las arcillas

VIDRIOS Son materiales cerámicos no cristalinos; se denominan como materiales amorfos (desordenados o poco ordenados), i

Views 118 Downloads 3 File size 704KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

VIDRIOS Son materiales cerámicos no cristalinos; se denominan como materiales amorfos (desordenados o poco ordenados), inorgánicos, es duro y resistente al desgaste, a la corrosión y a la compresión de fusión que se ha enfriado a una condición rígida sin cristalizarse. El vidrio es un material inorgánico duro, frágil, transparente y amorfo que se encuentra en la naturaleza, aunque también puede ser producido por el ser humano. El vidrio artificial se usa para hacer ventanas, lentes, botellas y una gran variedad de productos. El vidrio es un tipo de material cerámico amorfo. El vidrio se obtiene a unos 1500 °C a partir de arena de sílice (SiO2), carbonato de sodio (Na2CO3) y caliza (CaCO3). En España, así como en otras partes del mundo, el término "cristal" es utilizado muy frecuentemente como sinónimo de vidrio, aunque es incorrecto en el ámbito científico debido a que el vidrio es un sólido amorfo (sus moléculas están dispuestas de forma irregular) y no un sólido cristalino. El vidrio es una materia inerte compuesta principalmente de silicatos. Anteriormente, las materias primas para la fabricación del vidrio eran solamente las arcillas. Con el paso del tiempo se fueron implementando nuevos elementos a la fabricación del vidrio para obtener diferentes tipos. En la actualidad muchos materiales desempeñan un papel importante, pero las arcillas siguen siendo fundamentales. Historia. Plinio el Viejo (siglo I), cuenta que unos mercaderes que se dirigían hacia Egipto para vender natrón (carbonato de sodio), se detuvieron a orillas del río Belus, en Fenicia. Como no había piedras para colocar sus ollas, decidieron utilizar algunos trozos de natrón. Calentaron sus alimentos, comieron y se dispusieron a dormir. A la mañana siguiente vieron que las piedras se habían fundido y habían reaccionado con la arena para producir un material duro y brillante, el vidrio. En realidad, el hombre aprendió a fabricar el vidrio antes en forma de esmaltes vitrificados, la fayenza. Hay cuentas de collares y restos de cerámica elaborados con fayenza en tumbas del periodo predinástico de Egipto, en las culturas Naqada (3500-3200 a. C.). Los primeros objetos de vidrio que se fabricaron fueron cuentas de collar o abalorios. Probablemente fueron artesanos asiáticos los que establecieron la manufactura del vidrio en Egipto, de las primeras vasijas producidas durante el reinado de Tutmosis III (1504-1450 a. C.). La fabricación del vidrio floreció en Egipto y Mesopotamia hasta el 1200 a. C. y posteriormente cesó casi por completo durante varios siglos. Egipto produjo un vidrio claro, que contenía sílice pura; lo coloreaban de azul y verde. Durante la época helenística Egipto se convirtió en el principal proveedor de objetos de vidrio de las cortes reales. Sin embargo, fue en las costas fenicias donde se desarrolló el importante descubrimiento del vidrio soplado en el siglo I a. C. Durante la época romana la manufactura del vidrio se extendió por el Imperio, desde Roma hasta Alemania; en esta época se descubrió que añadiendo óxido de manganeso se podía aclarar el vidrio y también desarrollaron el reciclaje de la cristalería romana. De los romanos también proviene el nombre en español, pues la coloración natural del vidrio era de color verde, nombre que se pronunciaba como viride, o viridus; de ahí el nombre viridio o vidrio. Estado vítreo. Tradicionalmente se ha considerado que la materia podía presentarse bajo tres formas: la sólida, la líquida y la gaseosa. Nuevos medios de investigación de su estructura íntima han puesto al descubierto otras formas o estados en los que la materia puede presentarse. Por ejemplo el estado mesomorfo , el estado de plasma o el estado vítreo, entre otros. Los cuerpos en estado vítreo se caracterizan por presentar un aspecto sólido con cierta dureza y rigidez y que ante esfuerzos externos moderados se deforman de manera generalmente elástica. Sin embargo, al igual que los líquidos, estos cuerpos son ópticamente isótropos, transparentes a la mayor parte del espectro electromagnético de radiación visible. Todas estas propiedades han llevado a algunos investigadores a definir el estado vítreo no como un estado de la materia distinto, sino simplemente como el de un líquido subenfriado o líquido con una viscosidad tan alta que le confiere aspecto de sólido sin serlo Figura 1: Cristal organizado de SiO2. Todo parece indicar que los cuerpos en estado vítreo no presentan una ordenación interna determinada, como ocurre con los sólidos cristalinos. Sin embargo en muchos casos se observa un desorden ordenado, es decir, la presencia de grupos ordenados que se distribuyen en el espacio de manera total o parcialmente aleatoria.

