritubulares. Finalmente, retorna a la circulación sistémica por la vena renal.

L Ecuación 32-9 Fracción de filtración =

GFR FPR

En condiciones normales, la fracción de filtración media es de 0,15 a 0,20, lo que significa que, en realidad, sólo del 15 al 20% del plasma que penetra en el glomérulo es filtrado. El 80 al 85% restante continúa a través de los capilares glomerulares hacia la arteriola eferente y los ca-

32-555-577kpen.indd 568

FILTRACIÓN GLOMERULAR El primer escalón en la formación de la orina es la ultrafiltración del plasma por el glomérulo. En los adultos sanos, la GFR varía entre 90 y 140 ml/min en los hombres, y entre 80 y 125 ml/min en las mujeres. Por ello, en 24 horas se filtran por el glomérulo unos 180 l de plasma. El ultrafiltrado del plasma carece de elementos celulares (hematíes, leucocitos y plaquetas) y esencialmente está libre de pro-

24/2/09 10:37:40

569

Capítulo 32 Elementos de la función renal

APLIC ACIÓN CLÍNIC A

1,0

Filtrabilidad relativa

0,8 Dextrano policatiónico

0,6

Dextrano neutro

0,4 Dextrano polianiónico

0,2 0 18

22

26

30

34

38

42

46

Radio molecular efectivo (Å)

La importancia de la carga negativa en la barrera de filtración restringiendo la filtración de proteínas del plasma se muestra en la figura 32-16. La eliminación de las cargas negativas de la barrera de filtración causa que las proteínas sean filtradas solamente por su radio molecular efectivo. Por ello, con cualquier radio molecular de entre 20 y 42 Å aproximadamente la filtración de proteínas polianiónicas excederá a la filtración en un estado normal (en el cual la barrera de filtración tiene cargas aniónicas). En diversas enfermedades glomerulares, las cargas negativas de la barrera de filtración se reducen por la lesión inmunológica y la inflamación. Como consecuencia, la filtración de proteínas aumenta y las proteínas aparecen en la orina (proteinuria).

L Figura 32-15. Influencia del tamaño y la carga eléctrica

teínas. La concentración de sales y moléculas orgánicas, como glucosa y aminoácidos, es similar en el plasma y en el ultrafiltrado. Las fuerzas de Starling dirigen el ultrafiltrado a través de los capilares glomerulares, y los cambios en estas fuerzas alteran la GFR. GFR y FPR habitualmente se mantienen en un estrecho intervalo por un fenómeno denominado autorregulación. Las siguientes secciones de este capítulo revisan la composición del filtrado glomerular, la dinámica de su formación y las relaciones entre FPR y GFR. Además, se exponen los factores que contribuyen a la autorregulación y la regulación de GFR y FPR.

© ELSEVIER. Fotocopiar sin autorización es un delito.

Determinantes de la composición del ultrafiltrado

La barrera de filtración glomerular determina la composición del ultrafiltrado del plasma. Se limita la filtración de moléculas basándose en el tamaño y la carga eléctrica (fig. 32-15). En general, las moléculas neutras con un radio inferior a 20 Å se filtran libremente, las moléculas mayores de 42 Å no se filtran, y moléculas entre 20 y 42 Å se filtran en grados variables. Por ejemplo, la albúmina sérica, una proteína aniónica con un radio molecular efectivo de 35,5 Å, se filtra muy poco. Debido a que la albúmina filtrada se reabsorbe ávidamente en el túbulo proximal, casi no existe albúmina en la orina. La figura 32-15 muestra cómo los cambios eléctricos afectan a la filtración de macromoléculas (p. ej., dextranos) por el glomérulo. Los dextranos son una familia de polisacáridos exógenos fabricados con varios pesos moleculares. Pueden ser eléctricamente neutros o tener carga negativa (polianiones) o carga positiva (policationes). A medida que aumenta el tamaño (p. ej., el radio molecular efectivo) de

32-555-577kpen.indd 569

1,0 0,8 Filtrabilidad relativa

de los dextranos en su filtrabilidad. Un valor de 1 indica que es libremente filtrado, mientras que un valor de 0 indica que no es filtrable. La filtrabilidad de los dextranos con tamaño de 20 a 42 Å depende de su carga. Los dextranos con un tamaño superior a 42 Å no se filtran, con independencia de su carga, y los dextranos policatiónicos y los dextranos neutros de menos de 20 Å se filtran libremente. Las principales proteínas plasmáticas son la albúmina y las inmunoglobulinas. Debido a que el radio molecular efectivo de la IgG (53 Å) y la IgM (> 100 Å) son mayores de 42 Å, no son filtrables. Aunque el radio molecular efectivo de la albúmina es de 35 Å, es una proteína polianiónica, por lo que no atraviesa la barrera de filtración en un grado significativo.

