Registros

Departamento de Electrónica Electrónica Digital Latches, flipflops y registros Facultad de Ingeniería Bioingeniería U

Views 156 Downloads 0 File size 2MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Departamento de Electrónica

Electrónica Digital

Latches, flipflops y registros

Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos

Circuitos secuenciales

1

Circuitos secuenciales Salida = F(entrada actual, estado anterior)

Estado de un circuito secuencial: es una colección de variables de estado • Las variables de estado son valores binarios. • Contienen toda la información acerca del pasado necesario para explicar el comportamiento futuro del circuito.

Máquinas de estado finito Un circuito con n variables de estado tiene un número finito (2n) de estados posibles.

2

Reloj (Clock, CK, CLK) Los cambios de estado de los circuitos secuenciales se presentan en tiempos especificados por una señal de funcionamiento libre.

3

Latchs y flip-flops Flip-flop o biestable Dispositivo secuencial que muestrea sus entradas y cambia sus salidas solamente en ocasiones determinadas por una señal de reloj. Los flancos de la señal de reloj son los instantes de cambio. Latch Dispositivo secuencial que monitorea sus entradas continuamente y modifica sus salidas en cualquier momento, de manera independiente de una señal de reloj. Suele existir una señal habilitadora activa por nivel durante el cual cambia su salida.

4

Elementos biestables: ¿cómo almacenar un bit?

No se puede cambiar (controlar) el estado del circuito

5

¿Cómo cambiar (controlar) el estado?

0

0 Q

Q Latch

QN

QN 0 6

Funcionamiento R=0 S=0

R reset

0 Q El estado se mantiene QN

S set

0

7

R=1 S=0

R reset

1 Q 0

La salida Q pasa a 0 (el latch se resetea)

1 QN S

0

8

R=0 S=1

R

0 Q 1

La salida Q pasa a 1 (El latch se setea)

0 QN S set

1

9

R=1 S=1

R

1 Q 0 Estado ‘ambiguo’ 0 QN

S

1

10

Latch S-R con compuertas NOR

Símbolos

11

Diagrama de tiempos

12

Parámetros de temporización

Tecnología

Estado metaestable: No se cumple el mínimo ancho de pulso

• tpLH, tpHL: retardos de propagación de las entradas de control. • tpw(min): mínimo ancho de pulso de una entrada de control.

13

Tecnología

15

Latch S-R con compuertas NAND

A B

Z

El nivel de activación de las entradas de control Set y Reset es L 16

Ejemplo de aplicación:

Aplicaciones

Circuito anti-rebote de pulsadores / llaves

17

Aplicaciones

Q Pos. 1 Pos. 2

QN

SWU_L SWD_L

Llave en Pos. 1 Primer contacto en Pos. 2 Rebotes

18

Ejemplo de aplicación:

Aplicaciones

Control de motor

19

Ejemplo de aplicación:

Aplicaciones

Control de motor

20

Latch NAND S-R con entrada de habilitación

E: Enable

¿Cuál es ahora el nivel activo de las entradas Set y Reset? ¿Qué función equivalente tienen las NAND del circuito de entrada cuando C = 1?

21

Funcionamiento

Estado metaestable: Se deshabilita el latch con S y R activas

22

Latch D (cerrojo D) • Latches SR: aplicaciones de control como indicador o bandera (flag) • Latch D: una sola entrada de control (D) • almacenamiento de bits • elimina la ambigüedad

23

Diagrama de tiempos (para C activo por nivel alto)

transparente

“trabado” (latcheado)

transparente

“trabado” (latcheado)

transparente

El latch copia y almacena el estado de D cuando C = 1 24

Parámetros de temporización

Tecnología

Estado metaestable: Cambia D durante tH y tS

• tP retardos de propagación: para C y D ref (1) a (5) • tsetup tiempo de establecimiento: mínimo tiempo que D debe estar en nivel estable antes de que ocurra la transición en C.

