RE-Chapter2

Ebeling, An Introduction to Reliability and Maintainability Engineering, 2nd ed. Waveland Press, Inc., Copyright © 2009

Views 98 Downloads 7 File size 95KB

Report DMCA / Copyright

DOWNLOAD FILE

  • Author / Uploaded
  • gksp8
Citation preview

Ebeling, An Introduction to Reliability and Maintainability Engineering, 2nd ed. Waveland Press, Inc., Copyright © 2009

CHAPTER 2

2.1

1 =.91 (.001)(100) + 1

a) R(100 ) = b) λ ( t ) =

R(1000 ) =

and

1 =.5 (.001)(1000 ) + 1

1 − dR( t ) 1 − d ((.001t + 1)−1 ) ⋅ = ⋅ =.001(.001t + 1)−2 ⋅ (.001t + 1) (.001t + 1)−1 dt R( t ) dt

.001(.001t + 1) .001 = 2 .001t + 1 (.001t + 1) λ ( t ) is decreasing because λ ( t ) goes to zero as t goes to infinity. =

2.2 a) R( t ) = e

z

− 0t λ ( t ')dt '

=e

z

−.4 0t t 'dt '

0

F (1 / 12) = 1 − R(1 / 12) = 1 − e b) R( t ) = e −.2 t =.95



2

2.3 a) R( t ) = b) λ ( t ) =

z

z

100

t

− .2(1/12 )2

−.2t 2 = ln(.95)

− ln(.95) =.506 yrs .2

t=

0 ≤ t ≤ 100

t

z

100

0

z

100

0

0 ≤ t ≤ 100

2 100 2 (1−.01t )dt = t 100 0 −.005t 0 = 100−.005(100 ) = 50 days

z

t f ( t )dt − ( MTTF )2 =.01 0 t 2 dt − 502 =.033 t 3

100 2 0

100

σ = σ 2 = 28.9 days e) R( tmedian ) = 1−.01tmedian =.5 2.4

=



100

.01 f (t ) − dR( t ) 1 ⋅ = = dt R( t ) R( t ) 1−.01t

z

a) R( t ) =

=.00139

f ( t ′ )dt ′ = .01dt ′ =.01t ′ 100 =.01(100 − t ) = 1−.01t t

c) MTTF = R( t )dt = d) σ 2 =

2 2 = e −.2t ' |t = e −.2t

z

1000 t

.01tmedian =.5

z t ′ dt ′ = LMN101 t' OPQ 1000 t

h

2

1000

3

0

c) R( t ) = 1 −

t3 =.99 109

3 109

tmedian = 50 days

9

z



1000

0

t 3dt =

t

0 ≤ t ≤ 1000 hrs

F (100) = 1 − R(100) = 1 − (1 − 1003 / 109 ) =

z



− 502 = 8333 . (days )2

3

1 t 10003 − t 3 = 1 − 9 9 10 10

b) MTTF = t ⋅ f ( t ) dt =

0

100

3 f ( t ′ )dt ′ = 9 10

c



100

106 1 = 3 9 10 10

3 10 ⋅ 4 9

t3 =.01 109

t4

1000 0



2.5 2-1

=

3 10 ⋅ 4 9

10004 − 0 = 750 hrs

t = 3 107 = 215.443 hrs

Ebeling, An Introduction to Reliability and Maintainability Engineering, 2nd ed. Waveland Press, Inc., Copyright © 2009

a) R(50) = e-

.001(50)

=.8

1/ 2 1 1 1 − d ( e − (.001t ) ) .0005 b) λ ( t ) = ⋅ − (.001t )1/ 2 == (.001t )−1/ 2 (.001)e − (.001t ) ⋅ − (.001t )1/ 2 = 2 dt .001t e e λ ( t ) is decreasing because λ ( t ) goes to zero as t goes to infinity. 1/ 2

R(T0 + t ) R(T0 )

c) R( t / T0 ) =



R(50 + 10) R( 60) e − = = R(10) R(10) e−

R(50 / 10) =

.001( 60 ) .001(10)

=.865

R(t + 10) e − .001( t +10) = − .001(10) =.95 d) R (t / 10) = R(10) e

[ ln .859596] t=

2

e

− .001( t +10)

2.6

z

a) R( t ) =

= .95e

z

10

t

− .001(10)

= .859596



10

10

t

t

f ( t ′ )dt ′ = (.2−.02t ′ )dt ′ =.2 t ′

− 10 = 12.9 hrs

.001

−.01 t ′ 2

10 t

= ( 2−.2t ) − (1−.01t ) = 1−.2t +.01t 0 ≤ t ≤ 10 yrs 2

2

f (t ) .2 −.02t .2(1−.1t ) .2 = = = 2 2 R(t ) 1−.2t +.01t (1−.1t ) 1−.1t λ ( 0) =.2 and λ ( t → 10) = ∞ so the hazard rate is, in fact, increasing.