Esto ha conducido a diferentes investigadores a plantear diversas teorías sobre la estructura interna del estado vítreo, tanto de tipo geométrico, basadas tanto en las teorías atómicas como en las de tipo energético. Figura 2: SiO2 en estado vítreo. Según la teoría atómica geométrica, en el sílice sólido cristalizado el átomo de silicio se halla rodeado de cuatro átomos de oxígeno situados en los vértices de un tetraedro cada uno de los cuales le une a los átomos de silicio vecinos. Una vista en planta de este ordenamiento se esquematiza en la figura 1, en la que el cuarto oxígeno estaría encima del plano de la página. Cuando este sílice pasa al estado vítreo, la ordenación tetraédrica se sigue manteniendo a nivel individual de cada átomo de silicio, aunque los enlaces entre átomos de oxígeno y silicio se realizan en un aparente desorden, que sin embargo mantiene una organización unitaria inicial (véase la figura 2). No obstante, ninguna de estas teorías es suficiente para explicar el comportamiento completo de los cuerpos vítreos aunque pueden servir para responder, en casos concretos y bien determinados, a algunas de las preguntas que se plantean. Las sustancias susceptibles de presentar un estado vítreo pueden ser tanto de naturaleza inorgánica como orgánica, entre otras:     

Elementos químicos: Si, Se, Au-Si, Pt-Pd, Cu-Au. Óxidos: SiO2, B2O3, P2O5, y algunas de sus combinaciones. Compuestos: As2S3, GeSe2, P2S3, BeF2, PbCl2, AgI, Ca(NO3)2. Siliconas (sustancias consideradas como semiorgánicas) Polímeros orgánicos: tales como glicoles, azúcares, poliamidas, poliestirenos o polietilenos, etc. Sílice vítrea Se denomina sílice a un óxido de silicio de fórmula química SiO2. Se presenta en estado sólido cristalino bajo diferentes formas enanciotrópicas. Las más conocidas son el cuarzo (la más frecuente y estable a temperatura ambiente), la cristobalita y las tridimitas. Además de estas formas, se han llegado a identificar hasta veintidós fases diferentes, cada una de ellas estable a partir de una temperatura perfectamente determinada. Cuando se calienta el cuarzo lentamente, este va pasando por distintas formas enanciotrópicas hasta alcanzar su punto de fusión a 1723 °C. A esta temperatura se obtiene un líquido incoloro y muy viscoso que si se enfría con relativa rapidez, se convierte en una sustancia de naturaleza vítrea a la que se suele denominar vidrio de cuarzo. Este vidrio de cuarzo presenta un conjunto de propiedades de gran utilidad y de aplicación en múltiples disciplinas: en la investigación científica, tecnológica, en la vida doméstica y en general en todo tipo de industria. Se destacan como más relevantes las siguientes:  

  

Gran resistencia al ataque por agentes químicos, por lo que es muy utilizado como material de laboratorio. Si bien su densidad a temperatura ambiente es relativamente alta (2,2 g/cm3) su coeficiente de dilatación lineal medio a temperaturas inferiores a los 1000 °C es extremadamente pequeño: se sitúa en 5,1•10-7 K-1, lo que permite, por ejemplo, calentarlo al rojo y sumergirlo bruscamente en agua, sin que se fracture. El número de aplicaciones que esta propiedad suscita es elevado. Su índice de refracción a la radiación electromagnética visible es 1,4589, lo que le hace apto para instrumentos ópticos en general. Su resistividad eléctrica es del orden de los 1020 ohm·cm en condiciones normales lo que le convierte en uno de los mejores aislantes eléctricos conocidos, y todas las aplicaciones que se derivan en la industria moderna. La absorción de la radiación electromagnética del vidrio de cuarzo muestra una gran transparencia a la luz visible así como en las bandas correspondientes al espectro ultravioleta, lo que le hace especialmente apto para la fabricación de lámparas y otros instrumentos generadores de este tipo de radiación.

Estructura atómica Las estructuras vítreas se producen al unirse los tetraedros de sílice u otros grupos iónicos, para producir una estructura reticular no cristalina, pero sólida. Según la teoría atómica geométrica, en el sílice sólido cristalizado el átomo de silicio se halla rodeado de cuatro átomos de oxígeno situados en los vértices de un tetraedro cada uno de los cuales le une a los

