Intze Water Tank

DESIGN OF INTZE WATER TANK Name of work:1 2 3 3 4 4 5 6 7 8 pkn Top Dome 1000000 16.00 1.50 1.50 8 M 20 scc 5 scb 7

Views 190 Downloads 25 File size 881KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

DESIGN OF INTZE WATER TANK Name of work:1 2 3 3 4 4

5 6 7 8

pkn

Top Dome

1000000 16.00 1.50 1.50 8 M 20 scc 5 scb 7 Steel HYSD fy 415 Resistance to cracking sct 1.2 Nominal Cover 25 Depth / diameter Ratio 1: 0.75 Tank capacity Height of tower from G.L. Live load on Dome Intencity of wind Noumber of columns Conrete

Reinforcement Top Dome Top Ring Beam

(main / distri. )

two ledge srirrups

Vertical wall 2 m from top 4 m from top 8 m from top 2 m from top 4 m from top 8 m from top Bottom Ring Beam

hoop ring hoop ring hoop ring Distri. Steel Distri. Steel Distri. Steel

Main Distri. Steel

8 12 8

Main Bottom sperical Dome Bottom circular girder Main top Vertical strirrups Main bottom

Vertical strirrups Main Latral main strirrups

Column supprting tower

Bracing

Circular girder for Raft

Raft Foundation slab

bottom

top strirrups main Distribution

mtr kN/m2

kN/m2

No.

N/mm2 N/mm2

1000

m Foudation from G.L. Finishes load wt of water Bearing capcity of earth

unit weight m Q Tensile stress (Tank)

scb

N/mm2

mm mm F mm F mm F

3

Effective Cover

100 mm thick

1.00 0.1 10 250 24 13 0.897 150 1.7 40

mtr kN/m2 kN/m3 kN/m2 kN/m3

Top Ring Beam 300

x

300

2.00 m

12.00 m 8.00 m

N/mm2

N/mm

2

Conocal Dom

Bottom Ring Beam

mm

1200

x

600

mm

600 mm thick

Borrom sperical Dom 300 mm

160 8 300

mm c/c both way Nos. mm c/c

Bottom Circular Girder 600

x

1.60 m

mm F mm F mm F mm F mm F mm F

190 250 190 260 170 130

mm c/c both side mm c/c both side mm c/c both side mm c/c both side mm c/c both side mm c/c both side

20 10

mm F mm F

18 150

Nos. mm c/c

25 10 10 25 12 25 10 32 10 25 10 25 25 12 25 12

mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F

190 130 120 6 110 5 300 8 300 4 300 6 3 130 200 180

mm c/c mm c/c mm c/c both side Circular Nos. Girder for Raft mm c/c 4 750 X 1000 Ledge mm Nos. mm c/c 2 Ledge Nos. O.K. 3.00 mm c/c Nos. at top and bottom mm c/c 2 Ledge strirrup Nos. Nos. mm c/c 4 Ledge strirrup mm c/c mm c/c

2.00 m 2.00

8.00 M

1200

10 16 20 10 10 10

Conical wall Distri. Steel

Ltr.

4.00 m

Circular Group of columns 650

mm dia

Braces

4.00 m

4.00 m

4.00 m N.S.L. 1.00

5.00 m

500

m 1000 250

11.00 m

[email protected] 25 mm f @

8 mm f @

160

mm c/c Both side

6 Nos. top

1200

100

10 mm f @ 150 mm c/c strirrup

Bottom circular girder

300

600 Reiforcement in circular girder

B1 300

12 mm f @ 8 mm f @

6.00 M 8 Nos. 300 mm c/c

columns

0m 200 mm 300 mm

10 mm 10 mm 10 mm 16 mm

f f f f

@ @ @ @

190

mm c/c

260 170 250

mm c/c mm c/c mm c/c

200

x

200 10 mm f strirrup

Fillet Braces

300 mm c/c 500

2m 20 mm f @

190

mm c/c

500

4m 10 mm f @

130

mm c/c

25 mm f 4 nos.top 25 mm f 4 nos.Bottom

Reinfocement in Brace

400 mm

20 mm f @ 18 10 mm f @ 150 600 mm

25 mm f

Nos. mm c/c

10 mm f

300

3 nos.top

300 mm c/c

12 mm f

32 mm f

130 mm c/c

8 mm c/c

25 mm f 200 mm c/c

mm f nos.top 25 mm f 6 nos.top 12 mm f 6 nos.top

Reinforcement Detail in r columns 25 6 12 110 12 6 25 5

mm f @ Nos. top mm f @ mmc/c.strirrup

32 mm f

10 mm f

8 nos.

300 mm c/c

1200

mm f @ Nos.both side

mm f @ Nos.bottom Reinforcement detail in Intze Tank.

[email protected]

Reinforcement Detail in circular girder and Raft foundation slab

Cross -section of Bottom Ring girder

DESIGN OF INTZE WATER TANK 1000000 16.0 1.50 1.50 8 M20 scb 7 sct 5 Steel HYSD fy 415 Resistance to cracking scb 1.2 Nominal cover 25 Tank capacity Height of tower from G.L. Live load on Dome Intencity of wind Noumber of columns Conrete

2 Design Constants:-For HYSD Bars N/mm2 for water Tank sst = 150

scb =

7 0.378 k= 0.874 J= R = 1.156 3 Dimention of tank:-

No. N/mm2 N/mm2

0.897 Tensile stess = 150 scb = 1.7 Effective cover = 35

mm =

20

m =

13

Cocrete M

N/mm2

N/mm2 N/mm2 mm 3 = 24 kN/mm 2 = 230 N/mm

wt. of concrete sst

k = 0.283 J = 0.906 R = 1.669

D = Inside diameter of tank p x D2 x 0.75 D = 4 Height of cylindrical portion of tank Depth of conical Dome D/5 or D/6 Diameter of supporting tower Spacing of bracing

