Materiales Conductores y Aislantes

TECNOLOGICO DE ESTUDIOS SUPERIORES DE ECATEPEC ELECTROMAGNETISMO TAREA 1 CONDUCTORES Y AISLADORES SERRANO ALTAMIRANO LUC

Views 155 Downloads 4 File size 91KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

TECNOLOGICO DE ESTUDIOS SUPERIORES DE ECATEPEC ELECTROMAGNETISMO TAREA 1 CONDUCTORES Y AISLADORES SERRANO ALTAMIRANO LUCIANO CENTLI PROFESOR ANTONIO GUTIERREZ GONZALEZ GRUPO: 2301 27/FEBRERO/2017

INDICE 1. INDICE………...........…………………………………….…2 2. OBJETIVO…………………………………………..............3 3. INTRODUCCIÓN………………………………………........3 4. MATERIALES CONDUCTORES Y SUS CARACTERISTICAS……………………………………….4 5. MATERIALES AISLANTES Y SUS CARACTERISTICAS………………..................................6 6. MATERIALES SEMICONDUCTORES Y SUS CARACTERISTICAS……………………………………….9 7. MATERIALES SUPERCONDUCTORES Y SUS CARACTERISTICAS……………………………………...10 8. CONCLUCIONES……………………………………........12 9. REFERENCIAS…………………………………………….12

2

OBJETIVO. Conocer las características de un material conductor y aislante, para que se permita que el electrón fluya libremente de partícula a partícula.

INTRODUCCIÓN. En este trabajo se aborda el estudio de los materiales conductores y aislantes de la energía eléctrica, que se caracterizan por el movimiento de electrones libres en sus átomos. De acuerdo con la teoría moderna de la materia (comprobada por resultados experimentales), los átomos de la materia están constituidos por un núcleo cargado positivamente, alrededor del cual giran a gran velocidad cargas eléctricas negativas. Estas cargas negativas, los electrones, son indivisibles e idénticas para toda la materia. En los elementos llamados conductores, algunos de estos electrones pueden pasar libremente de un átomo a otro cuando se aplica una diferencia de potencial (o tensión eléctrica) entre los extremos del conductor. A este movimiento de electrones es a lo que se llama corriente eléctrica. Algunos materiales, principalmente los metales, tienen un gran número de electrones libres que pueden moverse a través del material. Estos materiales tienen la facilidad de transmitir carga de un objeto a otro estos son los antes mencionados conductores. Los mejores conductores son los elementos metálicos, especialmente la plata (es el más conductor), el cobre, el aluminio, etc. Los materiales aislantes tienen la función de evitar el contacto entre las diferentes partes conductoras (aislamiento de la instalación) y proteger a las personas frente a las tensiones eléctricas (aislamiento protector). La mayoría de los no metales son apropiados para esto pues tienen resistividades muy grandes. Esto se debe a la ausencia de electrones libres. Los materiales aislantes deben tener una resistencia muy elevada, requisito del que pueden deducirse las demás características necesarias. En los materiales no conductores de la electricidad, o aislantes, los electrones están sólidamente unidos al núcleo y es difícil arrancarlos de átomo. Por este motivo, comparándolos con los conductores, se requiere una diferencia de potencial relativamente alta para separar algunos electrones del átomo, y la corriente que se obtiene es prácticamente nula. Este es un material que se resiste al flujo de carga, algunos ejemplos de aislante 3

¿Qué son los materiales conductores y sus características?

Los cuerpos conductores son aquellos cuyos átomos permiten fácilmente el paso de electrones a través de ellos, o sea que permiten el paso de la corriente eléctrica El átomo de cobre, que posee 29 electrones y 29 protones, disponiendo de un solo electrón en su 4ª órbita, N, será por tanto un átomo inestable y tendrá una gran tendencia a desprenderse del electrón de la última órbita para convertirse en estable. Se aplica este concepto a los cuerpos capaces de conducir o transmitir la electricidad. Un conductor eléctrico está formado primeramente por el conductor propiamente tal, usualmente de cobre. Este puede ser alambre, es decir, una sola hebra o un cable formado por varias hebras o alambres retorcidos entre sí Partes que componen los conductores eléctricos. Estas son tres muy diferenciadas: . El alma o elemento conductor. . El aislamiento. . Las cubiertas protectoras. El alma o elemento conductor Se fabrica en cobre y su objetivo es servir de camino a la energía eléctrica desde las centrales generadoras a los centros de distribución (subestaciones, redes y empalmes), para alimentar a los diferentes centros de consumo (industriales, grupos habitacionales, etc.). De la forma cómo esté constituida esta alma depende la clasificación de los conductores eléctricos. Así tenemos: Según su constitución