0,6

Pérdida de las cargas negativas en la barrera de filtración

0,4 Normal

0,2 0 18

22

26

30

34

38

42

46

Radio molecular efectivo (Å)

LFigura 32-16. La reducción de las cargas negativas en la

pared glomerular resulta en la filtración de proteínas según su tamaño, exclusivamente. En esta situación, la filtrabilidad relativa de las proteínas depende sólo del radio molecular. Por ello, la excreción de las proteínas polianiónicas (20 a 42 Å) en la orina aumenta, ya que se filtran más proteínas de este tamaño.

una molécula de dextrano, la relación de su filtración va disminuyendo. Para un radio molecular concreto, las moléculas aniónicas se filtran más rápidamente que las moléculas aniónicas. La reducida relación de filtración para las moléculas aniónicas se explica por la presencia de glucoproteínas cargadas negativamente en la superficie de todos los componentes de la barrera de filtración glomerular. Estas glucoproteínas cargadas repelen las moléculas de carga similar. Como la mayoría de las proteínas del plasma están cargadas negativamente, la carga negativa de la barrera de filtración restringe la filtración de las proteínas que tienen un radio molecular de entre 20 y 42 Å o mayor.

Dinámica de la ultrafiltración

Las fuerzas responsables de la filtración glomerular del plasma son las mismas que actúan en todos los lechos capilares. La ultrafiltración se produce por las fuerzas de Starling (presiones hidrostática y oncótica) que mueven los lí-

24/2/09 10:37:42

570

Berne y Levy. Fisiología

quidos desde la luz capilar a través de la barrera de filtración hacia el espacio de Bowman (fig. 32-17). La presión hidrostática en el capilar glomerular (PGC) promueve el movimiento de líquidos desde el capilar glomerular hacia el espacio de Bowman. Basándose en que el coeficiente de reflexión (S) de las proteínas a través del capilar glomerular es prácticamente 1, el ultrafiltrado glomerular está libre de proteínas y la presión oncótica en el espacio de Bowman (πBS) es prácticamente cero. Por tanto, PGC es la única fuerza que favorece la filtración. La presión hidrostática en el espacio de Bowman (PBS) y la presión oncótica en el capilar glomerular (πGC) se oponen a la filtración. Como muestra la figura 32-17, existe una presión neta de ultrafiltración (PUF) de 17 mmHg en el extremo aferente del glomérulo, mientras que en el extremo eferente es de 8 mmHg (donde PUF = PGC – PBS – πGC). Son importantes dos aspectos adicionales de las fuerzas de Starling en el cambio de presión. Primero, la PGC disminuye suavemente a lo largo del capilar por la resistencia al flujo a lo largo del mismo. Segundo, la πGC aumenta a lo largo del capilar glomerular. Dado que el agua se filtra y las proteínas son retenidas en el capilar glomerular, la concentración de proteínas en el capilar se incrementa, y aumenta la πGC. La GFR es proporcional a la suma de las fuerzas de Starling que existen a través del capilar [(PGC – PBS) – S (πGC – πBS)] multiplicadas por el coeficiente de ultrafiltración (Kf). Esto es,

L Ecuación 32-10 GFR  Kf [(PGC PBS) S (PGC PBS)]

Kf es el producto de la permeabilidad intrínseca del capilar glomerular por el área de la superficie glomerular disponible para la filtración. La relación de filtración glomerular es considerablemente mayor en el capilar glomerular que en los capilares sistémicos, principalmente porque Kf es aproximadamente 100 veces mayor en los capilares glomerulares. Además, la PGC es aproximadamente el doble de la presión hidrostática de los capilares sistémicos. La GFR se puede alterar cambiando Kf o por cambios en cualquiera de las fuerzas de Starling. En los sujetos sanos, la GFR se regula por alteraciones en la PGC que están mediados por cambios en la resistencia de la arteriola aferente o eferente. La PGC se afecta por tres causas: 1. Cambios en la resistencia de la arteriola aferente: un descenso en la resistencia produce un aumento en PGC y GFR, mientras que un incremento en las resistencias los reduce. 2. Cambios en la resistencia de la arteriola eferente: una disminución en las resistencias reduce PGC y GFR, mientras que un aumento en las resistencias los eleva. 3. Cambios en la presión arteriolar: un aumento en la presión sanguínea aumenta de forma transitoria PGC,