4 Design of top dome :Thickness of dome slab Self load of dome = 0.10 x 1 Live load finishes

If R = radious of dome

mtr kN/m2 kN/mm3 kN/m2 kN/mm3

Q=

N/mm2 N/mm2

Assuming the average depth

We have, \

m3

or = 1000 foundation from G.L. = 1.00 Finishes load = 0.10 wt of water = 10 Bearing capcity of earth = 250 wt. of concrete = 24 m = 13

ltr m kN/m2 kN/m2

x

1000 = = = =

m3

D

0.75 x 11.93 12.00 / 6 m 8 m 4

100 mm 24 = = = Total load =

1

= x

D = diameter of Tank =

12.00

m

= 0.75 D

"=

11.930

Say

= =

8.00 2.00

m m

12.00

m

or = 0.10 m 2.4 kN/m2 1.50 kN/m2 0.10 kN/m2 4.00 kN/m2 r = central rise = D/6=

2.00 m

D/22+r2 6.00 2+ 2.00 2 = or = 10.00 m 2 x 2r 2.00 degree 37 / 10.00 = 0.80 or 8 cos f = f = p xR1 4.00 x 10.00 = Maridianal thrust at edge 'T'= = 22.20 N/m 1 + 0.80 1 + cosf 1.00 1.00 Circumferential force =wR cose f = 4.00 x 10.00 x 0.80 = 9.78 kN/m 1.80 cos f 22.20 x 1000 Maridianal Stress = = 0.22 N/mm2 < 5 N/mm2 Safe 100 x 1000 9.78 x 1000 Hoop stress = = 0.10 5.00 safe N/m2 < N/mm2 1000 x 100 The stress are with in safe limit. However provide minimum reinforcement @ 0.3 % of area in each direction. 0.3 = x 1000 x 100 = 300 \ Ast mm2 100 3.14xdia2 3.14 x 8 x 8 using 8 mm bars A = = = 50.2 mm2 4 x100 4 x 100 Spacing of hoop Bars = 1000 x 50.2 / 300 = 167 say = 160 mm mm F bar, @ 160 mm c/c in both circumferenially and meridionanlly. Hence Provided 8 the radius rtop is given by, R =

[email protected]

5 Design of top ring Beam :22.20 x 0.800 x 12.00 T1 cos f- D = = 106.60 kN 2 2 Permissible stress in high yield strenth deformed bars = 150 N/mm2, 106.60 x 1000 Ast = 711 = mm2 150 3.14xdia2 3.14 x 12 x 12 using 12 mm bars A = = = 113 mm2 4 x100 4 x 100 No.of hoop Bars = 711 / 113 = 7 No. say 8.0 No. mm F Ring bar, for symetry. Hence Provided 8 No. 12 904 Actual , Ast = 8 x 113 = mm2 If Ac = cross section of ring beam Equivelent area of composite section of beam 106.60 x 1000 = 1.2 , \ Ac = 77077 mm2 Ac + m x 904 Provide ring beam 300 x 300 = 90000 mm2 Provide 8 mm f strirrups @ 300 mm c/c to tie the 8 x 12 mm f ring beam. Hoop tension'=F1=

6 Design of Cylendrical Tank wall :Since dome roof has been design on membrane the analysis, the tank wall may be assumed to be free on top and bottom, Maximum hoop tension occurs at the base of wall, wHD 10 x 8.00 x 12.00 = = 480 kN/m height Maximum hoop tension at base= 2 2 2 Area of ring Req. = 480000 / 150 = or 1600 mm2 both side 3200 mm per meter height 2.00 x 3200 To resist the hoop tension at 2 mtere below top, Ash = 800.0 mm2 8 3.14xdia2 3.14 x 10 x 10 using 10 mm bars A = = = 79 mm2 4 x100 4 x 100 1000 x 78.5 = 196 mm \ spacing of 10 mm f rings = 800.0 / 2 mm F bar, @ 190 mm c/c both direction from top 0 to Hence Provided 10 2 mtr from top 4.00 x 3200 To resist the hoop tension at 4 mtere below top, Ash = 1600 mm2 8 3.14xdia2 3.14 x 16 x 16 using 16 mm bars A = = = 201 mm2 4 x100 4 x 100 1000 x 201 = 251 mm \ spacing of 16 mm f rings = 1600 / 2 mm F bar, @ 250 mm c/c both direction from top 2 Hence Provided 16 to 4 mtr from top 8.00 x 3200 To resist the hoop tension at 8 mtere below top, Ash = 3200 mm2 8 3.14xdia2 3.14 x 20 x 20 using 20 mm bars A = = = 314 mm2 4 x100 4 x 100 1000 x 314 = 196 mm \ spacing of 20 mm f rings = 3200 / 2 mm F bar, @ 190 mm c/c both direction from top 4 Hence Provided 20 to 8 mtr from top 1000 x 314 Actual , Ast = 2 x = 3305 mm2 190 The spacing of ring may be increased towards the top, since pressure varies lineearly Using a tensile stress of 1.2N/mm2 for the the combined section , 480 1000 x thickness T is given by= = 1.2 1000 T + ( 13 x 3305 ) \ say = 400 mm From which T = 360 mm Av thickness = = mm, at bottom and mm at top 300 mm 400 200 Hence provided Distribution reinforcement 0.30 = x 200 x 1000 = 600 At top , Ast mm2 100 Provide half the reinfocement near each face, Asd = 300 mm2 2 3.14xdia 3.14 x 10 x 10 using 10 mm bars A = = = 79 mm2 4 x100 4 x 100 / 300 = 260 mm c/c The spacing of 10 mm f bars = 1000 x 79 mm F bar, @ 260 mm c/c both direction from top 0 to Hence Provided 10 2 mtr from top

0.30 x 300 x 1000 = 900 mm2 100 Provide half the reinfocement near each face, Asd = 450 mm2 2 3.14xdia 3.14 x 10 x 10 using 10 mm bars A = = = 79 mm2 4 x100 4 x 100 / 450 = 170 mm c/c The spacing of 10 mm f bars = 1000 x 79 mm F bar, @ 170 mm c/c both direction from top 2 to Hence Provided 10 4 mtr from top 0.30 2 x 400 x 1000 = 1200 At bottom , Ast = mm 100 Provide half the reinfocement near each face, Asd = 600 mm2 2 3.14xdia 3.14 x 10 x 10 using 10 mm bars A = = = 79 mm2 4 x100 4 x 100 / 600 = 130 mm c/c The spacing of 10 mm f bars = 1000 x 79 mm F bar, @ 130 mm c/c both direction from top 4 to Hence Provided 10 8 meter upto Keep clear cover 25 mm 7 Design of Bottom Ring Beam :Load on ring beam: (A) Load due to top dome = (Meridional trust x sin f ) = 22.20 x sin # = 22.20 x 0.6 = 13.36 kN/m (B) Load due to top ring beam = 0.30 x 0.30 x 24 = 2.16 kN/m © Load due to cylendrical wall = 0.30 x 8.00 x 24 = 57.6 kN/m (D) Self load of Ring beam Assuming Beam 1.20 x 0.60 = 1.20 x 0.60 x 24 = 17.28 kN/m Total = 90.40 kN/m say 91.00 kN/m Horizontal force = H = V1 cot f = 91.00 x 1 = 91.00 kN/m \ Hoop tension Hg =((H x D )/2 =( 91.00 x 12.00 )/ 2.00 = 546 kN/m Hoop Tension due to water pressure =(( wh.d.D)/2 ) Hw =( 10.00 x 8.00 x 0.60 x 12.00 ) / 2 = 288 kN/m Total Hoop tension = Hg + Hw = 546 + 288.0 = 834.00 kN/m This to be rested entirely by steel hoops, the area of which is Ash= 150 = 5560 mm2 834 x 1000 / 3.14 x 20 x 20 3.14xdia2 using 20 mm bars A = = = 314 mm2 100 4 x100 4 x No.of hoop Bars = 5560 / 314 = 18 No. say 18 No. Hence Provided 18 No. 20 mm F Ring bar, for symetry. Actual , Ast = 18 x 314 = 5652 mm2 834 1000 x 1.05 < 1.2 N/mm2 Stress in equivalent section = = 1200 x 600 + 13 x 5652 Hence safe The 10 mm f distribution bars (vertical bars) provided in the wall @ 150 mm c/c should taken round the above ring to act as strirrups.