4

Alambre: Conductor eléctrico cuya alma conductora está formada por un solo elemento o hilo conductor. Se emplea en líneas aéreas, como conductor desnudo o aislado, en instalaciones eléctricas a la intemperie, en ductos o directamente sobre aisladores. Cable: Conductor eléctrico cuya alma conductora está formada por una serie de hilos conductores o alambres de baja sección, lo que le otorga una gran flexibilidad. Según el número de conductores Mono conductor: Conductor eléctrico con una sola alma conductora, con aislación y con o sin cubierta protectora. Multiconductor: Conductor de dos o más almas conductoras aisladas entre sí, envueltas cada una por su respectiva capa de aislación y con una o más cubiertas protectoras comunes.

EJEMPLOS DE MATERIALES CONDUCTORES.  CONDUCTORE METALICO: Son los que tienen una conducción electrónica pues los portadores de las cargas son electrones libres. Esto ocurre precisamente porque a este grupo pertenecen los metales y aleaciones.  CONDUCTORES ELECTROLITICOS: Son los que tienen una conducción de tipo iónica, en donde las sustancias se disocian total o parcialmente formando iones positivos o negativos, que son los portadores de cargas. Aquí el paso de la corriente eléctrica se produce en consonancia con un desplazamiento de materia y con una reacción química.  MATERIALES CONDUCTORES GASEOSOS: Son aquellos gases que han sido ionizados, y con ello han adquirido la capacidad de conducir la electricidad. Si bien no se utilizan con frecuencia, el aire es un gas y es un gran conductor de electricidad, lo que se evidencia en los rayos y las descargas eléctricas de ese tipo.

5

MATERIALES AISLADORES Y SUS CARACTERISTICAS El objetivo de la aislación en un conductor es evitar que la energía eléctrica que circula por él, entre en contacto con las personas o con objetos, ya sean éstos ductos, artefactos u otros elementos que forman parte de una instalación. Del mismo modo, la aislación debe evitar que conductores de distinto voltaje puedan hacer contacto entre sí. Los materiales aislantes usados desde sus inicios han sido sustancias poliméricas, que en química se definen como un material o cuerpo químico formado por la unión de muchas moléculas idénticas, para formar una nueva molécula más gruesa. Antiguamente los aislantes fueron de origen natural, gutapercha y papel. Posteriormente la tecnología los cambió por aislantes artificiales actuales de uso común en la fabricación de conductores eléctricos. Los diferentes tipos de aislación de los conductores están dados por su comportamiento técnico y mecánico, considerando el medio ambiente y las condiciones de canalización a que se verán sometidos los conductores que ellos protegen, resistencia a los agentes químicos, a los rayos solares, a la humedad, a altas temperaturas, llamas, etc. Entre los materiales usados para la aislación de conductores podemos mencionar el PVC o cloruro de polivinilo, el polietileno o PE, el caucho, la goma, el neoprén y el nylon. Si el diseño del conductor no consulta otro tipo de protección se le denomina aislación integral, porque el aislamiento cumple su función y la de revestimiento a la vez. Cuando los conductores tienen otra protección polimérica sobre la aislación, esta última se llama revestimiento, chaqueta o cubierta. Las cubiertas protectoras El objetivo fundamental de esta parte de un conductor es proteger la integridad de la aislación y del alma conductora contra daños mecánicos, tales como raspaduras, golpes, etc. Si las protecciones mecánicas son de acero, latón u otro material resistente, a ésta se le denomina armadura. La armadura puede ser de cinta, alambre o alambres trenzados. 6

Los conductores también pueden estar dotados de una protección de tipo eléctrico formado por cintas de aluminio o cobre. En el caso que la protección, en vez de cinta esté constituida por alambres de cobre, se le denomina pantalla o blindaje. Alma conductora Aislante Cubierta protectora Clasificación de los conductores eléctricos de acuerdo a su aislación o número de hebras La parte más importante de un sistema de alimentación eléctrica está constituida por conductores. Al proyectar un sistema, ya sea de poder; de control o de información, deben respetarse ciertos parámetros imprescindibles para la especificación de la cablería. Voltaje del sistema, tipo (CC o CA), fases y neutro, sistema de potencia, punto central aterramiento. Corriente o potencia a suministrar. Temperatura de servicio, temperatura ambiente y resistividad térmica de alrededores. Tipo de instalación, dimensiones (profundidad, radios de curvatura, distancia entre vanos, etc.). Sobrecargas o cargas intermitentes