APLIC ACIÓN CLÍNIC A Arteriola aferente

Arteriola eferente

GC PGC

PBS

Terminal aferente

Terminal eferente

60 mmHg

PGC

58 mmHg

0 mmHg

BS

0 mmHg

–15 mmHg

PBS

–15 mmHg

–28 mmHg

GC

–35 mmHg

17 mmHg

PUF

8 mmHg

LFigura 32-17. Capilar glomerular idealizado, y fuerzas de Starling a través de él. El coeficiente de reflexión de proteínas (S) a través del capilar glomerular es 1. PBS: presión hidrostática en el espacio de Bowman; PCG: presión hidrostática en el capilar glomerular; PUF: presión neta de ultrafiltración; πBS: presión oncótica en el espacio de Bowman; πCG: presión oncótica en el capilar glomerular. Los signos negativos de PBS y πCG indican que estas fuerzas se oponen a la formación del filtrado glomerular.

32-555-577kpen.indd 570

Una reducción de GFR en situación de enfermedad se debe con mayor frecuencia a una reducción de Kf por la pérdida del área de superficie de filtración. La GFR también se modifica en condiciones patológicas por cambios en PGC, PBS y πGC. 1. Cambios en Kf: aumentos en Kf aumentan GFR, mientras que descensos del Kf reducen GFR. Algunas enfermedades renales reducen Kf disminuyendo el número de glomérulos filtrantes (disminuyendo la superficie del área). Algunos fármacos y hormonas que dilatan las arteriolas glomerulares también aumentan Kf. De forma similar, los fármacos y hormonas que constriñen las arteriolas glomerulares también disminuyen Kf. 2. Cambios en PGC: cuando disminuye la perfusión renal, la GFR disminuye porque cae PGC. Como se ha comentado anteriormente, una reducción en PGC se produce por una disminución en la presión de la arteria renal, un aumento de la resistencia de la arteriola aferente o una disminución de la resistencia en la arteriola eferente. 3. Cambios en πGC: existe una relación inversa entre πGC y GFR. Las alteraciones en πGC se producen por cambios en la síntesis de proteínas fuera del riñón. Además, la pérdida de proteínas por el riñón que se producen en algunas enfermedades puede causar una disminución en la concentración de proteínas en el plasma y, por ello, en πGC. 4. Cambios en PBS: una PBS aumentada reduce GFR, mientras que una PBS disminuida aumenta GFR. La obstrucción aguda del tracto urinario (p. ej., un cálculo renal que obstruye el uréter) aumenta PBS.

24/2/09 10:37:44

571

Capítulo 32 Elementos de la función renal

FLUJO SANGUÍNEO RENAL El flujo de sangre a través de los riñones tiene diversas funciones importantes, incluyendo las siguientes: 1. Determina indirectamente la GFR. 2. Modifica la relación de reabsorción de agua y solutos por el túbulo proximal. 3. Participa de la concentración y la dilución de la orina. 4. Aporta O2, nutrientes y hormonas a las células de la nefrona, y recoge, CO2, líquidos y solutos reabsorbidos a la circulación general. 5. Aporta sustratos para su excreción en la orina. El flujo de sangre a través de cualquier órgano puede representarse por la siguiente ecuación: L Ecuación 32-11 DP Q= R

donde: Q = flujo de sangre $P = presión arterial media, menos presión venosa para ese órgano R = resistencia al paso de la sangre a través de ese órgano

Velocidad de flujo (ml/min)

(con incremento de GFR), mientras que una reducción en la presión sanguínea transitoriamente disminuirá PGC (con descenso de GFR).

FSR

GFR

0

50

100

© ELSEVIER. Fotocopiar sin autorización es un delito.