λ (t ) =

b) MTTF =

z

10

0

R(t ) =

z

10

(1−.2t +.01t 2 )dt = t

0

2 c) R( tmedian ) = 1−.2tmed +.01tmed =.5



10 0

10

−.1 t 2

0

+.00333 t 3

10 0

= 10 − 10 + 3.33 = 3.33 yrs

2 .01tmed −.2tmed +.5 = 0

.2 ± ( −.2 )2 − 4(.01)(.5) .2±.1414 = = 17.07,2.93 2(.01) 2(.01) t( median ) is 2.93 years. (17.07 is outside range of values for t.) t( median ) =

d) f ( t mod e ) = MAX [ f ( t )] 0≤ t ≤10

f(t) is linearly decreasing: f(0) = .2 and f(10)=0. Therefore, the mode occurs at t=0 yr.

e) σ = 2

z

10

0

t f (t )dt − MTTF = 2

2

z

10

0

t (.2 −.02t )dt − 3.33 2

= (66.67 − 50) − 0 − 1109 . = 558 .

2

L.2t =M N3

3

.02t 4 − 4

PQO

10

− 3.332 0

σ = σ = 558 . = 2.36 yrs



2

2.7 a) R(1) =

100 100 = =.826 2 121 (1 + 10)

L 200(t ′ + 10) R( t ) = f ( t ′ )dt ′ = 200 ( t ′ + 10) dt ′ = M N −2 L (t + 10) b) MTTF = R( t )dt = 100 ( t + 10) dt = 100M N −1

z

z



t



−3

t

z



0

z



−2

0

2-2

OP = 0 − FG −100 IJ = 100 H (t + 10) K (t + 10) Q OP = L −100 O = 0 − ( −10) = 10 yrs Q MN t + 10 PQ

−2 ∞

2

t

−1 ∞



0

0

2

Ebeling, An Introduction to Reliability and Maintainability Engineering, 2nd ed. Waveland Press, Inc., Copyright © 2009

100 =.95 ( t + 10)2

100 100 → t= − 10 =.26 yrs .95 .95 d) The failure rate is DFR because λ ( 0) =.2 and λ ( t → ∞ ) = 0 .

c) R( t ) =



t + 10 =

200 2 f ( t ) ( t + 10 )3 200( t + 10 )2 = = = λ (t ) = 3 100 t + 10 R( t ) 100( t + 10 ) ( t + 10)2 e) A one year burn-in period will improve the reliability because the failure rate is decreasing. 100 R(1 + 1) R( 2) ( 2 + 10)2 112 = 2 =.84 R(1 / 1) = = = 100 R(1) R(1) 12 (1 + 10)2 2.8 F ( t ) =

z

t 0

LM OP N Q

z

1 1 f ( t ′ )dt ′ = dt ′ = t ′ b b t 0

R( t ) = 1 − F ( t ) = 1 −

t b−t = b b

t

0

t = , b

1 f (t ) b 1 = b = = , λ(t ) = − b t R( t ) b( b − t ) b − t b

z

b

MTTF = R( t )dt = 0

R( tmedian ) =

z

b

0

LM N

b−t t2 1 dt = bt − b b 2

b − tmed 1 = b b 2

0≤t ≤b

IFR

OP Q

b

= 0

1 b

LMF b MNGH

2



I JK

OP PQ

b2 2b 2 − b 2 b −0 = = 2 2b 2

There is no mode because all failure times are equally likely.

z

σ = t f ( t )dt − MTTF = 2

b 2 0

2

z

b 0

FG IJ = LM t OP − b = b − b = b → σ = H K N 3b Q 4 3 4 12

b t2 dt − b 2

2

3

b

2

2

2

2

0

2.9

t t 20 − t 1 = ; R( t ) = ; λ(t ) = b 20 20 20 − t 20 20 20 MTTF = = 10 yrs; tmedian = = 10 yrs; σ = = 5.77 yrs 2 2 12

F (t ) =

2.10 a) Wear-out is indicated by an increasing failure rate. − dR( t ) 1 − d (1 − t / t0 )2 1 1 ⋅ = ⋅ = [−2(1 − t / t0 )( −1 / t0 )] ⋅ λ (t ) = 2 dt R( t ) dt (1 − t / t0 ) (1 − t / t0 )2 2 2 2 Since λ ( 0) = and λ ( t → t0 ) = ∞, λ ( t ) is IFR. = = t0 (1 − t / t0 ) t0 − t t0