átomos de silicio vecinos. Cuando este sílice pasa al estado vítreo, la ordenación tetraédrica se sigue manteniendo a nivel individual de cada átomo de silicio, aunque los enlaces entre átomos de oxígeno y silicio se realizan en un aparente desorden, que sin embargo mantiene una organización unitaria inicial. Óxidos formadores de vidrios Los tetraedros SiO4 se encuentran fusionados compartiendo vértices en una disposición regular produciendo un orden de largo alcance. En un vidrio corriente de sílice los tetraedros están unidos por vértices formando una red dispersa sin orden de largo alcance. El óxido de boro B2O3, es un óxido formador de vidrio y forma sub-unidades que son triángulos planos con el átomo de boro ligeramente fuera del plano de los átomos de oxigeno. No obstante, en los vidrios de boro silicato a los que han adicionado óxidos alcalinos y alcalinotérreos, los triángulos de óxido de BO3- pueden pasar a tetraedros BO4-, en los que los cationes alcalinos y alcalinotérreos proporcionan la electro neutralidad necesaria. El óxido de boro es un aditivo importante para muchos tipos de vidrios comerciales, como vidrios de boro silicato y aluminio boro silicato. El óxido alumínico también es un óxido formador. Óxidos modificadores de vidrios Los óxidos que rompen la red de vidrio se conocen como modificadores de red. Óxidos alcalinos como Na2O y K2O y óxidos alcalinotérreos como CaO y MgO son incorporados a los vidrios de sílice para reducir su viscosidad y así y modelar más fácilmente. Los átomos de oxígeno de estos óxidos entran en la red de la sílice en los puntos de unión de los tetraedros, rompiendo el entramado y produciendo átomos de oxigeno con un electrón desapareado. Los iones Na+ y K+ del Na2O y K2O no entran en la red pero permanecen como iones metálicos enlazados iónicamente en intersticios de la red. Estos iones promueven la cristalización del vidrio al llenarse algunos de los intersticios. Óxidos intermediarios en vidrios Algunos óxidos no pueden formar vidrios por sí mismos, pero pueden incorporarse a una red existente. Estos óxidos son conocidos como: óxidos intermediarios. Los óxidos intermedios son adicionados al vidrio de sílice para obtener propiedades especiales. Por ejemplo, los vidrios de aluminio silicato pueden resistir mayores temperaturas que el vidrio común. El óxido de plomo es otro óxido intermediario que se incorpora a algunos vidrios de sílice. Dependiendo de la composición del vidrio, hay óxidos intermedios que deben actuar a veces como modificadores de la red, y otras como parte constitutiva de la red del vidrio. Propiedades del Vidrio Las propiedades del vidrio común, son una función tanto de la naturaleza, como de las materias primas, como de la composición química del producto obtenido. Esta composición química se suele representar en forma de porcentajes en peso de los óxidos más estables a temperatura ambiente de cada uno de los elementos químicos que lo forman. Propiedades físicas. Color En cuestiones del color en los vidrios, el color es originado por los elementos que se agregan en el proceso de fusión, llamados colorantes. Óxido de cobalto: Rojo azulado Óxido ferroso: Azul Óxido férrico: Amarillo Óxido de cromo: Verde grisáceo Trióxido de cromo: Amarillo Óxido de cobre: Verde azulado Óxido de uranio: Verde amarillento fosforescente Selenio elemental: Rosa Sulfuro de cadmio coloidal: Amarillo Textura La superficie de los vidrios puede variar en cuestiones de brillo, esto depende del proceso de fundido en el que se haya quedado. Un vidrio completamente fundido presenta un brillo, porque el vidrio se nivela y aplana cuando se funde,

formando una superficie extremadamente lisa, dicha homogeneidad es una muy buena característica del material pues lo hace mas fácil de limpiar. Cuando un vidrio no se funde completamente en el proceso de cocción o en su defecto su viscosidad es todavía alta, la superficie resulta ser rugosa y por lo tanto con tendencia a mate; el vidrio mate es a la vez opaco por el defecto en la aspereza de su superficie haciendo que no haya transparencia. El vidrio mate puede hacerse a propósito si se somete al vidrio a un enfriado lento. Los vidrios mate son muy atractivos para usos artesanales, con la única ventaja que son difíciles de limpiar. Peso El peso en los vidrios difiere de acuerdo a su composición de los vidrios típicos según su uso. Maleabilidad Los vidrios presentan maleabilidad cuando se encuentran en su etapa de fundición pues pueden ser moldeados y es la etapa de maleabilidad del vidrio, pues es donde se les da las formas deseadas ya sea por moldes o por cualquier otro método. Los principales métodos empleados para moldear el vidrio son el colado, el soplado, el prensado, el estirado y el laminado. Propiedades químicas Densidad Debido a los distintos tipos de vidrios que pueden ser fabricados, las densidades varían de acuerdo a la sustancia con la que sean complementados; normalmente un vidrio puede tener densidades relativas (con respecto al agua) de 2 a 8, lo cual significa que hay vidrios que pueden ser mas ligeros que el aluminio y vidrios que puedan ser mas pesados que el acero. La densidad en un vidrio aumenta al incrementar la concentración de óxido de calcio y óxido de titanio. En cambio si se eleva la cantidad de alúmina (Al2O3) o de magnesia (MgO) la densidad disminuye. Viscosidad La viscosidad es definida como la propiedad de los fluidos que caracteriza su resistencia a fluir, debida al rozamiento entre sus moléculas; generalmente un material viscoso es aquel que es muy denso y pegajoso. La viscosidad en materia de vidrios es muy importante porque esta determinará la velocidad de fusión. La viscosidad es una propiedad de los líquidos, lo cual parecerá confuso para el estudio del vidrio, pero la realidad es que un vidrio es realmente un líquido sobre enfriado, lo cual significa es un líquido que llega a mayores temperaturas que la de solidificación. La viscosidad va variando dependiendo de los componentes del vidrio (figura 6). Para lograr una mayor dureza, la viscosidad debe ser invariable, que no baje ni suba, así sus moléculas tienen una atracción fija y por lo tanto dureza. Corrosión El vidrio tiene como característica muy importante la resistencia a la corrosión, en el medio ambiente son muy resistentes y no desisten ante el desgaste, he ahí por lo cual los vidrios son utilizados incluso para los experimentos químicos. Aunque su resistencia a la corrosión es muy buena no quiere decir que sea indestructible ante la corrosión, existen cuatro sustancias que logran esta excepción: Ácido Hidrofluorídrico, Ácido fosfórico de alta concentración, Concentraciones alcalinas a altas temperaturas y Agua “super calentada” Propiedades mecánicas Torsión La resistencia a la torsión de un material se define como su capacidad para oponerse a la aplicación de una fuerza que le provoque un giro o doblez en su sección transversal. Los vidrios en su estado sólido no tienen resistencia a la torsión, en