Tipos de aislación Cubierta protectora. Todos estos parámetros están íntimamente ligados al tipo de aislación y a las diferencias constructivas de los conductores eléctricos, lo que permite determinar de acuerdo a estos antecedentes la clase de uso que se les dará. De acuerdo a éstos, podemos clasificar los conductores eléctricos según su aislación, construcción y número de hebras en monoconductores y multiconductores. Tomando en cuenta su tipo, uso, medio ambiente y consumos que servirán, los conductores eléctricos se clasifican en la siguiente forma: 7

Conductores para distribución y poder: EJEMPLOS DE USO DE MATERIALES AISLANTES. Instalaciones de fuerza y alumbrado (aéreas, subterráneas e interiores). Cables armados: Uso: Instalaciones en minas subterráneas para piques y galerías (ductos, bandejas, aéreas y subterráneas) Cable armado Cordones: Uso: Para servicio liviano, alimentación a: radios, lámparas, aspiradoras, jugueras, etc. Alimentación a máquinas y equipos eléctricos industriales, aparatos electrodomésticos y calefactores (lavadoras, enceradoras, refrigeradores, estufas, planchas, cocinillas y hornos, etc.). Cables portátiles: Uso: en soldadoras eléctricas, locomotoras y máquinas de tracción de minas subterráneas. Grúas, palas y perforadoras de uso minero. Resistente a: intemperie, agentes químicos, a la llama y grandes solicitaciones mecánicas como arrastres, cortes e impactos. Cables submarinos: Uso: en zonas bajo agua o totalmente sumergidos, con protección mecánica que los hacen resistentes a corrientes y fondos marinos. Cables navales: Uso: diseñados para ser instalados en barcos en circuitos de poder, distribución y alumbrado. Dentro de la gama de alambres y cables que se fabrican en el país, existen otros tipos, destinados a diferentes usos industriales, como los cables telefónicos, los alambres magnéticos esmaltados para uso en la industria electrónica y en el embobinado de partidas y motores de tracción, los cables para conexiones automotrices a baterías y motores de arranque, los cables para parlantes y el alambre para timbres.

8

MATERIALES SEMICONDUCTORES Y SUS CARACTERISTICAS.

Semiconductor Material sólido o líquido capaz de conducir la electricidad mejor que un aislante, pero peor que un metal. La conductividad eléctrica, que es la capacidad de conducir la corriente eléctrica cuando se aplica una diferencia de potencial, es una de las propiedades físicas más importantes. Ciertos metales, como el cobre, la plata y el aluminio son excelentes conductores. Por otro lado, ciertos aislantes como el diamante o el vidrio son muy malos conductores. A temperaturas muy bajas, los semiconductores puros se comportan como aislante. Sometidos a altas temperaturas, mezclados con impurezas (dopado) o en presencia de luz, la conductividad de los semiconductores puede aumentar de forma espectacular y llegar a alcanzar niveles cercanos a los de los metales. Los principales semiconductores utilizados en electrónica son el silicio, el germanio y arseniuro de galio. En estado puro tiene propiedades físicas y químicas parecidas a las del diamante. EJEMPLOS • El dióxido de silicio (sílice) [SiO2] se encuentra en la naturaleza en gran variedad de formas: cuarzo, ágata, jaspe, ónice, esqueletos de animales marinos. • Su estructura cristalina le confiere propiedades semiconductoras. En estado muy puro y con pequeñas trazas de elementos como el boro, fósforo y arsénico constituye el material básico en la construcción de los chips de los ordenadores. Semiconductor intrínseco Indica un material semiconductor extremadamente puro que contiene una cantidad insignificante de átomos de impurezas. Semiconductor extrínseco, se le han añadido cantidades controladas de átomos impuros (Dopado) para favorecer la aparición de electrones (tipo n – átomos de valencia 5: As, P o Sb ) o de huecos (tipo p - átomos de valencia 3: Al, B, Ga o In). 9