At middle , Ast

=

8 Design of conical dome wall :Avrage diameter of conical dome = ( 12.00 + 8.00 ) / 2 = 10.00 Avrage depth of water = 8.00 + 2.00 / 2 = 9.00 5652 Weight of water above conical dome = 3.140 x 10.00 x 10 = 9.00 x 2.00 x mm thick = 1279 Self weight of slab (thickness 3 x 10.00 x 24 = 600 2.83 x 0.6 x 3429 Load from top dome,top beam, wall & bottom beam = = = 3.14 x 12.00 x 91.00 10360 kN = \ Total load on conical slab V2 Load / unit Length = 10360 / ( kN/m 3.14 x 8.00 )= 413 xcosec 45 = 413 kN Meridional thrust = T = V2 x Cosec f = 413 x 1.41 = 584 Meridional Stress = 1000 ) /( 584 x 600 x 1000 )= 0.97 < 5.00 N/mm2 safe Hoop tension in conical dome will be maximum at top of the conical dome slab since diameter D is maximum at this section. Hoop tension = H =( p.cosec f + q. cot f ) . D/2 2 Water pressure = p = 10.00 x 8.00 = 80.00 kN/m Weight of conical dome slab per m2 is computed as, 14.4 kN/m2 q= 0.6 x 24 = f= 45 Degree D = 12 m 45 80.00 x cosec + 14.4 x cot 45 x D /2 \ H= 765 =( 80.00 x 1.414 + 14.4 x 1 )x 12.00 / 2 = kN [email protected]

Whole of which is to be resisted by steel, As = 765000 5100 / 2 \ Area of each face = 3.14xdia2 using 25 mm bars A = 4 x100 / 2550 The spacing of 25 mm f bars = 1000 x 491 Hence Provided 25 mm F bar, @ 190 1000 x 491 Actual , Ast = 2 x 190 0.20 At bottom , Ast = x 600 100 Provide half the reinfocement near each face, Asd = 600 3.14xdia2 using 10 mm bars A = 4 x100 / 600 The spacing of 10 mm f bars = 1000 x 79 Hence Provided = 10 mm F bar, @ 130 765 1000 x Maximim tenssile stress = 600 x 1000 + 13 9 Design of Bottom Sperical Dome:Thickness of Dom slab is assume = Diameter at base of slab = D = = Central rise (1/5 x D) If R = radious of dome D = diameter of base = D/22+r2 4.00 2+ = the radius is given by, R = 2r 2 x Self weight of Dome slab = 2x 3.14 x 5.800 x Volume of water above the dome is = =

\ \

3.14

x

4.00

2

(

Meridional thrust = T = wR/1+cosf T2

Meridional Stress =

=

337.00 x

Circumferential force = wR

x

wR = \

Hoop strss =(

83.60

x

Provide nominal reinforcement =

100 x 1 + 1000 ) /( cos f 100

)-

460.0 420.0 V2

Weight of water = Total load on dome = Load / unit Length

\

10.0

x + = cos f = 5.80 = 0.724

300 x 1 1+ cosf

x

1000 ) /( 0.30 x 100

5.80 300 300

x

3.14xdia2 4 x100 Spacing of hoop Bars = 1000 x 79 / Hence Provided 10 mm F bar, @

using

10

mm bars

A

=

10 Design of Bottom Circilar Girder :Thurst from the conical dome T1 Acting at angle of a Thrust from sperical dome T2 Acting at angle of b Net horizontal force on ring beam Net horizontal force on ring beam = 413.0 = 51.71 Hoop compression in the beam Assuming size of ring beam [email protected]

mm2

491

mm2

=

5164

x

1000 =

mm2

1200

mm2 3.14 x 10 x 10 = 79 mm2 4 x 100 = 130 mm c/c mm c/c on both face along the meridions. 1.15 < 1.2 N/mm2 = x 5164 Hence safe =

300 8.00 1.6 8.00 m 1.60 2 1.60 1.60 x

mm m m or R =

5.80

2

(

5.80

-

1.60 4600 5020

5020 / ( 4.20 /

= = 3.14 x 5.80 =

337.00

kN/m

1000 )=

m

x 24.00 =

0.300 5.80 3.00

10.00 4600

x 1.60

1.12
0.75d or 300 mm whichever is less = 0.75 x 1150 = 863 mm mm F , Hence Provided 10 2 legged strirrups @ 300 mm c/c . Hoop strss =(

Design of section subject to maximum torsion:T = 33.00 kN D = V = 373 kN b = 1+D/b 1+ 1200 / 600 Mt = T = 33.00 = 1.7 1.7 59.00 \ Me1 = (M+M1) = 0 + 59.00 = Mc 59 1000000 x Ast = = = 150 x 0.874 x 1150 sst. j.d 0.30 But minimum area of steel is = x 600 x 1200 = 100 2 3.14xdia using 25 mm bars A = = 4 x100 No.of Bars = 2160 / 491 = 5 Actual , Ast = x 491 = 2453 5 Equivalent shear = Ve = V+1.6T/b Ve bd 100 Ast % of steel used = bxd Since tc Using 12 mm f Asv . Asv Spacing sv = Tv-Tc)b Hence Provided 12 Tve =

=

461 600

+

1.6

1200 mm 600 mm 59.00

d M

= =

1150 mm 0

kN.m

kN.m 391

mm2

2160

mm2

3.14 x 4 No.

