OHMIMETRO

VOLTIMETRO: Aparato que mide tensiones eficaces tanto en continua como en alterna, y su colocación es de forma obligator

Views 15 Downloads 0 File size 114KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

VOLTIMETRO: Aparato que mide tensiones eficaces tanto en continua como en alterna, y su colocación es de forma obligatoria en "paralelo" al componente sobre el cual se quiere medir su tensión.

Voltímetro de continua

dc = direct current (corriente directa, corriente de contínua)

Voltímetro de alterna

ac = altern current (corriente alterna)

AMPERIMETRO: Aparato que mide el valor medio de la corriente, y su colocación es de forma obligatoria en "serie" con el componente del cual se quiere saber la corriente que le atraviesa. Amperímetro de continua

Amperímetro de alterna

ÓHMETRO: Aparato que mide el valor de las resistencias, y que de forma obligatoria hay que colocar en paralelo al componente estando éste separado del circuito (sin que le atraviese ninguna intensidad). Mide resistencias en Ohmios .

FRECUENCIOMETRO: Un frecuencímetro es un instrumento que sirve para medir la frecuencia, contando el número de repeticiones de una onda en la misma posición en un intervalo de tiempo mediante el uso de un contador que acumula el número de periodos. Dado que la frecuencia se define como el número de eventos de una clase particular ocurridos en un período, su medida es generalmente sencilla.

Según el sistema internacional el resultado se mide en Hertzios (Hz). El valor contado se indica en un display y el contador se pone a cero, para comenzar a acumular el siguiente periodo de muestra. La mayoría de los contadores de frecuencia funciona simplemente mediante el uso de un contador que acumula el número de eventos. Después de un periodo predeterminado (por ejemplo, 1 segundo) el valor contado es transferido a un display numérico y el contador es puesto a cero, comenzando a acumular el siguiente periodo de muestra. El periodo de muestreo se denomina base de tiempo y debe ser calibrado con mucha precisión.

POTENCIOMETRO: Un potenciómetro es un resistor cuyo valor de resistencia es variable. De esta manera, indirectamente, se puede controlar la intensidad de corriente que fluye por un circuito si se conecta en paralelo, o la diferencia de potencial al conectarlo en serie. Normalmente, los potenciómetros se utilizan en circuitos de poca corriente. Para circuitos de corrientes mayores, se utilizan los reostatos, que pueden disipar más potencia.

VATÍMETRO: El vatímetro es un instrumento electrodinámico para medir la potencia eléctrica o la tasa de suministro de energía eléctrica de un circuito eléctrico dado. El dispositivo consiste en un par de bobinas fijas, llamadas «bobinas de corriente», y una bobina móvil llamada «bobina de potencial». Las bobinas fijas se conectan en serie con el circuito, mientras la móvil se conecta en paralelo. Además, en los vatímetros analógicos la bobina móvil tiene una aguja que se mueve sobre una escala para indicar la potencia medida. Una corriente que circule por las bobinas fijas genera un campo electromagnético cuya potencia es proporcional a la corriente y está en fase con ella. La bobina móvil tiene, por regla general, una resistencia grande conectada en serie para reducir la corriente que circula por ella. Los dos circuitos de un vatímetro son propensos a resultar dañados por una corriente excesiva. Tanto los amperímetros como los voltímetros son vulnerables al recalentamiento: en caso de una sobrecarga, sus agujas pueden quedar fuera de escala; pero en un vatímetro el circuito de corriente, el de potencial o ambos pueden recalentarse sin que la aguja alcance el extremo de la escala. Esto se debe a que su posición depende del factor de potencia, el voltaje y la corriente. Así,

un circuito con un factor de potencia bajo dará una lectura baja en el vatímetro, incluso aunque ambos de sus circuitos esté cargados al borde de su límite de seguridad. Por tanto, un vatímetro no sólo se clasifica en vatios, sino también en voltios y amperios.

COSFIMETRO: Tiene en su interior una bobina de tensión y una de corriente dispuestas de tal forma que si no existe defasaje, la aguja está en cero (al centro de la escala) lo que mide el cosimetro es el defase que se produce entre la corriente y la tensión producto de cargas inductivas o capacitivas.

RESISTENCIAS VARIABLES: Estas resistencias pueden variar su valor dentro de unos límites. Para ello se les ha añadido un tercer terminal unido a un contacto movil que puede desplazarse sobre el elemento resistivo proporcionando variaciones en el valor de la resistencia. Este tercer terminal puede tener un desplazamiento angular (giratorio) o longitudinal (deslizante). Segun su función en el circuito estas resistencias se denominan: Potenciómetros: se aplican en circuitos donde la variación de resistencia la efectua el usario desde el exterior (controles de audio, video, etc.). Trimmers, o resistencias ajustables: se diferencian de las anteriores en que su ajuste es definitivo en el circuito donde van aplicadas. Su acceso está limitado al personal técnico (controles de ganancia, polarización, etc.). Reostatos: son resistencias variables en las que uno de sus terminales extremos está electricamente anulado. Tanto en un potenciómetro como un trimmer, al dejar unos de sus terminales extremos al aire, su comportamiento será el de un reostato, aunque estos están diseñados para soportar grandes corrientes.