• thold tiempo de retención: mínimo tiempo que D debe estar en nivel estable después de que ocurra la transición en C. 25

Flip-flop D

Diagrama de tiempos

El FF D copia y almacena el estado de D en cada flanco activo del reloj

26

Tecnología

Temporización

• tp tiempos de propagación • tsetup (setup time) tiempo de establecimiento: entre CLK y D • thold (hold time) tiempo de retención: entre CLK y D

CLK

CLK

Control

Control

tS

tH

27

Flip-flop D con entradas asincrónicas • Entradas sincrónicas: dependientes de la señal de sincronización (CLK) • entrada (D) • Entradas asincrónicas: independientes de la señal de sincronización (CLK); • PR - Preset o Set: pone a 1 la salida Q • CLR - Clear o Reset: pone a 0 la salida Q • Usadas en inicialización y prueba

28

Flip-flop J-K • Dos señales de control: J y K • Sin estados ambiguos • Mayor versatilidad en el diseño; diseños más simples • Preferencia actual por FF-D por PLDs

30

Diagrama de tiempos

El FF JK “lee” sus entradas de control solo en los flancos activo del reloj

31

Deducción de la expresión de D = f (Q, J, K) Q Circuito combinacional

J K

D

CLK

Q

CLK Q

Convención: Q* = “el siguiente valor de Q” Tabla de verdad CLK

0 1    

J

K

X X X X 0 0 1 1

0 1 0 1

Q*

Q

CLK

J

K

Q

Q*

Q



0 0

0

0

Q



0 0

1

1

0



0 1 X

0

1



1 0 X

1

QN



1 1

0

1



1 1

1

0

entradas

salida

J

K

Q

D = Q*

0 0

0

0

0 0

1

1

0 1

0

0

0 1

1

0

1 0

0

1

1 0

1

1

1 1

0

1

1 1

1

0

32

entradas

salida

J

JK

K

Q

D = Q*

0 0

0

0

0 0

1

1

0 1

0

0

0 1

1

0

Q* = D = ?

1 0

0

1

Q* = D = J . Q’ + K’ . Q

1 0

1

1

1 1

0

1

1 1

1

0

Q

0 1

00

01

11

10

0 1

0 0

1 0

1 1

Ecuación característica

33

Flip-flop T (toggle) • Conmuta con cada flanco activo del CLK • Se puede implementar con FF JK y FF D CLK J K

Q*



0 0

Q



0 1

0



1 0

1



1 1

Q’

CLK D

Q

Q*



1

1

0



0

0

1

34

Otros parámetros de sincronización

Tecnología

Solid State Technology Association, (ex-JEDEC Joint Electron Device Engineering Council)

 Frecuencia máxima de CLK, fCLK The highest frequency at which a clock input of an integrated circuit can be driven, while maintaining proper operation.

 Anchos de pulso, tW (CLK y entradas asincrónicas) The time interval between the specified reference points on the two transitions of the pulse waveform

 Tiempos de transición del CLK (rise time / fall time) tr , tf Fall time: The time interval between one reference point on a waveform and a second reference point of smaller magnitude on the same waveform. Rise time: The time interval between one reference point on a waveform and a second reference point of greater magnitude on the same waveform.

37

Aplicaciones

Ejemplo de aplicación: Circuito de conteo binario (3 bits) y divisor de frecuencia Q0 (LSB)

Q1

Q2

“1” J Q0 CLK K

CLK

J Q1 CLK K

J Q2 CLK K

CLK o Reloj fQ0= fCLK/2

Q0 Q1

fQ1= fCLK/4

Q2

fQ2= fCLK/8

Binario Decimal

000 001 010 011 100 101 110 111 000 001 010 011

0

1

2

3

4

5

6

7

0

1

2

3 38

Formas comerciales

Algunas formas comerciales de FFs  7474: doble FF D disparado por flanco  4013: doble FF-D activo por flanco positivo con Set y Reset

 4027: doble FF-JK maestro-esclavo activo por flanco positivo c/ Set y Reset  74x109: FF J-K disparado por flanco positivo doble FF-D disparado por flanco

7474 (TTL)

74C74 (CMOS)

tS

20 ns

60 ns

tH

5 ns

0 ns

tPLH CLK a Q

40 ns

200 ns

tPHLCLK a Q

25 ns

200 ns

tW(L)CLK

37 ns

100 ns

tW(H) CLK

30 ns

100 ns

15 MHz

5 MHz

30 ns

60 ns

fmax tW(L) (Set o Reset)