25 x

mm2 33.00 x = 0.6

x 25 100

461

=

491

mm2

=

373

kN

x x x x

1000 = 0.668 N/mm2 1150 2453 = 0.356 % = 0.25 N/mm2 \ tc 1150 0.25 < 0.67 Shear reinforcement required

100 600 < Tv 4 legged strirups,with side cover of 25mm and top and bottom cover of 50mm x 113.04 x 150 4 = = 270 mm 0.668 0.25 ) x 600 mm F , 4 legged strirrups @ 270 mm c/c . =

11 Design of columns of supporting tower :columns, symemetrically placed on a circle of The tank is supported on 8 8 m mean diameter . Height of staging above ground level is 16.0 m. Let us assume the height of bracing is mt . Hence 4.00 3 Panels of 4.00 m height each and 1 panel of 4.00 m height. The top of which is provided at Let the columns is connected to raft foundation by means of a ring beam. meter below the ground level, so that the actual height of bottom pannel is 1.00 5.00 m height load on columns Vertical load on each column

650 =

Self weight of column diameter mm

weight of bracing (

height meter x 500

Wind force on column Intensity of wind pressure

0.785

= 13741 / x 0.65 2x

8 16

x

= =

24.0

1718 128

kN kN

57

kN kN

16

500 ) =

3

1.50 kN/m2 (a) wind force on top of dome and culendrical wall. = 9.00 x 12.00 (b) Wind force on conical dome= 2.00 x 10.00 (c ) Wind force on bottom ring beam 1.2 x 8.00 (d) wind force on 5 no. column= 5 x 0.65 (e) wind force in bracing = 0.5 x 8.00

x

=

0.5 x 0.5 x 3.14 x 24.0 Total vertical load on each column =

=

1903

Reduction coffiecent of circular shape =

0.70

= 114 kN 1.50 x = 21 kN 1.50 x = 11 kN 1.50 x = 55 kN 1.50 x 16.0 1.50 = 18 kN Total Horizontal force = 219 kN Assuming contraflexure point at mid height of columns and fixidity at base due to raft foundation, the M x x x x x

= moment at the base columns is computed as If M1 =Moment at the base of columns due to wind load =( 114 x 23 + 21 x + 6 x 8.00 + If V = Reaction devloped at the base of exterior columns V V = 3299 + x M1 = S M + S r2 r1 4

0.70 0.70 0.70 0.70 3

x x x x x

219 x

4.00 /

17 6

+ x

11 4.00

2

x

4

2

=

kN.m

438

x 16.00 + 6 x 12 3299 ) = kN.m 2

+

4

x

4 2

2

= 3299 + V x 16 V = 3299 / 16 = 207 \ Total load on leeward column at base \ Moment in each column in the base

= 1903 + = 438 /

207 8

= =

2110 55.0

kN kN.m

Reinforcement in column ;2110 kN 55.0 kN.m 1000000 55.0 x eccentricity = (M/P ) = = 26.07 mm x 2110 1000 Since eccentricity is small, direct stress are predominent. Using 8 bars of 32 mm f and latral tis of10 mm f at 300 mm c/c Ast = 8 x 0.785 x 32 x 32.00 = 6431 mm2 2 AC = 0.785 x 650 +( 1.50 x 13 x 6431 ) = 457067 mm3 moment of ineria, le = 0.785 x 325 4+( 1.50 x 13 )x 4 x 804 x 275 2+ 4 x 804 x ( 275 / 1.41 )2 8757962891 243210000 37812.5 = +( 19.5 )x( + 3216 x 8757962891 4742595000 121605000 = + + 13622162891 = mm4 2110 x 1000 = 4.62 N/mm2 Direct compressve stress = s'cc = 457067 55.0 x 1000 x 1000 x 325 = 1.31 N/mm2 Bending stress = s'cb = 13622162891 Permissible stress in concrete is increased by 33.33% while considering wind effect. s'cc s'cb 4.62 1.31 = + < 1 or + scc 5 x 1.33 7 x 1.33 scb = 0.69419 + 0.141 = 0.84 = 0.84 < 1 O.K. 12 Design of Bracing :Moment In Brace = 2 x Moment in column x (2)0.5 = 2 x 55.0 x 2.00 156.00 kN.m = Section of braces = 500 x 500 mm b = 500 mm and d = 450 mm \ Moment of resistance of section is M1 90821250 = 450 2= or 91.00 kN.m 0.897 x 500 x 65.00 kN.m Balance moment = M1 - M2 = 156.00 - 91.00 = Mc 91 1000000 x Ast1 = = = 971.0 mm2 230 x 0.906 x 450 sst. j.d Mc 65 1000000 x Ast2 = = = 781.0 mm2 230 x 0.906 x 400 sst. j.d 1752 Ast = Ast1 + Ast2 = 971 + 781 = \ mm2 Axial load = P = Bending moment = M =

(1/2)

3.14xdia2 3.14 x 25 x 25 = = 491 mm2 4 x100 4 x 100 No.of Bars = 1752 / 491 = 4 No. bars at top and bottom Actual , Ast = x 491 = 1963 4 mm2 22.5 Length of barces L = 2 x 4.00 x sin = 2 x 4.00 x 0.38 = 3.06 m 156.00 Moment in brace Maximum shear force in brace. = = = 102.00 kN 1/2 x brace length 3.06 0.5 x 102.00 x 1000 = = 0.46 N/mm2 tv 500 450 100 Ast 100 x 1963 % of steel used = = = 0.872 % = 0.36 N/mm2 \ tc bxd x 450 500 Since tc < t v Shear reinforcement required 0.36 < 0.46 using

25

mm bars

A

=

Shear carried by concrete =

0.36

x

500 x

450

=

81.00

kN

Shear carried by concrete = Balance shear Using

10

sv

=

But

Sv >

Hence Provided

mm f 150 0.75d

10

=

1000 102.0

-

81.00

2 legged strirups, spacing is, x 78.5 x 450 2 21 1000 x or 300 mm F ,

=

=

81.00

kN

=

21.00

kN

505 0.75

mm

mm whichever is less

=

2 legged strirrups

@ 300 mm c/c .

x

450

Say =

338

500

mm

or 330 mm

13 Design of foundation:A circular girder with raft slab is provided for tower foundations. Total load on foundation = 1903 x 8 = 15224.0 kN

\ \

= 1522.0 kN Total Load = 16746.00 kN Sefe bearing capacity of soil at site = 250.00 kN/m2 67.00 m2 Area required = 16746 / 250 = Providing a raft slab with equal projections on either sideof a circular ring beam and if Self weight of foundation @