DIODO: Un diodo es un componente electrónico de dos terminales que permite la circulación de la corriente eléctrica a través de él en un sentido. Este término generalmente se usa para referirse al diodo semiconductor, el más común en la actualidad; consta de una pieza de cristal semiconductor conectada a dos terminales eléctricos. El diodo de vacío (que actualmente ya no se usa, excepto para tecnologías de alta potencia) es un tubo de vacío con dos electrodos: una lámina como ánodo, y un cátodo. De forma simplificada, la curva característica de un diodo consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctrica muy pequeña.Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.

MONOFASICOS: El motor eléctrico monofásico es un motor universal con devanados en el estator y rotor, conectados en serie que opera de igual forma, conectado a una fuente de corriente directa (CD) o de corriente alterna (AC). El Motor Universal es similar al de corriente continua con excitación en serie, pero esta construido con chapas magnéticas, como los motores de corriente alterna. Esto es, porque en la en corriente alterna, debido a la frecuencia, se calentaría demasiado un núcleo de hierro sólido. Al motor monofásico universal se le puede regular muy bien la velocidad, tanto en corriente alterna, como en corriente continua. Este tipo de motores se emplea, por ejemplo, para accionar electrodomésticos como: aspiradoras, licuadoras, procesadores de alimentos, etc. y maquinas herramientas como: barrenos, sierras caladoras, etc.

TRIFASICOS: La mayoría de los motores trifásicos tienen una carga equilibrada, es decir, consumen lo mismo en las tres fases, ya estén conectados en estrella o en triángulo. Las tensiones en cada fase en este caso son iguales al resultado de dividir la tensión de línea por raíz de tres. Por ejemplo, si la tensión de línea es 380 V, entonces la tensión de cada fase es 220 V.

TRANSFORMADOR: Se denomina transformador o trafo , a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc. El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, por medio de interacción electromagnética. Está constituido por dos o más bobinas de material conductor, aisladas entre sí eléctricamente y por lo general enrolladas alrededor de un mismo núcleo de material ferromagnético. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo. Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado, fabricado bien sea de hierro dulce o de láminas apiladas de acero eléctrico, aleación apropiada para optimizar el flujo magnético. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.

POTENCIA ACTIVA: Es la potencia que representa la capacidad de un circuito para realizar un proceso de transformación de la energía eléctrica en trabajo. Los diferentes dispositivos eléctricos existentes

convierten la energía eléctrica en otras formas de energía tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo tanto, la realmente consumida por los circuitos y, en consecuencia, cuando se habla de demanda eléctrica, es esta potencia la que se utiliza para determinar dicha demanda.

POTENCIA REACTIVA: Esta potencia no tiene tampoco el carácter realmente de ser consumida y sólo aparecerá cuando existan bobinas o condensadores en los circuitos. La potencia reactiva tiene un valor medio nulo, por lo que no produce trabajo necesario. Por ello que se dice que es una potencia desvatada (no produce vatios), se mide en voltiamperios reactivos (var) y se designa con la letra Q. La potencia reactiva en en cargas inductivas(motores de inducción, generadores de corriente alterna, transformadores,etc), es la energía que se necesita para magnetizar el núcleo ferromagnético de dichas cargas.

POTENCIA ELECTRICA: La potencia eléctrica es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt). Cuando una corriente eléctrica fluye en un circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las célula fotoeléctricas es el producto de la diferencia de potencial entre dichos terminales y la intensidad de corriente que pasa a través del dispositivo. Por esta razón la potencia es proporcional a la corriente y a la tensión.

CORRECCION DEL FACTOR DE POTENCIAL: Se realiza mediante la conexión a través de conmutadores, en general automáticos, de bancos de condensadores o de inductancias, según sea el caso el tipo de cargas que tenga la instalación. Por ejemplo, el efecto inductivo de las cargas de motores puede ser corregido localmente mediante la conexión de condensadores. En determinadas ocasiones pueden instalarse motores síncronos con los que se puede inyectar potencia capacitiva o reactiva con tan solo variar la corriente de excitación del motor. Las pérdidas de energía en las líneas de transporte de energía eléctrica aumentan con el incremento de la intensidad. Como se ha comprobado, cuanto más bajo sea el f.d.p. de una carga, se requiere más corriente para conseguir la misma cantidad de energía útil. Por tanto, como ya se ha comentado, las compañías suministradoras de electricidad, para conseguir una mayor eficiencia de su red, requieren que los usuarios, especialmente aquellos que utilizan grandes potencias, mantengan los factores de potencia de sus respectivas cargas dentro de límites especificados, estando sujetos, de lo contrario, a pagos adicionales por energía reactiva. La mejora del factor de potencia debe ser realizada de una forma cuidadosa con objeto de mantenerlo lo más alto posible. Es por ello que en los casos de grandes variaciones en la composición de la carga es preferible que la corrección se realice por medios automáticos.