2-3

b 12

Ebeling, An Introduction to Reliability and Maintainability Engineering, 2nd ed. Waveland Press, Inc., Copyright © 2009

b) MTTF =

=

z

t0

0

− t0 3

F t I LF t I F −t IJ OP R( t )dt = G1 − J dt = MG1 − J G H t K MNH t K H 3 K PQ O LMF t I GMH1 − t JK − (1 − 0) PP = t3 Q N

z

2

t0

3

t0

0

0

0

0

0

3

3

0

0

0

c) R( t ) = (1 − t / 2000 )2 =.90



t = 2000(1 − .9 ) = 102.63 hrs

2.11

R(T0 + t ) ( t + T0 + 1)−3/ 2 = R(T0 ) (T0 + 1)−3/ 2

R( t / T0 ) =

where t = 2, T0 =.5

R( 2.5) (35 . )−3/ 2 = =.28 R(.5) (15 . )−3/ 2 .28-.19 An improvement of = 47% is obtained with a 6 month burn - in. .19 R( 2/.5) =

2.12

R( t ) = e z

=e z

t

− λ ( t ′ ) dt ′

t

− at ′dt ′

0

0

=e

− at 2 / 2

dR( t ) d (e =− dt dt

f (t ) = −

)

− a t ′2 / 2

− e − at

t 0

2

/2

= e − at

2

/2

a > 0 and t ≥ 0

( − at ) = ate − at

2

/2

R( t median ) = e − ( atmed )/ 2 =.5 2

2 at med = ln(.5) 2 −2 ln(.5) 118 . t median = = a a The mode is found by setting the first derivative of f(t) equal to 0 and solving for t. 2 2 2 2 df ( t ) d ( e − ( atmed )/ 2 ) = = a[te − at / 2 ( − at ) + e − at / 2 ] = e − at / 2 [− at 2 + 1] = 0 dt dt 2 [− at + 1] = 0



t mod e = 1 / a

2.13 AFR = = 2.14

ln R( t1 ) − ln R( t2 ) ln(1 − t13 / 109 ) − ln(1 − t23 / 109 ) = where t1 = 0 and t 2 = 500 t2 − t1 t2 − t1 ln(1) − ln(1 − 5003 / 109 ) 0 − ln(.875) = =.000267 failures / hr 500 − 0 500

z

R( t ) =.1



t

(1+.05t ′ )

−3

L (1+.05t ′ ) OP dt ′ =.1M N −2(.05) Q

−2 ∞

d

i

= 0 − −(1+.05t )−2 = (1+.05t )−2

t

2-4

Ebeling, An Introduction to Reliability and Maintainability Engineering, 2nd ed. Waveland Press, Inc., Copyright © 2009

R(10 + 1) (1+.05(11))−2 = =.459 R(1) (1+.05(1))−2

R(10 / 1) =

z z



MTTFbefore = R( t )dt = 0

z



0

(1+.05t )−2 dt =



1 = R(t / T0 )dt = T0 R (T0 )

MTTFafter

= (105 . )

2

z



1

(1+.05t )

−2

z



T0

LM (1+.05t ) OP N −.05 Q

−1 ∞

R (t )dt =

FG H

= 0− −

0

1 (1+.05(1)) −2

L (1+.05t ) OP dt = (105 . ) M N −(.05) Q −1

IJ K

1 = 20 .05

z



1

(1+.05t ) −2 dt



LM N

= 0− −

2

1

OP Q

(105 . )2 = 21 .05(1+.05(1))

2.15 λ ( t ) is decreasing. R(t) is decreasing as R(0) = 1 and R( ∞ ) = 0. f(t) = λ (t)R(t). Since λ ( t ) and R( t ) are decreasing, f( t ) is decreasing and the mode must occur at t = 0. 2.16

R( t ) = e z

t

− λ ( t ′ ) dt ′ 0

=e

−a

z

t

0

et ′ dt ′

=e

− a et ′

t

=e

0

− a et −1

=e

a 1− et

f ( t ) = λ ( t ) R( t ) = ( ae t )( e a − ae ) = ( ae t )( e a )( e − ae ) = ae( t + a −ae ) t

2.17 Using (a) R (t ) = (b) R (t ) =

n ∫ ( x + c) dx =





t

t

( x + c) n +1 , n ≠1 ; n +1

a ( t '+ a ) dt ' = 2 −1 ( t '+ a ) a

−1 ∞

= t

t

dx

∫ x + c = ln ( x + c )

a 10 ; R(8) = .55 ; R (t ) = t+a t + 10

10 10 = .95; t = − 10 = .526 yr = 6.3 mo. t + 10 .95

(c) R(5|5) = .75 R(10) / R(5) = (10/20) / (10/15) = 15/20 = .75 (d) F(90 days) = 1 - 10 / (10 + .2465) = .024

a

(t + a ) (e) λ (t ) =

2

a (t + a )