MATERIALES SUPERCONDUCTORES Y SUS CARACTERISTICAS. Los conductores normales presentan pérdidas cuando circulan corrientes en su interior. Esto se debe a que la resistencia que poseen al paso de una corriente eléctrica, transforma parte de la energía eléctrica en energía térmica. Sin embargo, algunos materiales se comportan de forma extraña a muy bajas temperaturas. Estos materiales, denominados "superconductores", cuando son sometidos a una temperatura mayor que una cierta temperatura crítica (diferente para cada material) presentan alta resistencia, por lo general mucho mayor que un conductor normal y de esta manera decimos que el material se encuentra en su "estado normal". Por el contrario, por debajo de la temperatura crítica presentan un fenómeno en el cual la resistencia eléctrica disminuye rápidamente hasta llegar a cero, decimos entonces que el material se encuentra en su "estado superconductor". Otra de las propiedades que caracteriza a estos materiales es la expulsión de campo magnético en el estado de superconducción conocida más comúnmente como el Efecto Meissner. Esta última es la propiedad esencial del estado superconductor. Cuando el material pasa del estado normal al estado superconductor, el cambio en la resistividad puede ser muy abrupto y se produce lo que en física se denomina "cambio de fase". Si miramos el material a una temperatura mayor que la crítica, encontraremos propiedades marcadamente distintas a las que veremos a temperaturas menores que la crítica. Existen varios tipos de cambios de fase como por ejemplo el cambio de fase que se produce cuando enfriamos un recipiente con agua: si llegamos a enfriarlo lo suficiente (por debajo de 0ºC), veremos que el agua simplemente se congela. Las propiedades del agua a 25ºC y a -10ºC son claramente diferentes. Algo parecido ocurre en el cambio de fase superconductor, solo que las propiedades que cambian en la transición son propiedades eléctricas y magnéticas, y no propiedades estructurales como en el ejemplo del agua. Es más, para el caso de los metales que al enfriarlos se vuelven superconductores, se sabe que en la transición no hay cambio en la estructura cristalina ni en las propiedades elásticas del material. Las propiedades que cambian en la transición del estado normal al estado superconductor son principalmente las propiedades magnéticas. En el estado superconductor puro prácticamente no hay penetración de flujo magnético en el material y los efectos termoeléctricos desaparecen. 10

Se han encontrado diferentes materiales que se vuelven superconductores por enfriamiento, cada uno a su temperatura crítica propia. Algunas temperaturas críticas son de apenas unos pocos grados Kelvin (recordar que 0ºK corresponde a -273ºC), implicando un esfuerzo tecnológico importante el acceder a tan bajas temperaturas; en los últimos años ha sido posible diseñar materiales cuyas temperaturas críticas rondan las decenas de grados Kelvin, lo que en cierta medida facilita su estudio y utilización. Hay fundamentalmente dos razones por las que estos materiales despiertan tanto interés. La primera es de índole económica. Para hacer uso de las propiedades superconductoras de un material hay que enfriarlo por debajo de una temperatura crítica. Cuanto más baja sea la temperatura a la que se deba trabajar, mayores serán los costos de refrigeración. Si para alcanzar el estado de superconductividad debe operarse a temperaturas inferiores a los 20 K, es necesario emplear helio líquido. A temperaturas más altas se puede trabajar con hidrógeno, pero por encima de 80 K se puede usar aire líquido, uno de los materiales refrigerantes más baratos que existen. Cuando se superen ciertos inconvenientes de carácter técnico, los nuevos superconductores se podrán emplear a escala industrial sin mayores costos de refrigeración. Pero hay una segunda razón por la que los físicos están interesados en estos materiales. Hoy, después de algo más de un año de trabajo, hay una generalizada convicción de que se está frente a un nuevo fenómeno físico. La teoría que consiguió explicar el comportamiento de lo que podemos llamar "superconductividad convencional", no puede hacerlo propio con la superconductividad a temperaturas tan altas. Los mecanismos que dan origen a la superconductividad en estos nuevos materiales son probablemente distintos a los conocidos. Si esto es así, los físicos se encuentran frente a un gran desafío: comprender y explicar a qué se debe la superconductividad de alta temperatura critica. EJEMPLOS - mercurio - aluminio - galio - titano - talio - estaño - plomo

11

CONCLUSIONES Para el material conductor se utilizan diferentes materiales, normalmente se escoge o se emplea al proceso que se necesite o se requiera, ya que varea tanto el número de hilos y espesor en un cable como la conducción eléctrica que quieres que maneje la línea. Para el material aislante se emplea de acuerdo a la exposición que tendrá nuestro cableado o conexión eléctrica para evadir daños empleando diferentes tipos de aislantes. Para el material semiconductor al aplicar tensión inversa no hay conducción de corriente. Y al aplicar tensión directa en la unión es posible la circulación de corriente eléctrica. Para el material superconductor generalmente solo es utilizado de manera industrial ya que se emplean corrientes mayores a las que estamos acostumbrados en casa que normal mente se maneja de 120v a 220v.

REFERENCIAS http://depa.fquim.unam.mx/amyd/archivero/condsemicondais2_27505.pdf http://ciencias2fisica.blogspot.mx/2009/05/conductores-y-aislantes.html http://educativa.catedu.es/44700165/aula/archivos/repositorio/1000/1015/html/31_ materiales_conductores_y_aislantes.html http://www.quimicas.net/2015/11/ejemplos-de-aislantes-electricos.html

12