cambio en su estado fundido son como una pasta que acepta un grado de torsión que depende de los elementos que le sean adicionados. Compresión El vidrio tiene una resistencia a la compresión muy alta, su resistencia promedio a la compresión es de 1000 MPa; lo que quiere decir que para romper un cubo de vidrio de 1 cm por lado es necesaria una carga de aproximadamente 10 toneladas. La figura 7 indica los distintos porcentajes de compresibilidad para los distintos vidrios dependiendo de las temperaturas. Durante el proceso de fabricación del vidrio comercial, el vidrio va adquiriendo imperfecciones (grietas), no visibles, las cuales cuando se les aplica presión acumulan en esfuerzo de tensión en dichos puntos, aumentando al doble la tensión aplicada. Los vidrios generalmente presentan una resistencia a la tensión entre 3000 y 5500 N/cm2, aunque pueden llegar a sobrepasar los 70000 N/cm2 si el vidrio ha sido especialmente tratado. Flexión La flexión de los vidrios es distinta para cada composición del vidrio. Un vidrio sometido a flexión presenta en una de sus caras esfuerzos de comprensión, y en la otra cara presenta esfuerzos de tensión (Ver figura 8). La resistencia a la ruptura de flexión es casi de 40 Mpa (N/mm2) para un vidrio pulido y recocido de 120 a 200 Mpa (N/mm2) para un vidrio templado (según el espesor, forma de los bordes y tipos de esfuerzo aplicado). El elevado valor de la resistencia del vidrio templado se debe a que sus caras están situadas fuertemente comprimidas, gracias el tratamiento al que se le somete. Propiedades ópticas Las propiedades ópticas se pueden decir de manera concisa, que una parte de la luz es “refractada”, una parte es “absorbida”, y otra es “transmitida”. Cada una de ellas llevará un porcentaje de la totalidad del rayo de luz que hizo contacto con el vidrio. El prisma de color que se crea del otro lado del vidrio va del color rojo al color violeta, de los cuales los extremos dan lugar también a las luces no perceptibles por el ojo humano, infrarrojo y la ultravioleta. Es el color de la luz que “sale” del vidrio la cual pasa a través de este, y todos los demás colores del prisma son absorbidos por el vidrio, claro que, son vidrios muy particulares los cuales logran solamente dejar pasar la luz ultravioleta o la infrarroja, pero gracias a la tecnología actual se han logrado las condiciones precisas para lograr esto. Propiedades térmicas Calor específico Se define como el calor necesario para elevar una unidad de masa de un elemento un grado de temperatura. En los vidrios el calor específico es de 0,150 cal/g °C aproximadamente. Conductividad térmica La conductividad térmica del vidrio es de aproximadamente 0,002 cal/cm seg. °C. Cifra mucho más baja que la conductividad de los metales, no obstante el vidrio tiene una variable que no se aplica a los demás materiales, la radiación causada por el almacenamiento de luz infrarroja y ultravioleta, la cual es muy variable y puede provocar en ocasiones que el vidrio transmita el calor de manera mucho más efectiva que los metales, es por esto que esta característica es raramente tomada a consideración para el diseño. Propiedades eléctricas Para las propiedades eléctricas se manejan en lo vidrios dos medidas en especiales las cuales son: La constante dialéctica y la resistividad eléctrica superficial. La resistividad eléctrica superficial, es la resistencia que presenta el vidrio al paso de la corriente eléctrica, la cual es muy alta en este material, 108 veces más alta que en el cobre, lo cual hace al vidrio muy popular en el diseño de partes y máquinas eléctricas.

