Metodos abiertos.pdf

167 PROBLEMAS verdadera. Mientras que para el caso de una sola ecuación los métodos gráficos son útiles para obtener u

Views 14 Downloads 0 File size 176KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

167

PROBLEMAS

verdadera. Mientras que para el caso de una sola ecuación los métodos gráficos son útiles para obtener un buen valor inicial, ningún procedimiento tan simple está disponible para el caso de múltiples ecuaciones. Aunque existen algunos métodos avanzados para obtener una primer aproximación aceptable, los valores iniciales a menudo deben obtenerse mediante prueba y error, con el conocimiento del sistema físico que se está modelando. El método de Newton-Raphson para dos ecuaciones puede generalizarse para resolver n ecuaciones simultáneas. Debido a que el camino más eficiente para esto implica el álgebra matricial y la solución de ecuaciones lineales simultáneas, se pospondrá su estudio para la parte tres.

PROBLEMAS 6.1 Utilice la iteración simple de punto fijo para localizar la raíz de f(x) = 2 sen

( x)– x

Haga una elección inicial de x0 = 0.5 e itere hasta que ea ≤ 0.001%. Compruebe que el proceso converge en forma lineal según se describió en el recuadro 6.1. 6.2 Determine la raíz real más grande de

nes iniciales de a) 4.52, y b) 4.54. Estudie y use métodos gráficos y analíticos para explicar cualquier peculiaridad en sus resultados. 6.6 Determine la raíz real más pequeña de f(x) = –12 – 21x + 18x2 – 2.4x3: a) en forma gráfica, y b) con el empleo del método de la secante para un valor de es que corresponda a tres cifras significativas. 6.7 Localice la primera raíz positiva de f(x) = sen x + cos(1 + x2) – 1

f(x) = 2x3 – 11.7x2 + 17.7x – 5 a) En forma gráfica. b) Con el método de iteración simple de punto fijo (tres iteraciones, x0 = 3). Nota: asegúrese de haber desarrollado una solución que converja a la raíz. c) Con el método de Newton-Raphson (tres iteraciones, x0 = 3, d = 0.001). d) Con el método de la secante (tres iteraciones x–1 = 3, x0 = 4). e) Con el método de la secante modificado (tres iteraciones, x0 = 3, d = 0.01). Calcule el porcentaje aproximado de errores relativos para sus soluciones. 6.3 Utilice los métodos de a) iteración de punto fijo, y b) NewtonRaphson, para determinar una raíz de f(x) = –x2 + 1.8x + 2.5 con el uso de x0 = 5. Haga el cálculo hasta que ea sea menor que es = 0.05%. Asimismo, realice una comprobación del error de su respuesta final. 6.4 Determine las raíces reales de f(x) = –1 + 5.5x – 4x2 + 0.5x3: a) en forma gráfica, y b) con el método de Newton-Raphson dentro de es = 0.01%. 6.5 Emplee el método de Newton-Raphson para determinar una raíz real de f(x) = –1 + 5.5x – 4x2 + 0.5x3 con el uso de eleccio-

Chapra-06.indd 167

donde x está en radianes. Para localizar la raíz, use cuatro iteraciones del método de la secante con valores iniciales de a) xi–1 = 1.0 y xi = 3.0; y b) xi – 1 = 1.5 y xi = 2.5, y c) xi–1 = 1.5 y xi = 2.25. 6.8 Determine la raíz real de x3.5 = 80, con el método de la secante modificado dentro de es = 0.1%, con el uso de una elección inicial de x0 = 3.5 y d = 0.01. 6.9 Determine la raíz real más grande de f(x) = 0.95x3 – 5.9x2 + 10.9x – 6: a) En forma gráfica. b) Con el uso del método de Newton-Raphson (tres iteraciones, xi = 3.5). c) Con el método de la secante (tres iteraciones, xi–1 = 2.5 y xi = 3.5). d) Por medio del método de la secante modificado (tres iteraciones, xi = 3.5, d = 0.01). 6.10 Determine la menor raíz positiva de f(x) = 8 sen(x)e–x – 1: a) En forma gráfica. b) Con el uso del método de Newton-Raphson (tres iteraciones, xi = 0.3).