10%

b = width of raft slab, then =

3.14

Adopting a raft slab having inner diameter = and Outer diameter

=

x

8.00 8.00 +

8

x

b

=

3.00 =

5.00 m

3.00 =

11.00 m

67.0 or b = say b =

2.67 m 3.00 m

Design of circular girder of raft slab 15224.00 Total load on circular girder = kN 15224.00 / ( Load per meter run of girder = kN/m p x 8 )= 607 Refering to moment coeffiecents given in table 4.1, the maximum moment in the circul;ar girder is computed. maximum negative moment at support. K1.W.R. = 0.0083 x #### x kN.m 4 = 506 maximum positive moment at MID span. K2.W.R. = maximum Torsional moment (at

12.75

Shear force at support section is

V

from support

=

607

0.0041

x 0.0006 x x 4.00 x

#### x #### x p/4

4 4

2.00

250 37

kN.m

=

953

kN

=

413.00

kN

= =

kN.m

Shear force at section of maximum torsion is V

=

953

-

607

x

p

x 180

4

x

12.75

The support section is designed for maximum moment Shear force V = 953.00 kN 506.00 kN.m maximum negative moment M = Assuming the width of section = 750 mm 506.00 M = = V 953 kN 506 x 1000000 = = 868 mm \ d 0.897 x 750 Adopt depth = mm cover = 70 mm Over all depth = mm 1000 870 Mc 506 1000000 x Ast = = = 2793 mm2 230 x 0.906 x 870 sst. j.d 3.14xdia2 3.14 x 25 x 25 using 25 mm bars A = = = 491 mm2 4 x100 4 x 100 No.of Bars = 2793 / 491 = 6 No. Actual , Ast = 6x 491 = 2944 mm2 953 x 1000 tv = = 1.27 N/mm2 750 x 1000 100 x 2944 100 Ast % of steel used = = = 0.393 % = 0.26 N/mm2 \ tc 750 x 1000 bxd 0.26 < 1.27 Since tc < Tv Shear reinforcement required 0.26 x 750 x 1000 Shear taken by concrete = = 195 kN 1000 Balance shear = 953 758 195 = kN [email protected]

Using

12

mm f

4 legged strirups, spacing is,

sv

=

Hence Provided

230

12

Steel required for mid span Mc Ast = sst. j.d

4 x x 113.04 x 1000 = 137 mm 758 1000 x mm F bar, @ 130 mm c/c center near supports.

250 1000000 x 230 x 0.906 x 870 0.85 x b.d 1 But minimum steel Ast = = fy 3.14xdia2 using 25 mm bars A = 4 x100 No.of Bars = 1380 / 491 = 3 Actual , Ast = 3 x 491 = 1472 =

=

1380

mm2

x

750 x 870 = 1337 mm2 415 3.14 x 25 x 25 = = 491 4 x 100 No. mm2

mm2

The section subjected to maximum torsional moment and shear should be design for the following forces. T = 37 kN.m D = 1000 mm V = 413 kN b = 750 mm M = 0 d = 870 mm 1 + D/b 1 + 1000 / 750 Mt = T = 37 x = 51.00 kN.m 1.7 1.7 \ Me1 = M + M1 = 0 + 51 = 51 kN.m Mc 51 1000000 x Ast = = = 281 mm2 230 x 0.906 x 870 sst. j.d 0.85 x b.d 1 x 750 x 870 But minimum steel Ast = = = 1337 mm2 fy 415 3.14xdia2 3.14 x 25 x 25 using 25 mm bars A = = = 491 4 x100 4 x 100 No.of Bars = 1337 / 491 = 3 No. Actual , Ast = 3 x 491 = 1472 mm2 492 Equivalent shear Ve = V +1.65T/b = 413 + 1.6 x( 37 / 0.75 )= kn x 1000 492 = 0.75 N/mm2 Tv = x 870 750 100 x 1337 100 Ast % of steel used = = = 0.205 % = 0.19 N/mm2 \ tc 750 x bxd 870 0.19 < 0.75 Since tc < Tv Shear reinforcement required 0.19 x 750 x 870 Shear taken by concrete = = 124 kN 1000 492 Balance shear = 124 = 368 kN Using 12 mm f 4 legged strirups, spacing is, 4 x 113 x 230 sv = = 184 mm 0.75 - 0.19 )x 1000 Hence Provided 12 mm F 4 legged strirrups @ 180 mm c/c center near supports. Design of Raft Slab:Maximum projection of raft slab from face of coloum 3.00 - 0.75 = = 1.123 m 2 15224 Siol pressure = = = 203 kN p x( 5.50 2 - 2.5 2) Considring one meter width of raft slab along the circular arc. 203 x 1.123 2 w L2 Maximum Bending moment = = = 129 kN.m 2 2 129 x 1000000 = = 380 mm \ d 0.897 x 1000 Adopt depth = mm cover = 50 mm Over all depth = mm 500 450 Mc 129 1000000 x Ast = = = 1376 say = 2064 mm2 mm2 230 x 0.906 x 450 sst. j.d 3.14xdia2 3.14 x 25 x 25 using 25 mm bars A = = = 491 mm2 4 x100 4 x 100 [email protected]

Spacing of bars = 1000

x

491 /

2064 =

238

say

=

200 mm

Hence Provided actual steel used = Distribution steel

=

25 0.12

mm F bar, @ = 1000 x x 500 x 100

200 491

200 =

/

1000

=

600

2454 mm

mm

2

2

2

3.14xdia 3.14 x 12 = 4 x100 4 x Spacing No.of of bars Bars = 1000 x 113 / 600 = 188 mm Hence Provided 12 mm F bar, @ 180 mm c/c to reduce shear stress using

12

mm bars

A

Shear force at a section V =

% of steel used =

100 Ast bxd Since tc

[email protected]

=

mm from face of columns x 0.673 x 1.000 = x 1000 137 tv = = 1000 x 450 100 x 2454 = = 0.55 % 1000 x 450 0.310 > 0.304 > Tv

Reinforcement shown in drawing

450 203

mm2

2454

mm c/c to reduce shear stress Ast =

x 12 100

=

113

137 kN.m 0.304 \

N/mm2 tc O.K.