La constante dieléctrica es la capacidad de almacenar energía eléctrica, la opacidad y la constante dieléctrica están relacionadas de manera inversamente proporcional, siendo que mientras más transparente sea el vidrio, mayor será su capacidad para almacenar energía. Tipos de vidrio Vidrios de boro silicato La sustitución de óxidos alcalinos por óxido de boro en la red vítrea de la sílice da lugar a vidrios de más baja expansión. Cuando el B2O3 entra en la red de la sílice debilita su estructura y reduce considerablemente el punto de reblandecimiento de los vidrios de sílice. El efecto de debilitamiento se atribuye a la presencia de boros tri-coordinados planares. Los virios boro-silicatados (vidrios pyrex) se usan para equipos de laboratorio, tuberías, material de cocina, como equipo para procesos químicos, hornos y faros de lámparas reflectoras. Vidrios al plomo El óxido de plomo es normalmente un modificador de la red de la sílice, pero además puede actuar como un formador de la red. Los vidrios al plomo con altos contenidos de óxido de plomo son de baja fusión y se utilizan para soldar vidrios de cierre herméticos. Los vidrios de alto contenido en plomo son usados para proteger de la radiación de alta energía y encuentra aplicación para ventanas de radiación, carcasas de lámparas fluorescentes y lámparas de televisión. Por sus altos índices de refracción, los vidrios al plomo se emplean para algunos vidrios ópticos y para algunos vidrios decorativos. Vidrios de botella De composición parecida a la del vidrio común, pero con cierto porcentaje de óxido de hierro. Vidrios de cristal Con adición de plomo o bario, lo que le confiere elevado brillo, mucho peso y sonido metálico, y el óptico, de transparencia, inalterabilidad, homogeneidad e isotropía tales que permiten su uso en la fabricación de lentes, prismas, espejos. Vidrios sílico-sódico-cálcicos Los vidrios silico-sódico-cálcicos utilizados en la construcción reciben este nombre porque tienen en su composición los siguientes elementos: Sílice, un cuero vitrificante introducido en forma de arena (70 a 72%). Sodio, un fundente en forma de carbonato y sulfato (aprox. 14%). Cal, un estabilizante en forma de caliza (alrededor 10%). Diversos óxidos, como los de aluminio y los de magnesio, que mejoran las propiedades físicas del vidrio sobre todo su resistencia a la acción de los agentes atmosféricos (alrededor 5%). Vidrios de sílice fundido Es el vidrio de composición simple más importante, presenta una alta transmisión espectral y no está sujeto a daño de radiación que origina coloración en otros vidrios. Es casi siempre el vidrio ideal para las lunas de vehículos espaciales y túneles aerodinámicos y para sistemas ópticos en dispositivos espectrofotométricos. A veces, los vidrios de sílice son caros y difíciles de procesar. Usos actuales del vidrio Los vidrios hoy en día se encuentran muy presentes en nuestra vida de manera radical debido a que se pueden observar con sólo echar un vistazo al propio entorno. Las principales características del vidrio (su transparencia y su dureza), a pesar de las restricciones impuestas por su principal limitación (su fragilidad), lo convierten en un elemento imprescindible en numerosísimas aplicaciones, formando por sí mismo un grupo de materiales de una enorme importancia económica.

Edificación y arquitectura Fachadas Desde mediados del siglo XX las fachadas de vidrio se han convertido en una seña de identidad casi imprescindible de los grandes edificios de las principales urbes del mundo. Estas fachadas suelen estar realizadas mediante piezas de vidrio plano con una amplísima gama de colores, lo que facilita la labor creativa de los arquitectos. Estos vidrios normalmente son sometidos a determinados procesos que mejoran sus propiedades de aislamiento térmico y acústico; y su capacidad de atenuación de la luz exterior. En las fachadas convencionales el vidrio sigue mantienendo su papel preponderante en las ventanas, integrado en distintos tipos de carpinterías (desde las tradicionales de madera, pasando por las de acero, las de aluminio, y llegando a las de PVC), con vidrios sencillos o vidrios dobles separados por una capa confinada de aire. Interiores Hoy en día, el vidrio se ha convertido en un elemento primordial en la decoración del hogar. Gracias a su elegancia, transmisión de la luz exterior y su transparencia, el vidrio hace que los espacios se conviertan en amplios y limpios. Para ello la elección del vidrio adecuado es muy importante sobre todo para arquitectos y diseñadores que son los que hacen uso de este material para la creación de sus proyectos. Además, al tener distintos colores y texturas, el vidrio se puede utilizar de formas numerosas en infinidad de elementos, tales como: Mamparas de baño, Mamparas divisorias, Espejos, Revestimiento de paredes, Barandillas, Cortinas, Vitrinas, Mesas, Lucernarios, Vidrieras Aislamiento térmico y acústico La lana de vidrio se utiliza como aislante térmico y acústico en edificación, colocado entre los paramentos exteriores e interiores de muchas edificaciones. Elementos estructurales Existen algunas realizaciones pioneras que han utilizado la fibra de vidrio tratada con resinas para su empleo en pequeños puentes19 y pasarelas, aprovechando las ventajas de su ligereza. Así mismo, se ha planteado el uso de barras de fibra de vidrio para el armado de hormigones, evitando así el efecto de la corrosión sobre las armaduras metálicas en ambientes especialmente agresivos. Parabrisas Desde los primeros carruajes acomodados para el transporte de viajeros, todas las empresas de fabricación de medios de transporte (los ferrocarriles, la construcción naval, la industria del automóvil y la industria aeroespacial) están ligadas desde sus orígenes a la realización de los elementos de vidrio utilizados tanto en ventanillas y parabrisas como en los sistemas de iluminación interior y exterior de todo tipo de vehículos. Igualmente, otro elemento ligado a la industria del automóvil es la fabricación de espejos retrovisores. Un ejemplo claro es la evolución del diseño de los automóviles, que pasó de utilizar vidrios planos en exclusiva, a integrar sofisticados elementos de vidrio curvado en parabrisas y ventanas. Tanto la industria aeroespacial como la automovilística se han beneficiado y a su vez han hecho notables contribuciones al desarrollo de vidrios cada vez más ligeros y resistentes, como el Gorilla Glass,20 utilizado después con profusión en la fabricación de teléfonos celulares. Envases El vidrio (pese a la competencia de envases más baratos como las latas de aluminio o acero; los bricks de cartón encerado o revestido de aluminio; y las botellas de plástico) es todavía uno de los envases usados preferentemente para la comercialización de la mayoría de las bebidas alcohólicas (entre las que se pueden incluir de forma masiva el vino y la cerveza, pese a la progresión de otros tipos de contenedores en estos dos casos), multitud de conservas (especialmente mermeladas y hortalizas, que se benefician de la visibilidad del producto a través del vidrio), refrescos de todo tipo y productos de perfumería como las colonias o determinados productos de belleza (a los que envases de vidrio21 de diseños originales prestan un innegable valor añadido). Desde la primera mitad del siglo XX, cuando las empresas de alimentación se encargaban de la recogida de los envases para su limpieza y nueva utilización (práctica habitual por entonces en industrias lácteas, cerveceras y de refrescos), hasta la década de 1980, en la que se generalizó el uso de envases no retornables22 destinados a ser reciclados en la fabricación de nuevas botellas, el vidrio se ha mostrado como uno de los materiales menos contaminantes y de más fácil reciclado. De igual manera, la industria farmaceútica utiliza frecuentemente envases de vidrio para muchos de sus preparados líquidos como jarabes o inyectables.