FSR =

presión aórtica - presión en vena renal resistencia vascular renal

Las arteriolas aferentes, eferentes e interlobulares renales son los mayores vasos de resistencia en los riñones y, por ello, determinan la resistencia vascular renal. Como la mayoría de órganos, los riñones regulan su flujo sanguíneo ajustando la resistencia vascular como respuesta a los cambios en la presión arterial. Como se muestra en la figura 32-18, estos ajustes son tan precisos que el flujo sanguíneo permanece relativamente constante aunque cambie la presión sanguínea arterial entre 90 y 180 mmHg. La GFR se regula también en el mismo intervalo de la presión arterial. El fenómeno por el cual FSR y GFR se mantienen relativamente constantes, denominado autorregulación, se consigue por los cambios en la resistencia vascular, principalmente por la arteriola aferente del riñón. Puesto que tanto GFR como FSR se regulan por el mismo nivel de presiones, y a la vista de que FSR es un determinante importante de GFR, no sorprende que los mismos mecanismos regulen ambos flujos. En la autorregulación de FSR y GFR son importantes dos mecanismos: un mecanismo que responda a los cambios en la presión arterial, y otro que responda a los cambios en la [ClNa] en el líquido tubular. Ambos regulan el tono de la arteriola aferente. El mecanismo sensible a la presión, el así llamado mecanismo miogénico, se

32-555-577kpen.indd 571

200

Presión sanguínea arterial (mmHg)

LFigura 32-18. Relación entre presión sanguínea arterial y

FSR, y entre presión sanguínea arterial y GFR. La autorregulación mantiene GFR y FSR relativamente constantes con cambios en la presión sanguínea de 90 a 180 mmHg. 1  GFR

De acuerdo a ello, la FSR es igual a la diferencia de presión entre la arteria renal y la vena renal, dividida por la resistencia vascular renal: L Ecuación 32-12

150

2  NaCl concentración de NaCl en el líquido tubular en el asa de Henle

4 RA

3 Señal generada por la mácula densa de AY

L Figura 32-19. Retroalimentación tubuloglomerular. Un

aumento de GFR (1) aumenta la [NaCl] en el líquido tubular del asa de Henle (2). El aumento de la [NaCl] es detectado por la mácula densa y transformado en señal (3) para aumentar la resistencia de la arteriola aferente (RA) (4), la cual disminuye GFR. (Modificado de Cogan MG: Fluid and Electrolytes: Physiology and Pathophysiology. Morwalk, CT, Appleton & Lange, 1991.)

relaciona con una propiedad intrínseca del músculo liso vascular: la tendencia a la contracción cuando se distiende. Por ello, cuando la presión arterial aumenta y la arteriola renal aferente se tensa, el músculo liso se contrae. El aumento en la resistencia de la arteriola compensa el aumento de presión, y por ello FSR y GFR se mantienen constantes (es decir, FSR es constante si $ P/R se mantiene constante [ecuación 32-11]).

24/2/09 10:37:46

572

Berne y Levy. Fisiología

El segundo mecanismo responsable de la autorregulación de GFR y FSR es un mecanismo dependiente de la [NaCl] conocido como retroalimentación tubuloglomerular (fig. 32-19). Este mecanismo implica una retroalimentación del asa en la cual la concentración de NaCl en el líquido tubular es detectada por la mácula densa del aparato yuxtaglomerular (fig. 32-20; v. también fig. 32-5) y convertida en una o varias señales que afectan a la resistencia de la arteriola aferente y, por ello, a la GFR. Cuando la GFR aumenta y se produce un incremento de NaCl en el fluido tubular de la mácula densa, más NaCl entra en las células de la mácula densa. Se produce un aumento en la formación y liberación de ATP y adenosina, un metabolito del ATP, en las células de la mácula densa, que causa vasoconstricción de la arteriola aferente. La vasoconstricción de la arteriola aferente hace que la GFR vuelva a los niveles de normalidad. Al contrario, cuando GFR y [NaCl] en el líquido tubular disminuyen menos [NaCl] entra en las células de la mácula densa, y la producción y la liberación de ATP y adenosina disminuyen. La disminución en la [ATP] y la [adenosina] causan vasodilatación de la arteriola aferente, que devuelve GFR a la normalidad. El NO, un vasodilatador producido en la mácula densa, atenúa la retroalimentaLíquido tubular