=

0.31

N/mm2

mm2

VALUES OF DESIGN CONSTANTS Grade of concrete Modular Ratio

M-15 18.67

M-20 13.33

M-25 10.98

M-30 9.33

M-35 8.11

M-40 7.18

scbc N/mm2 m scbc

5

7

8.5

10

11.5

13

(a) sst = 140 N/mm2 (Fe 250)

93.33

93.33

93.33

93.33

93.33

93.33

kc

0.4

0.4

0.4

0.4

0.4

0.4

jc

0.867

0.867

0.867

0.867

0.867

0.867

Rc

0.867

1.214

1.474

1.734

1.994

2.254

Pc (%)

0.714

1

1.214

1.429

1.643

1.857

kc

0.329

0.329

0.329

0.329

0.329

0.329

0.89

0.89

0.89

0.89

Rc

0.89 0.732

0.89 1.025

1.244

1.464

1.684

1.903

Pc (%)

0.433

0.606

0.736

0.866

0.997

1.127

kc

0.289

0.289

0.289

0.289

0.289

0.289

jc

0.904

0.904

0.904

0.904

0.904

0.904

(b) sst = 190 N/mm2 (c ) sst = 230 N/mm2 (Fe 415) (d) sst = 275 N/mm2 (Fe 500)

jc

Rc

0.653

0.914

1.11

1.306

1.502

1.698

Pc (%)

0.314

0.44

0.534

0.628

0.722

0.816

kc

0.253

0.253

0.253

0.253

0.253

0.253

jc

0.916

0.916

0.916

0.914

0.916

0.916

Rc

0.579

0.811

0.985

1.159

1.332

1.506

Pc (%)

0.23

0.322

0.391

0.46

0.53

0.599

Grade of concrete 2 tbd (N / mm )

Permissible shear stress Table tv in concrete (IS : 456-2000) 100As bd < 0.15 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

M-15 0.18 0.22 0.29 0.34 0.37 0.40 0.42 0.44 0.44 0.44 0.44 0.44 0.44

3.00 and above

Permissible shear stress in concrete tv N/mm2 M-20 M-25 M-30 M-35 0.18 0.19 0.2 0.2 0.22 0.23 0.23 0.23 0.30 0.31 0.31 0.31 0.35 0.36 0.37 0.37 0.39 0.40 0.41 0.42 0.42 0.44 0.45 0.45 0.45 0.46 0.48 0.49 0.47 0.49 0.50 0.52 0.49 0.51 0.53 0.54 0.51 0.53 0.55 0.56 0.51 0.55 0.57 0.58 0.51 0.56 0.58 0.60 0.51 0.57 0.6 0.62

M-40 0.2 0.23 0.32 0.38 0.42 0.46 0.49 0.52 0.55 0.57 0.60 0.62 0.63

Maximum shear stress tc.max in concrete (IS : 456-2000) Grade of concrete

tc.max

Shear stress tc 100As M-20 bd

M

15 1.6

20 1.8

Reiforcement % 100As M-20 bd

25 1.9

30 2.2

35 2.3

% fy 0.0

200

40 2.5

modification factore Table 250

328

0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55

0.17 0.18 0.18 0.18 0.19 0.19 0.19 0.2 0.2 0.2 0.21 0.21 0.21 0.22 0.22 0.22 0.23 0.23 0.24 0.24 0.24 0.25 0.25 0.25 0.26 0.26 0.26 0.27 0.27 0.27 0.28 0.28 0.28 0.29 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.31

0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68

0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.33 0.33

0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.46 0.47 0.48 0.49 0.50 0.51

0.14 0.15 0.18 0.21 0.24 0.27 0.3 0.32 0.35 0.38 0.41 0.44 0.47 0.5 0.55 0.6 0.65 0.7 0.75 0.82 0.88 0.94 1.00 1.08 1.16 1.25 1.33 1.41 1.50 1.63 1.64 1.75 1.88 2.00 2.13 2.25

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

Degree

sin

cosine

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0.017 0.026 0.035 0.044 0.052 0.061 0.070 0.078 0.087 0.096 0.104 0.113 0.122

0.999 0.999 0.999 0.999 0.998 0.998 0.997 0.996 0.996 0.995 0.994 0.993 0.992

1.90 1.80 1.70 1.60 1.55 1.50 1.50 1.45 1.40 1.35 1.35 1.30 1.30 1.25 1.25 1.20 1.18 1.17 1.16 1.15 1.14 1.13 1.12 1.11 1.11 1.11

2.0 1.75 1.65 1.55 1.5 1.45 1.4 1.35 1.3 1.3 1.25 1.2 1.2 1.18 1.16 1.14 1.13 1.12 1.1 1.1 1.08 1.06 1.05 1.04 1.03 1.02 1.01 1.00

Value of angle tangent sec 0.017 0.262 0.035 0.044 0.052 0.061 0.070 0.079 0.087 0.096 0.105 0.114 0.123

1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.004 1.004 1.005 1.006 1.007 1.008

2 1.85 1.75 1.65 1.5 1.4 1.35 1.30 1.25 1.2 1.16 1.13 1.1 1.1 1.07 1.05 1.03 1.01 1.0 0.99 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.91 0.90 0.87 0.86

cosec 57.307 38.462 28.662 22.936 19.109 16.393 14.347 12.747 11.481 10.434 9.615 8.834 8.210

0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24

0.33 0.34 0.34 0.34 0.34 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0

0.131 0.139 0.148 0.156 0.165 0.174 0.182 0.191 0.199 0.208 0.819 0.225 0.233 0.242 0.250 0.259 0.259 0.276 0.284 0.292 0.301 0.309 0.317 0.326 0.334 0.342 0.350 0.358 0.367 0.375 0.383 0.391 0.399 0.407 0.415 0.422 0.431 0.438 0.446 0.454 0.462 0.469 0.477 0.485 0.492 0.500 0.508 0.515 0.522 0.530 0.537 0.545 0.552 0.559 0.566 0.573

0.991 0.990 0.989 0.987 0.986 0.984 0.983 0.981 0.979 0.978 0.976 0.974 0.972 0.970 0.968 0.965 0.963 0.961 0.958 0.956 0.953 0.951 0.948 0.945 0.942 0.939 0.936 0.933 0.930 0.927 0.923 0.920 0.917 0.913 0.909 0.906 0.905 0.897 0.894 0.891 0.887 0.882 0.878 0.874 0.870 0.866 0.861 0.857 0.852 0.848 0.843 0.838 0.833 0.829 0.824 0.819