41

Resumen de lo visto hasta ahora  Tipos de latches y FFs:  Latches RS NAND y NOR con y sin entrada de habilitación  Latch D (cerrojo D)  FFs D, JK y T  Tipos de entradas de control  Entradas sincrónicas: D, J, K  Entradas asincrónicas: SET (ó PRESET) y RESET (ó CLEAR)  Parámetros de temporización  Tiempos de propagación tp  Tiempos de mantenimiento (tS) y retención (tH)  Frecuencia máxima (CLK, Enable)  Tiempos de transición (tR y tF)  Anchos de pulso mínimos (CLK y entradas asincrónicas) 42

Registros y latches de múltiples bits Aplicaciones • Almacenamiento de grupos de bits. • Líneas de retardo de señales digitales. • Operaciones aritméticas. Registro: arreglos de dos o más FF D con una entrada de reloj común. • Registros de almacenamiento • Registros de desplazamiento o corrimiento (shift registers)

Latch: arreglos de dos o más latches con una entrada de habilitación común.

43

Registro de almacenamiento Registro de almacenamiento de 4 bits

Dato de 4 bits

44

Formas comerciales

• 74x175: registro de almacenamiento de 4 bits • 74x374: registro octal • 74x373: latch octal • 74x273: registro octal • 74x377: registro octal con habilitación de clock

45

Registros de desplazamiento (Shift registers) Registros con una arquitectura dispuesta para desplazar sus datos almacenados una posición por cada flanco activo de reloj. Clasificación según el tipo de entrada y salida • Entrada serie y salida paralelo (SIPO serial input / parallel output)

• Entrada serie y salida serie (SISO serial input / serial output) • Entrada paralelo y salida paralelo (PIPO parallel input / parallel output) • Entrada paralelo y salida serie (PISO parallel input / serial output)

CLK

CLK

CLK

CLK

46

Registro de entrada serie y salida serie (SISO)

N FFs

¿Cuántos TCLK deben pasar para tener el primer dato de entrada en SEROUT? 47

Registro de entrada serie y salida paralelo (SIPO)

N FFs

¿Cuántos TCLK deben pasar para tener un dato de N bits en las salidas? 48

Diagrama de tiempos

Reloj

Entrada serie

Q0 (LSB)

Salidas paralelas

Q1 Q2

Salida serie

Q3

Datos paralelos 0001 / 0010 / 0101 / 1010 49

Registro de entrada paralelo y salida serie (PISO) 1. Carga del dato paralelo

1

0 0

0

0

50

2. Desplazamiento serie

1

0 0

0

0 0

0 0

51

Registro de entrada paralelo y salida paralelo (PIPO) Arquitectura PISO con una forma diferente de tomar los datos almacenados

52

Aplicaciones

Ejemplo de aplicación: Módulos de transmisión serial

PISO

SIPO

53

Aplicaciones

Ejemplo de aplicación: Multiplicación y división por múltiplos de 2 Desplazamiento a la izquierda en un shift register = 1710

0

0

0

1

0

0

0

1LSB

0

0

1

0

0

0

1

0

0

= 3410

0

1

0

0

0

1

0

0

0

= 6810

Desplazamiento a la derecha en un shift register 0

1

1

0

0

0

0

0LSB

= 9610

0

0

0

1

1

0

0

0

0

= 4810

0

0

0

0

1

1

0

0

0

= 2410 54

Formas comerciales

• 4006: registro de desplazamiento de 18 etapas (stage) • 4014: registro PISO / SISO de 8 etapas • 4015: doble registro de desplazamiento de 4 etapas SIPO • 74x165: registro de desplazamiento PISO de 8 bits • 74x164: registro de desplazamiento SIPO de 8 bits • 74x166: registro de desplazamiento PISO de 8 bits • 74x299: registro de desplazamiento universal de 8 bits

55

74x194: registro de desplazamiento universal de 4 bits

Formas comerciales

4 modos de operación (S1, S0): • Right-Shift • Left-Shift • Syncchronous parallel load • Do nothing (CLK inhibido) 56

Formas comerciales

57

• 74x594: 8-Bit Shift Register with Output Registers • 8-bit serial-in, parallel-out shift register • 8-bit D-type storage register. • Separate clocks • Direct clears are provided for both the shift register and the storage register. • If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

Formas comerciales

FIN

59