ción tubuloglomerular, mientras que la angiotensina II aumenta la retroalimentación tubuloglomerular. Por ello, la mácula densa puede liberar tanto vasoconstrictores (ATP, adenosina) como vasodilatadores (NO) con acciones contrapuestas a nivel de la arteriola aferente. La producción y liberación de vasoconstrictores y vasodilatadores asegura un delicado control sobre la retroalimentación tubuloglomerular. La figura 32-20 también ilustra el papel de la mácula densa en el control de la secreción de renina por las células granulares de la arteriola aferente. Este aspecto de la función del aparato yuxtaglomerular se considerará con detalle en el capítulo 34. Basándose en que los animales participan en muchas actividades que pueden cambiar la presión arterial, los mecanismos que mantienen GFR y FSR relativamente constantes a pesar de los cambios en la presión arterial son muy deseables. Si GFR o FSR de forma súbita aumentaran o descendieran en proporción a los cambios en la presión sanguínea, la excreción urinaria de fluidos y solutos también cambiaría repentinamente. Estos cambios en la excreción de agua y solutos sin cambios comparables en la ingesta cambiarían el equilibrio electrolítico y de líquidos (por razones que se expondrán en el capítulo 34). La autorregulaCélulas granulares y MLV

Célula mesangial extracelular

Mácula densa

Ca++

Arteriola aferente

Liberación de renina 

ATP

Na+

Na 2Cl– K

ATP

K+ ADP

ADO A1 Ca++ ATP

Vasoconstricción

P2X

LFigura 32-20. Mecanismo celular por el que un aumento en la llegada de NaCl a la mácula densa origina una vasoconstricción

de la arteriola aferente de la misma nefrona (retroalimentación tubuloglomerular). Un incremento de GFR aumenta la [NaCl] en el líquido tubular de la mácula densa. Esto incrementa la captación de NaCl a través de la membrana celular apical de las células de la mácula densa a través del simporter 1Na+-1K+-2Cl– (NKCC2), que produce un aumento de la [ATP] y la [adenosina] (ADO). El ATP se une a los receptores P2X, y la adenosina se une a los receptores A1 adenosina en la membrana plasmática de las células del músculo liso que rodean la arteriola aferente, donde ambos aumentan la [Ca++] intracelular. El aumento de la [Ca++] induce vasoconstricción de la arteriola aferente, lo cual retorna GFR a los niveles normales. Obsérvese que el ATP y la adenosina también inhiben la liberación de renina por las células granulares en la arteriola aferente. Esto también conduce a un aumento de la [Ca++] intracelular como un reflejo del acoplamiento eléctrico de las células granulares y las células del músculo liso vascular (VSM). Cuando GFR se reduce, la [NaCl] cae en el líquido tubular, así como la captación de NaCl en las células de la mácula densa. Esto reduce la liberación de ATP y adenosina, con el consiguiente descenso en la [Ca++] intracelular y, por ello, aumenta GFR y se estimula la liberación de renina por las células granulares. Además, un descenso de la entrada de NaCl en las células de la mácula densa aumenta la producción de PGE2, la cual también estimula la secreción de renina por las células granulares. Como se expuso con detalle en los capítulos 4 y 6, la renina aumenta la [angiotensina-II] en plasma, una hormona que aumenta la retención de NaCl y agua en el riñón. (Modificado de Persson AEG y cols. Acta Physiol Scand 181:471, 2004.)

32-555-577kpen.indd 572

24/2/09 10:37:48

573

Capítulo 32 Elementos de la función renal ción de GFR y FSR es un mecanismo eficaz para desacoplar la función renal y la presión arterial y asegurar que la excreción de solutos y líquidos permanece constante. Se deben tener en cuenta tres aspectos con respecto a la autorregulación: 1. La autorregulación está ausente si la presión arterial es inferior a 90 mmHg. 2. La autorregulación no es perfecta; FSR y GFR cambian ligeramente a medida que varía la presión sanguínea. 3. A pesar de la autorregulación, GFR y FSR pueden alterarse por la acción de ciertas hormonas y por cambios en la actividad de los nervios simpáticos.

REGULACIÓN DEL FLUJO SANGUÍNEO RENAL Y DE LA RELACIÓN DE FILTRACIÓN GLOMERULAR Diversos factores y hormonas influyen en la GFR y la FSR (tabla 32-1). Como se ha indicado anteriormente, el mecanismo biogénico y la retroalimentación tubuloglo-

A NIVEL CELULAR

© ELSEVIER. Fotocopiar sin autorización es un delito.