Producción de energía Los sistemas de producción energética como los paneles fotovoltaicos23 y las centrales termosolares utilizan masivamente elementos de vidrio en la captación de la energía solar. En el caso de las placas fotovoltaicas, protegen las células de silicio (y eventualmente concentran la luz), y en el caso de las centrales termosolares son el elemento clave de los espejos captadores (y en algunos sistemas, también de los colectores por donde circulan los fluidos con los que se acumula el calor del sol). La mejora de las propiedades de estos vidrios (coste, transparencia, estabilidad térmica y química, resistencia a la suciedad y a los agentes ambientales...) es clave en la rentabilidad de las costosas inversiones necesarias para la puesta en servicio de estas instalaciones. Óptica Constituye una de las principales aplicaciones específicas del vidrio desde el Renacimiento, cuando se empezaron a producir lentes de calidad con procedimientos cada vez más perfeccionados. Algunas de las bases científicas de la óptica ya se habían sentado anteriormente (desde el año 1000 matemáticos árabes como Alhacen habían estudiado la geometría de los espejos). Sin embargo, no fue hasta que aparecieron Galileo Galilei con su telescopio de lentes, Anton van Leeuwenhoek con su primitivo microscopio, y el propio Isaac Newton con el desarrollo del telescopio de espejos, cuando se establecieron definitivamente las bases de la importancia de los instrumentos ópticos, hasta llegar a los límites teóricos de resolución a comienzos del siglo XX, con las realizaciones de Carl Zeiss a partir de los descubrimientos teóricos de Ernst Abbe, fundamentadas en la utilización de vidrios de distintos tipos. Las aplicaciones de la tecnología óptica del vidrio se centran principalmente en los instrumentos para el tratamiento y captación de imágenes; en aparatos científicos para el estudio de la luz; en comunicaciones digitales; y en la corrección oftalmológica de defectos de la vista humana mediante lentes: Captación de imágenes. Telescopios, Cámaras fotográficas, Cámaras cinematográficas, Cámaras de televisión, Cámaras de vídeo, Equipos topográficos y de fotografía aérea, Satélites de observación terrestre, Prismáticos, Periscopios, Microscopios. Reproducción de imágenes. Proyectores, Equipos de revelado, Fotocopiadoras, Comunicaciones. Fibra óptica Informática. Lectores y grabadores ópticos (CD, DVD, Blue Ray) Instrumental científico. Espectrómetros, Interferómetros, Equipos de rayos láser Material educativo. Planetarios Oftalmología. Gafas, Equipos de optometría Material de laboratorio. Una gran parte de los equipos de los laboratorios químicos y farmaceúticos (tubos de ensayo, vasos de precipitados, matraces, pipetas, condensadores, placas para preparaciones microscópicas...) están realizados con vidrio. En ocasiones se utilizan vidrios especiales, preparados para soportar elevadas temperaturas o determinadas agresiones químicas. Electrodomésticos. Los televisores utilizan de forma sistemática pantallas de vidrio para proteger los distintos sistemas de píxeles luminosos mediante los que forman las imágenes. Hornos convencionales, hornos microondas y cocinas vitrocerámicas incluyen en su diseño elementos de vidrio termoresistentes. De igual manera, las lavadoras incorporan habitualmente una puerta circular de vidrio, y muchos frigoríficos utilizan baldas de vidrio para mejorar la sensación de espacio y la luminosidad interior. Iluminación[editar]