0.132 0.141 0.149 0.158 0.168 0.176 0.185 0.194 0.204 0.213 0.839 0.231 0.240 0.249 0.259 0.268 0.269 0.287 0.296 0.306 0.316 0.325 0.335 0.344 0.354 0.364 0.374 0.384 0.394 0.404 0.415 0.425 0.435 0.445 0.456 0.466 0.476 0.489 0.499 0.510 0.521 0.532 0.543 0.555 0.566 0.577 0.589 0.601 0.613 0.625 0.637 0.650 0.663 0.675 0.687 0.700

1.009 1.010 1.011 1.013 1.014 1.016 1.017 1.019 1.021 1.022 1.025 1.027 1.029 1.031 1.033 1.036 1.038 1.041 1.044 1.046 1.049 1.052 1.055 1.058 1.062 1.065 1.068 1.072 1.075 1.079 1.083 1.087 1.091 1.095 1.100 1.104 1.105 1.115 1.119 1.122 1.127 1.134 1.139 1.144 1.149 1.155 1.161 1.167 1.174 1.179 1.186 1.193 1.200 1.206 1.214 1.221

7.663 7.189 6.766 6.394 6.046 5.760 5.488 5.241 5.016 4.810 1.221 4.446 4.284 4.134 3.995 3.864 3.864 3.628 3.521 3.421 3.326 3.236 3.152 3.072 2.996 2.924 2.856 2.791 2.729 2.670 2.613 2.560 2.508 2.459 2.411 2.370 2.323 2.282 2.241 2.203 2.166 2.130 2.096 2.063 2.031 2.000 1.970 1.942 1.914 1.887 1.862 1.836 1.812 1.788 1.766 1.745

1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80

0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.47 0.47 0.47 0.47 0.47 0.47

35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0

0.581 0.588 0.595 0.602 0.609 0.616 0.623 0.629 0.636 0.643 0.649 0.656 0.663 0.669 0.676 0.682 0.688 0.695 0.701 0.707 0.713 0.719 0.725 0.731 0.737 0.742 0.749 0.755 0.760 0.766 0.772 0.777 0.786 0.788 0.793 0.799 0.804 0.809 0.814 0.819 0.824 0.829 0.834 0.839 0.843 0.848 0.853 0.857 0.862 0.866 0.870 0.875 0.879 0.883 0.887 0.891

0.814 0.809 0.803 0.798 0.793 0.788 0.782 0.777 0.771 0.766 0.760 0.754 0.748 0.743 0.737 0.731 0.725 0.719 0.713 0.707 0.700 0.694 0.688 0.681 0.675 0.669 0.662 0.656 0.649 0.642 0.636 0.629 0.622 0.615 0.608 0.601 0.594 0.587 0.580 0.573 0.566 0.559 0.551 0.544 0.537 0.529 0.522 0.515 0.507 0.500 0.492 0.484 0.477 0.469 0.461 0.453

0.713 0.726 0.741 0.754 0.768 0.781 0.796 0.810 0.825 0.839 0.854 0.870 0.886 0.901 0.917 0.933 0.949 0.966 0.983 1.000 1.019 1.036 1.054 1.074 1.092 1.109 1.131 1.150 1.172 1.193 1.213 1.235 1.263 1.281 1.305 1.329 1.353 1.378 1.404 1.429 1.456 1.483 1.513 1.542 1.570 1.603 1.633 1.664 1.699 1.732 1.769 1.807 1.842 1.883 1.924 1.967

1.229 1.236 1.245 1.253 1.261 1.269 1.279 1.287 1.297 1.305 1.316 1.326 1.337 1.346 1.357 1.368 1.379 1.391 1.403 1.414 1.429 1.441 1.453 1.468 1.481 1.495 1.511 1.524 1.541 1.558 1.572 1.590 1.608 1.626 1.645 1.664 1.684 1.704 1.724 1.745 1.767 1.789 1.815 1.838 1.862 1.890 1.916 1.942 1.972 2.000 2.033 2.066 2.096 2.132 2.169 2.208

1.722 1.702 1.681 1.662 1.643 1.624 1.606 1.589 1.572 1.555 1.540 1.524 1.509 1.495 1.480 1.466 1.453 1.440 1.427 1.414 1.402 1.390 1.379 1.367 1.356 1.348 1.335 1.325 1.315 1.305 1.296 1.287 1.273 1.269 1.261 1.252 1.244 1.236 1.228 1.221 1.213 1.206 1.199 1.192 1.186 1.179 1.173 1.167 1.161 1.155 1.149 1.143 1.138 1.133 1.127 1.122

1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36

0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0 76.5 77.0 77.5 78.0 78.5 79.0 79.5 80.0 80.5 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 86.5 87.0 87.5 88.0 88.5 89.0 89.5 90.0

0.895 0.899 0.903 0.906 0.910 0.914 0.917 0.921 0.924 0.927 0.930 0.934 0.937 0.940 0.943 0.946 0.948 0.951 0.954 0.956 0.959 0.961 0.964 0.966 0.968 0.970 0.982 0.974 0.976 0.978 0.980 0.982 0.983 0.985 0.986 0.988 0.989 0.999 0.991 0.993 0.994 0.995 0.995 0.996 0.997 0.998 0.998 0.999 0.999 0.999 1.000 0.9998 0.9999 1.000

0.446 0.438 0.430 0.422 0.414 0.406 0.398 0.390 0.382 0.374 0.367 0.358 0.350 0.342 0.333 0.326 0.317 0.309 0.301 0.292 0.284 0.276 0.267 0.259 0.250 0.242 0.233 0.225 0.216 0.208 0.199 0.191 0.182 0.174 0.165 0.156 0.148 0.139 0.131 0.122 0.113 0.105 0.096 0.087 0.078 0.070 0.061 0.052 0.044 0.035 0.026 0.017 0.009 0.000

2.007 2.052 2.099 2.148 2.198 2.250 2.304 2.360 2.418 2.479 2.539 2.608 2.674 2.747 2.831 2.904 2.989 3.078 3.172 3.271 3.376 3.488 3.606 3.732 3.868 4.011 4.209 4.332 4.511 4.705 4.915 5.145 5.396 5.673 5.977 6.315 6.691 7.178 7.597 8.145 8.777 9.517 10.389 11.431 12.716 14.302 16.362 19.083 22.913 28.637 38.299 57.295 114.931 1.000

2.242 2.283 2.326 2.370 2.415 2.463 2.513 2.564 2.618 2.674 2.729 2.793 2.856 2.924 3.003 3.072 3.152 3.236 3.326 3.420 3.521 3.628 3.743 3.864 3.995 4.134 4.284 4.446 4.621 4.810 5.016 5.241 5.488 5.760 6.061 6.394 6.766 7.185 7.663 8.206 8.834 9.569 10.438 11.474 12.755 14.337 16.393 19.109 22.936 28.654 38.314 57.307 114.943