La retroalimentación tubuloglomerular no existe en los ratones que carecen del receptor de adenosina (A1). Esto subraya la importancia de la señalización de la adenosina en este mecanismo. Los estudios muestran que cuando GFR aumenta y causa un aumento en la concentración de NaCl en el líquido tubular en la mácula densa, entra más NaCl en las células a través de transporte 1Na+-1K+-2Cl– (NKCC2) localizado en la membrana plasmática apical (figura 32-20). El aumento de la [NaCl] estimula la liberación de ATP por una vía de canales iónicos que conducen ATP en la membrana basolateral de la mácula densa. Además, también aumenta la producción de adenosina. La adenosina se une al receptor A1 y el ATP se une a los receptores P2X localizados en la membrana plasmática de las células musculares lisas de la arteriola aferente. Ambas hormonas aumentan la [Ca++], lo que produce vasoconstricción de la arteriola aferente y, por ello, GFR desciende. Aunque la adenosina es un vasodilatador en la mayoría de los lechos vasculares, en el riñón constriñe la arteriola aferente.

merular desempeñan una función principal en mantener constante GFR y FSR. Además, los nervios simpáticos, angiotensina-II, prostaglandinas, NO, endotelina, bradicinina, ATP y adenosina ejercen un control fundamental en GFR y FSR. La figura 32-21 muestra cómo los cambios en la resistencia de las arteriolas aferentes y eferentes, mediados por los cambios en las hormonas relacionadas en la tabla 32-1, modulan GFR y FSR.

Nervios simpáticos

Las arteriolas aferentes y eferentes están inervadas por neuronas simpáticas: sin embargo, el tono simpático es mínimo cuando el volumen de líquido extracelular es normal (v. capítulo 34). Los nervios simpáticos liberan noradrenalina y dopamina, y la adrenalina circulante (una catecolamina como la noradrenalina y la dopamina) se segrega por la médula adrenal. La noradrenalina y la adrenalina causan vasoconstricción al unirse a los adrenoceptores A1, que se localizan principalmente en las arteriolas aferentes. La activación de los adrenoceptores A1 reduce GFR y FSR. La deshidratación o un fuerte estímulo emocional, como el miedo o el dolor, activan los nervios simpáticos y reducen GFR y FSR. La renalasa, una hormona que metaboliza las catecolaminas producidas por el riñón, facilita la degradación de las catecolaminas.

Angiotensina-II

La angiotensina-II se produce sistémicamente y localmente en el riñón. Constriñe las arteriolas aferentes y

APLIC ACIÓN CLÍNIC A Las personas con estenosis de arteria renal (estrechamiento de la luz de la arteria) producidas por arteriosclerosis, por ejemplo, pueden tener una presión sanguínea sistémica elevada mediada por la estimulación del sistema renina-angiotensina (v. capítulo 34). La presión en la arteria renal proximal a la estenosis está aumentada, pero la presión distal a la estenosis es normal o está reducida. La autorregulación es importante para mantener FSR, PGC y GFR en presencia de una estenosis. La administración de fármacos que reducen la presión sanguínea sistémica también reduce la presión distal a la estenosis; por ello FSR, PGC y GFR descienden.

L Tabla 32-1. Principales hormonas que influyen en la relación de la filtración glomerular y el flujo sanguíneo renal Vasoconstrictores Nervios simpáticos Angiotensina-II Endotelina Vasodilatadores Prostaglandinas (PGE1, PGE2, PGI2) Óxido nítrico (NO) Bradicinina Péptidos natriuréticos (ANP, BNP)

Estímulo

Efecto sobre GFR

Efecto sobre FSR

m VEC m VEC k Estiramiento, A-II, bradiquinina, adrenalina; m VEC

m m m

m m m

m VEC; k fuerza de cizalladura, A-II k Fuerza de cizalladura, acetilcolina, histamina, bradicinina, ATP k Prostaglandinas, m ECA

Sin cambios/k k k

k k k

k VEC

k

Sin cambios

A-II: angiotensina-II; VEC: volumen extracelular.

32-555-577kpen.indd 573

24/2/09 10:37:49

574

Berne y Levy. Fisiología

APLIC ACIÓN CLÍNIC A Arteriola aferente

Glomérulo

Arteriola eferente

PCG

A

GFR

FSR

PCG

B

GFR

FSR

La hemorragia reduce la presión sanguínea arterial y, por ello, activa los nervios simpáticos del riñón a través del reflejo barorreceptor (fig. 32-22). La noradrenalina produce una intensa vasoconstricción de las arteriolas aferentes y eferentes y, en consecuencia, disminuye FSR y GFR. El aumento de la actividad simpática también incrementa la liberación de adrenalina y angiotensina-II, las cuales producen una vasoconstricción adicional y un descenso de FSR. El aumento de la resistencia vascular en el riñón y en otros lechos vasculares aumenta la resistencia periférica total. La tendencia resultante para la presión sanguínea a aumentar (presión sanguínea = gasto cardíacorresistencia periférica total) compensa la tendencia de la presión sanguínea a disminuir como respuesta a una hemorragia. Por ello, el sistema trabaja para preservar la presión arterial a expensas de mantener un FSR y GFR normales.