Desde la invención de las lámparas de llama de gas o de petróleo, se han utilizado campanas de vidrio para evitar tanto el apagado de la llama como su propagación accidental. Con la invención de la bombilla de incandescencia eléctrica, la característica ampolla de vidrio que protege el filamento se ha convertido en un elemento insustituible, que se ha ido adaptando progresivamente a los mayores requerimientos térmicos que exigen las lámparas de vapor de sodio, las halógenas (con vidrios de sílice pura) o las de xenón (que emplean vidrios especiales). Incluso en los tubos fluorescentes, cuyas temperaturas de funcionamiento son reducidas, el vidrio que contiene el gas neón es un elemento imprescindible. Solo el desarrollo de los sistemas de luz LED (debido a su baja emisión de calor) puede permitir la sustitución del vidrio por materiales plásticos translúcidos, más baratos, ligeros y fáciles de fabricar. Muchos modelos de lámparas en las que se montan los puntos de luz, utilizan elementos de vidrio para dispersar y dar un determinado aspecto decorativo a la luz que proyectan. En este sentido, pueden citarse las enormes lámparas de "araña" formadas por numerosas piezas de vidrio engarzadas, características de los grandes salones de edifícios públicos y privados desde la Época Victoriana hasta la Primera Guerra Mundial. Teléfonos celulares y dispositivos táctiles. Se ha generalizado el uso de pantallas luminosas (cada vez de mayor tamaño) en teléfonos celulares y dispositivos táctiles, fabricadas con vidrios especialmente resistentes, como el Gorilla Glass. Relojería. Tradicionalmente, las esferas de los relojes se han protegido con vidrios abombados, adoptándose perfiles planos posteriormente. En el caso de los relojes de pulsera, es un requisito indispensable tanto cuando montan dispositivos de agujas (para evitar que se dañen) como cuando se trata de dispositivos digitales (el vidrio permite mostrar la pantalla hacia el exterior). Los relojes de alta gama suelen montar cristal de zafiro, cuya extraordinaria dureza evita que se rayen fácilmente. Cocina y menaje. Muchos utensilios de cocina pueden ser de vidrio (como fuentes o boles). La aparición del vidrio borosilicatado capaz de soportar temperaturas muy altas, amplió extraordinariamente el uso del vidrio en la cocina, hasta convertirlo en un material profusamente utilizado en fuentes para preparar asados al horno. En la mesa, tanto los vasos como todo tipo de copas, así como jarras y los recipientes de la mayoría de los líquidos, suelen ser de vidrio, existiendo así mismo vajillas en las que los platos también son de este material, sustituyendo a la cerámica. Decoración y bisutería. Vidrios de colores de especial calidad son frecuentemente utilizados en bisutería, sustituyendo a gemas naturales de mucho mayor precio. Un ejemplo es el vidrio de Swarovski, que se utiliza para producir una amplia gama de productos decorativos, así como complementos de moda ligados a la bisutería. En otro tipo de productos, es frecuente la venta de abalorios y cuentas de vidrio de colores que se utilizan en la confección de collares y pulseras artesanales, tanto para su comercialización como por puro entretenimiento. Como proyecto de materiales y después de haber estipulado las propiedades de los vidrios en general y sus diferentes clasificaciones se prosigue a exponer datos importantes sobre un material interesante por sus usos, el vidrio “UVIOL”. El vidrio uviol es ocupado en lámparas de uso médico principalmente en tratamientos dermatológicos debido a que en estos tipos de tratamientos es necesaria la presencia de radiaciones en longitudes de onda que ayuden en fines positivos para la piel. Una de las ventajas del vidrio uviol es que no es susceptible a las influencias de las radiaciones, la refracción y la coloración de las atribuciones externas, sólo permite la energía de los iones y el ultravioleta de los rayos del sol. El uviol es científicamente clasificado dentro de los vidrios foto-termo-refractivo (PTR). El uso en los invernaderos ayuda de manera positiva ya que se manifestó que las áreas expuestas al frío lo transforman para conservar la temperatura interna de dicho invernadero. Y ¿Cuál es la diferencia entre la estructura de vidrio sulfato-fosfato?, pues este material muestra considerablemente una promesa sobre el estado sólido de los electrones en fuentes químicas de corrientes eléctricas, y la diferencias entre el uviol y el vidrio con estructura de sulfato-fosfato es que el uviol se manifiesta dentro de los rayos propiciados por el sol y el sulfato-fosfato por conducción de corriente eléctrica, claro esta que si los dos se usan para lo mismo, es obvio que proporcionaría mayor conductividad debido a que el PTR se