6/12/06 13:49:55

168

MÉTODOS ABIERTOS

c) Con el método de la secante (tres iteraciones, xi–1 = 0.5 y xi = 0.3). d) Por medio del método de la secante modificado (cinco iteraciones xi = 0.3, d = 0.01). 6.11 La función x3 + 2x2 – 4x + 8 tiene una raíz doble en x = 2. Emplee a) el método estándar de Newton-Raphson [ec. (6.6)], b) el método de Newton-Raphson modificado [ec. (6.9a)], y c) el método de Newton-Raphson modificado [ec. (6.13)] para resolver para la raíz en x = 2. Compare y analice la tasa de convergencia con un valor inicial x0 = 1.2. 6.12 Determine las raíces de las siguientes ecuaciones no lineales simultáneas, por medio de los métodos de a) iteración de punto fijo, y b) Newton-Raphson: y = – x2 + x + 0.75 y + 5xy = x2 Utilice valores iniciales de x = y = 1.2, y analice los resultados. 6.13 Encuentre las raíces de las ecuaciones simultáneas que siguen: (x – 4)2 + (y – 4)2 = 5 x2 + y2 = 16 Use un enfoque gráfico para obtener los valores iniciales. Encuentre estimaciones refinadas con el método de Newton-Raphson para dos ecuaciones, que se describe en la sección 6.5.2. 6.14 Repita el problema 6.13, excepto que y = x2 + 1 y = 2 cos x 6.15 El balance de masa de un contaminante en un lago bien mezclado se expresa así:

V

dc dt

= W – Qc – kV c

Dados los valores de parámetros V = 1 × 106 m3, Q = l × 105 m3/año y W = l × 106 g/año, y k = 0.25 m0.5/año, use el método de la secante modificado para resolver para la concentración de estado estable. Emplee un valor inicial c = 4 g/m3 y d = 0.5. Realice tres iteraciones y determine el error relativo porcentual después de la tercera iteración. 6.16 Para el problema 6.15, la raíz puede localizarse con iteración de punto fijo como

Chapra-06.indd 168

c=⎛ ⎝

W – Qc ⎞ kV ⎠

2

o bien como

c=

W – kV c Q

De las que solo una convergerá para valores iniciales de 2 < c < 6. Seleccione la que sea correcta y demuestre por qué siempre lo será. 6.17 Desarrolle un programa amigable para el usuario para el método de Newton-Raphson, con base en la figura 6.4 y la sección 6.2.3. Pruébelo por medio de repetir el cálculo del ejemplo 6.3. 6.18 Desarrolle un programa amigable para el usuario para el método de la secante, con base en la figura 6.4 y la sección 6.3.2. Pruébelo con la repetición de los cálculos del ejemplo 6.6. 6.19 Haga un programa amigable para el usuario para el método de la secante modificado, con base en la figura 6.4 y la sección 6.3.2. Pruébelo con la repetición del cálculo del ejemplo 6.8. 6.20 Desarrolle un programa amigable para el usuario para el método de Newton-Raphson para dos ecuaciones, con base en la sección 6.5. Pruébelo con la solución del ejemplo 6.10. 6.21 Use el programa que desarrolló en el problema 6.20 para resolver los problemas 6.12 y 6.13, con una tolerancia de es = 0.01%. 6.22 El antiguo método de dividir y promediar, para obtener una apoximación de la raíz cuadrada de cualquier número positivo, a, se formula del modo siguiente: x=

x+a/ x 2

Demuestre que éste es equivalente al algoritmo de Newton-Raphson. 6.23 a) Aplique el método de Newton-Raphson a la función f(x) = tanh (x2 – 9) para evaluar su raíz real conocida en x = 3. Use un valor inicial de x0 = 3.2 y haga un mínimo de cuatro iteraciones. b) ¿Converge el método a su raíz real? Bosqueja la gráfica con los resultados para cada iteración que obtenga. 6.24 El polinomio f(x) = 0.0074x4 – 0.284x3 + 3.355x2 – 12.183x + 5 tiene una raíz real entre 15 y 20. Aplique el método de Newton-Raphson a dicha función con valor inicial x0 = 16.15. Explique sus resultados. 6.25 Emplee el método de la secante con la función del círculo (x + 1)2 + (y – 2)2 = 16, a fin de encontrar una raíz real positiva. Haga que el valor inicial sea xi = 3 y xi–1 = 0.5. Aproxímese a la solución del primer y cuarto cuadrantes. Cuando resuelva para

6/12/06 13:49:55

169

PROBLEMAS

f(x) en el cuarto cuadrante, asegúrese de tomar el valor negativo de la raíz cuadrada. ¿Por qué diverge la solución? 6.26 Suponga el lector que está diseñando un tanque esférico (véase la figura P6.26) de almacenamiento de agua para un poblado pequeño de un país en desarrollo. El volumen del líquido que puede contener se calcula con V = π h2

R

[3 R − h] 3

V

h

donde V = volumen [pie3], h = profundidad del agua en el tanque [pies], y R = radio del tanque [pies]. Si R = 3 m, ¿a qué profundidad debe llenarse el tanque de modo que contenga 30 m3? Haga tres iteraciones del método de NewtonRaphson para determinar la respuesta. Encuentre el error relativo aproximado después de cada iteración. Observe que el valor inicial de R convergerá siempre.

Chapra-06.indd 169

Figura P6.26

6/12/06 13:49:56