=

1 t+a

(f) R(t) = .5 = a / (t + a) or tmed = (a / .5) – a = 2a –a = a ∞

(g) MTTF =

a

∫ t + a dt = a ln(t + a)

∞ 0

→ ∞ ; does not exist

0

2-5

Ebeling, An Introduction to Reliability and Maintainability Engineering, 2nd ed. Waveland Press, Inc., Copyright © 2009

2.18 (a ) f (t ) =

ka k

(t + a )

(c) MTTF = ∫

k +1

(t + a )

k → DFR t+a − k +1 ∞

ak



0

; (b) λ (t ) =

k

ak (t + a ) dt = −k + 1

= 0

− a k a − k +1 a = −k + 1 k −1

⎛ 1 ⎞ (d )tmed = a ⎜⎜ k − 1⎟⎟ ⎝ .5 ⎠

2.19

dR(t ) 3t 2 (a ) f (t ) = = 3 , 0≤t ≤k dt k 2 3t ⎛ t 3 ⎞ 3t 2 (b) λ (t ) = 3 / ⎜1 − 3 ⎟ = 3 3 k ⎝ k ⎠ k −t k

(c) MTTF = ∫

k

0

(d ) 1 −

3t 3 3t 4 3 dt = 3 = k 3 k 4k 0 4

t3 = .5 or tmed = k 3 .5 = .7937 k k3

2.20 rewrite f(t) = .003(10-t)2 (a) R(t) = .001(10 – t)3 ; R(1) = .729 (b) .001(10-t)3 = .90; solving for t = 10 – (.9/.001)1/3 = .345 yr. (c) λ(t) = f(t) /R(t) = 3/(10-t); IFR 10

(d) MTTF = R (t ) dt = .001(10 − t ) dt = 2.5 yr. ; R (2.5) = .422





3

0

(e) F(1/12) = .02479; R(11/12 | 1/12) = .729/.9752 = .7475

⎛ 2t t 2 ⎞ t2 t3 2.21 (a) MTTF = ∫ ⎜1 − + 2 ⎟ dt = t − + 2 a a ⎠ a 3a 0⎝ ⎛ 2t t 2 ⎞ 2 2 ⎜1 − + 2 ⎟ = .5; t − 2at + .5a = 0 a a ⎠ ⎝ (b) a

t=

a

= a/3 0

a 2 2a ± 4 a 2 − 2a 2 =a± = a (1 ± .7071) = .293a 2 2

Why not the positive root? (c) R(a/3) = 4/9 = .444 (d) λ (t ) =

2(a − t ) 2 / a − 2t / a 2 2 = = ; IFR 2 2 2 1 − 2t / a − 2t / a (a − t ) (a − t )

(e) R(1) = .81; R(1|1) = R(2) /R(1) = .64 / .81 = .79 2.22

(a) R(t) = 1 - .000064t3 ; R(15) = .784; (b) F(10) – F(2) = .000064(1000 - 8) = .063488 2-6

Ebeling, An Introduction to Reliability and Maintainability Engineering, 2nd ed. Waveland Press, Inc., Copyright © 2009

.000064t 3 = .5 (c)

tmed = 3 .5 / .000064 = 19.8425 yr.

(d) λ(t) = .000192t2 / (1 - .000064t3) ; IFR 25

(e) MTTF =

∫ (1 − .000064t

3

)dt = [t − .000016t 4 ]025 = 25 − .000016(25) 4 = 18.75 yr.

0

(f) R(15) / R(10) = .784 / .936 = .8376 25

(g)

25 1 1 3 4 MTTF (10) = − t dt = t − t (1 .000064 ) .000016 ( ) 10 R(10) 10∫ .936

=

1 ⎡15 − .000016 ( 254 − 104 ) ⎤ = 9.52 yr ⎦ .936 ⎣ 20

2.23 MTTF (10) = ∞

2.24 MTTF =

1 1 (1 − .000125t 3 )dt = (5.3125) = 6.07 yr. ∫ R(10) 10 .875 ∞

225

∫ ( t + 15) 0

2

225 dt = −1( t + 15 )

= 0

225 = 15 yr. (15 )

∞ ⎞ 1 225 1 ⎛ 225 = MTTF (10) = dt ⎜ ⎟ 2 .36 ⎜⎝ −1( t + 15) ) ⎟⎠ R(10) 10∫ ( t + 15 )



= 10

1 [ 0 + 9] = 25 yr .36

λ(t) = 2 / (t+15) ; DFR

2.25

⎡ t ⎤ R (t ) = exp ⎢ − ∫ (1 + .5t '+ 10 / t ') dt '⎥ = exp[−(t + .25t 2 + 10 ln t − 1.25)] ⎣ 1 ⎦ dR(t ) f (t ) = − = (1 + .5t + 10 / t ) exp[−(t + .25t 2 + 10 ln t − 1.25)] dt

2-7