encarga de conducción y conservación de temperatura y radiaciones solares, y en precios es mas conveniente el vidrio uviol. Dentro de los usos innovadores que abundan en nuestro entorno es la aplicación de los vidrios como parte de los dientes, por ello se hizo el estudio científico de todos los tipos de vidrios y su propiedad dentro de la humedad de la saliva humana, a lo que se llegó a la conclusión que el vidrio es fuerte medio para la utilización dentro de la boca del hombre y esto trajo como consecuencia que el uviol no es un material muy conveniente debido a que retendría cierta energía calorífica que afecte al ser humano, como puede ser la retención de calor que podría quemar hasta cierto punto, es por eso que se aplica más los cationes K+ y Na+. Y esto ayuda al desempeño y el estudio de posibles mejoras en dentaduras para diferentes personas. Los vidrios en particular dentro de los típicos como son el silicato y el boro silicato tienen cierta tendencia a resistir radiación y la relación con la foto inducción que tenga el material como propiedad propia y a su vez con los demás tipos de vidrio ya sean de estructuras complejas, es decir, los vidrios en especial los de alta propiedad eléctrica pueden ser utilizados de acuerdo a su estructura interna, y da un gran paso al proceso del efecto invernadero debido al aprovechamiento que puede darse de la luz del sol e inclusive el propio fuego, que a su vez es aprovechada para así generar una energía, la cual se puede almacenar y tomar ventajas en temperaturas muy altas, para así tomar energía auxiliar para los efectos y necesidades en la temporada de invierno. Los vidrios de ventana son muy utilizados en grandes construcciones debido a que permiten el paso de la luz hacia el interior de los edificios y significan una economización de los recursos como lo es la luz eléctrica. La propiedad de resistencia a la presión del aire de los vidrios de ventana, logra que los vidrios resistan a grandes presiones, inclusive vientos de huracanes; el problema se presenta en su propiedad de resistencia a golpes, pues normalmente en un huracán los vidrios no son rotos por los vientos sino por fragmentos u objetos que son arrastrados por los vientos y aprovechan esta diferencia de propiedades físicas de los vidrios, como es el caso de la destrucción masiva de vidrios en cadena que se dio en el huracán Alicia, en la ciudad de Houston en 1983; donde grandes edificios perdieron miles de cristales e incluso gente resultó herida por el desprendimiento de miles de pequeños objetos en un edificio cercano al área de rascacielos. Usos futuros Dentro de los usos futuros del vidrio uviol, se puede citar el ejemplo de mayor importancia que tiene dicho material que es el efecto de invernadero. La luz es un fenómeno electromagnético, que puede darse de variadas formas sin dejar de ser lo mismo; el calor es también "luz", llamado radiación infrarroja; cuando hablamos de ultravioleta, el color azul, microondas o señal de radio, estamos hablando de lo mismo. El vidrio es una sustancia transparente, pero no para todas las variedades de radiación. Por ejemplo ofrece una cierta resistencia al paso del infrarrojo dependiendo del material. En la tierra, la mayor parte de la luz que llega es visible, en un invernadero de vidrio la luz entra, y calienta el interior; ahora lo que era luz se transformó en calor, pero como el vidrio es opaco al calor radiante, este queda atrapado; por eso se calienta tanto un automóvil cerrado al sol: la luz entra, se transforma en calor, y no puede salir. El vapor de agua de la atmósfera, y principalmente el dióxido de carbono (CO2) actúan como los vidrios de un invernadero. Sin este abrigo nuestra tierra sería tan fría como los -30°c en promedio de Marte, que por casi carecer de efecto invernadero sufre una amplitud térmica de 50°c. Por otro lado, si abrigáramos demasiado la Tierra, podríamos llegar a sufrir los 425°c de Venus, producidos principalmente por su efecto de invernadero más que por su proximidad al Sol. Existe la problemática en los materiales vidrios en general, sobre todo en el uviol por ser parte de invernaderos, de la exposición a fracturas y rupturas debido a impactos. Actualmente hay investigaciones a largo plazo para reducir la debilidad a impactos que poseen los vidrios, el comienzo de estas investigaciones es el hacer modelos que permitan a los científicos ver los cambios estructurales que sufren los vidrios a la hora del impacto y por consiguiente analizar diversos tipos de elementos que pudieran ser favorables para agregar nuevas propiedades y hacer vidrios súper resistentes a impactos tanto bajos como presiones de vientos. Los modelos anteriormente mencionados se hacen analizando las propiedades de un vidrio que pudiera considerarse estándar acorde a las propiedades del los materiales vidrios; el material elegido fue el vidrio laminado pues es el comúnmente utilizado y el proceso de laminado es utilizado para producción de vidrio uviol el cual se diferencia del vidrio común solamente por sus propiedades de la regulación del paso de luz ultravioleta necesaria para la realización de la fotosíntesis en las plantas.

La clave se encuentra en mantener a temperaturas favorables los vidrios. Como ejemplo se puede mencionar que el vidrio laminado llega a tener comportamientos similares a vidrios modificados si su temperatura lo hace favorable para poder aumentar sus propiedades de resistencias. Otro uso futuro hacia el cual se perfila el estudio de los vidrios es la adición de materias recicladas para hacer un tipo de vidrio con propiedades específicas de reflexión de luz, por los colores violeta que adquiere, y lo más importante, una propiedad de resistencia muy superior a los ácidos que puedan dañar al cristal, haciendo que en un futuro después de perfeccionarse sirvan para construcciones con necesidades superiores en cuestión de corrosión. El proceso de formación de estos nuevos vidrios es la parte importante; las aguas de desechos de nuestra vida diaria, son tratadas en plantas especiales donde el agua cristalina nueva es vertida en algún río, mientras que los desechos son incinerados y las cenizas que quedan son mezcladas con las materias primas en el proceso de producción del vidrio, haciendo de éste un vidrio con propiedades especiales y de menor costo. Continuando con las aplicaciones de cara al futuro cabe mencionar debido a su importancia las propiedades que adquieren los vidrios al momento de adicionar titanio al compuesto en el proceso de fabricación, lo cual le da una coloración violeta que conlleva propiedades de absorción en distintas bandas de la luz infrarroja. La propiedad anterior que el titanio proporciona es muy importante en aplicaciones futuras debido al manejo de la transmisión de datos en medios infrarrojos. Finalmente se considera de mayor importancia la siguiente aplicación, el uso de un tipo especial de vidrios para inmovilizar y aislar altos niveles de radiactividad en desechos; haciendo de los tipos de vidrios nuevos candidatos para estos usos, ya que su precio es más bajo que los materiales normalmente utilizados. La ventaja que tienen los vidrios en este uso es su estructura de cerámico, con propiedades características de los cerámicos y mediante modificaciones en su estructura lograr que el vidrio aísle la radiactividad de desechos que son dañinos para los humanos.