PCG

C

GFR

FSR

PCG

D

GFR

FSR

LFigura 32-21. Relación entre los cambios selectivos en la

resistencia de las arteriolas aferentes y eferentes en FSR y GFR. La constricción de la arteriola aferente o eferente aumenta las resistencias y, según la ecuación 32-11 (Q = $P/R), un aumento en la resistencia (R) disminuye el flujo (Q) (FSR). La dilatación de la arteriola aferente o eferente aumenta el flujo (FSR). La constricción de la arteriola aferente (A) disminuye PCG, una presión arterial inferior se transmite al glomérulo, por ello GFR se reduce. En contraste, la constricción de la arteriola eferente (B) aumenta PCG y por ello aumenta GFR. La dilatación de la arteriola eferente (C) disminuye PCG y, por ello, disminuye GFR. La dilatación de la arteriola aferente (D) aumenta PCG, se transmite mayor presión arterial al glomérulo y, por ello, se aumenta GFR. (Modificado de Rose BD, Rennke KG; Renal Pathophysiology. The Essentials. Baltimore, Williams & Wilkins, 1994.)

eferentes* y reduce FSR y GFR. La figura 32-22 muestra cómo la noradrenalina, la adrenalina y la angiotensinaII actúan juntas para reducir FSR y GFR, y por ello aumentan la presión sanguínea y el volumen del líquido extracelular, como ocurre, por ejemplo, con una hemorragia. *La arteriola eferente es más sensible a la angiotensina-II que la arteriola aferente. Por ello, con bajas concentraciones de angiotensina-II, predomina la constricción de la arteriola eferente, y GFR y FSR se reducen en proporción. Sin embargo, con altas concentraciones de angiotensina-II, se produce una constricción tanto de la arteriola aferente como de la arteriola eferente, y GFR y FSR no se reducen de forma proporcionada (fig. 32-20).

32-555-577kpen.indd 574

Prostaglandinas

Las prostaglandinas no desempeñan un papel principal en la regulación de FSR en las personas sanas en reposo. Sin embargo, en circunstancias patológicas, como una hemorragia, se producen prostaglandinas (PGI 2, PGE 1 y PGE 2) localmente a nivel renal que aumentan el FSR sin modificaciones en GFR. Las prostaglandinas aumentan FSR amortiguando el efecto vasoconstrictor de los nervios simpáticos y de la angiotensina-II. Este efecto es importante, porque previene una intensa y potencialmente peligrosa vasoconstricción e isquemia renal. La síntesis de prostaglandinas se estimula por la deshidratación y el estrés (cirugía, anestesia), angiotensina-II y nervios simpáticos. Los fármacos antiinflamatorios no esteroideos (AINE), como la aspirina y el ibuprofeno, inhiben la síntesis de prostaglandinas, disminuyen FSR y aumentan la isquemia renal. Las prostaglandinas desempeñan un papel de importancia creciente en el mantenimiento de FSR y GFR en los sujetos de edad avanzada. Por ello, los AINE pueden reducir de forma significativa FSR y GFR en los ancianos.

Óxido nítrico

El NO, un factor relajante derivado del endotelio, es un vasodilatador importante en condiciones basales, y se opone a la vasoconstricción producida por la angiotensina-II y las catecolaminas. Cuando el flujo sanguíneo aumenta, mayores fuerzas de cizalladura actúan en las células endoteliales de las arteriolas y aumenta la producción de NO. Además, numerosas hormonas vasoactivas, que incluyen acetilcolina, histamina, bradicinina y ATP, facilitan la liberación de NO desde las células endoteliales. Una producción aumentada de NO produce la dilatación de las arteriolas aferentes y eferentes de los riñones. Mientras que unos niveles aumentados de NO reducen las resistencias periféricas totales, la inhibición de la producción de NO aumenta las resistencias periféricas totales.

24/2/09 10:37:50