1.117 1.113 1.108 1.103 1.099 1.095 1.091 1.086 1.082 1.079 1.075 1.071 1.068 1.064 1.061 1.058 1.055 1.052 1.049 1.046 1.043 1.040 1.038 1.035 1.033 1.031 1.018 1.026 1.024 1.022 1.021 1.019 1.017 1.015 1.014 1.013 1.011 1.001 1.009 1.008 1.007 1.006 1.005 1.004 1.003 1.002 1.002 1.001 1.001 1.001 1.000 1.000 1.000 1.000

2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.90 2.91 2.92

0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

cos 0.000 0.009 0.017 0.026 0.035 0.044 0.052 0.061 0.070 0.078 0.087 0.096 0.105 0.113 0.122 0.131 0.139 0.148 0.156 0.165 0.174 0.182 0.191 0.199 0.208 0.216 0.225 0.233 0.242 0.250 0.259 0.267 0.276 0.284 0.292 0.301 0.309 0.317 0.326 0.334 0.342 0.350 0.358 0.366 0.374 0.382 0.390 0.398 0.406 0.414 0.422 0.430 0.438 0.446

Degree 90.0 89.5 89.0 88.5 88.0 87.5 87.0 86.5 86.0 85.5 85.0 84.5 84.0 83.5 83.0 82.5 82.0 81.5 81.0 80.5 80.0 79.5 79.0 78.5 78.0 77.5 77.0 76.5 76.0 75.5 75.0 74.5 74.0 73.5 73.0 72.5 72.0 71.5 71.0 70.5 70.0 69.5 69.0 68.5 68.0 67.5 67.0 66.5 66.0 65.5 65.0 64.5 64.0 63.5

2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15

0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

0.453 0.461 0.469 0.477 0.484 0.492 0.500 0.507 0.515 0.522 0.529 0.537 0.544 0.551 0.559 0.566 0.573 0.580 0.587 0.594 0.601 0.608 0.615 0.622 0.629 0.636 0.642 0.649 0.656 0.662 0.669 0.675 0.681 0.688 0.694 0.700 0.707 0.713 0.719 0.725 0.731 0.737 0.743 0.748 0.754 0.760 0.766 0.771 0.777 0.782 0.788 0.793 0.798 0.803 0.809 0.814

63.0 62.5 62.0 61.5 61.0 60.5 60.0 59.5 59.0 58.5 58.0 57.5 57.0 56.5 56.0 55.5 55.0 54.5 54.0 53.5 53.0 52.5 52.0 51.5 51.0 50.5 50.0 49.5 49.0 48.5 48.0 47.5 47.0 46.5 46.0 45.5 45.0 44.5 44.0 43.5 43.0 42.5 42.0 41.5 41.0 40.5 40.0 39.5 39.0 38.5 38.0 37.5 37.0 36.5 36.0 35.5

0.819 0.824 0.829 0.833 0.838 0.843 0.848 0.852 0.857 0.861 0.866 0.870 0.874 0.878 0.882 0.887 0.891 0.894 0.897 0.905 0.906 0.909 0.913 0.917 0.920 0.923 0.927 0.930 0.933 0.936 0.939 0.942 0.945 0.948 0.951 0.953 0.956 0.958 0.961 0.963 0.965 0.968 0.970 0.972 0.974 0.976 0.978 0.979 0.981 0.983 0.984 0.986 0.987 0.989 0.990 0.991

35.0 34.5 34.0 33.5 33.0 32.5 32.0 31.5 31.0 30.5 30.0 29.5 29.0 28.5 28.0 27.5 27.0 26.5 26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5

0.992 0.993 0.994 0.995 0.996 0.996 0.997 0.998 0.9986 0.9990 0.999 0.9996 0.9998

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

Permissible Bond stress Table tbd in concrete (IS : 456-2000) Grade of concreteM-10 2 -tbd (N / mm )

M-15 0.6

M-20 0.8

M-25 0.9

M-30 1

M-35 1.1

M-40 1.2

M-45 1.3

Development Length in tension Plain M.S. Bars tbd (N / mm2) kd = Ld F

Grade of concrete

H.Y.S.D. Bars tbd (N / mm2) kd = Ld F

M 15

0.6

58

0.96

60

M 20

0.8

44

1.28

45

M 25

0.9

39

1.44

40

M 30

1

35

1.6

36

M 35

1.1

32

1.76

33

M 40

1.2

29

1.92

30

M 45

1.3

27

2.08

28

M 50

1.4

25

2.24

26

Permissible stress in concrete (IS : 456-2000) Grade of concrete M M M M M M M M M

10 15 20 25 30 35 40 45 50

Permission stress in compression (N/mm2) Permissible stress in bond (Average) for 2 Bending acbc plain bars in tention (N/mm ) Direct (acc) (N/mm2) 3.0 5.0 7.0 8.5 10.0 11.5 13.0 14.5 16.0

Kg/m2 300 500 700 850 1000 1150 1300 1450 1600

(N/mm2) 2.5 4.0 5.0 6.0 8.0 9.0 10.0 11.0 12.0

Kg/m2 250 400 500 600 800 900 1000 1100 1200

(N/mm2) -0.6 0.8 0.9 1.0 1.1 1.2 1.3 1.4

in kg/m2 -60 80 90 100 110 120 130 140

Maximum shear stress tc.max in concrete (IS : 456-2000) Grade of concrete

tc.max

dification factore Table 415

500 2.00

M-15 1.6

M-20 1.8

M-25 1.9

M-30 2.2

M-35 2.3

M-40 2.5

1.90 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.15 1.05 1.02 1.20 0.98 0.96 0.94 0.92 0.91 0.90 0.89 0.86 0.86 0.85 0.84 0.83 0.83 0.82 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.81

1.80 1.65 1.50 1.40 1.35 1.30 1.20 1.16 1.08 1.00 0.95 0.90 0.86 0.84 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.72 0.72 0.71 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.68

Table Carpentors's coefficents for cylenlidrical tank (Reyolndhand book cotangent

Degree

57.249 56.300 28.633 22.913 19.071 16.361 14.304 12.696 11.435 10.382 9.558 8.772 8.144

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Value of H/D

angle Factors H+dA 0.2 0.3 0.4 0.5 1.0 2.0 4.0

F 10 0.046 0.032 0.024 0.02 0.012 0.006 0.004

20 0.028 0.019 0.014 0.02 0.006 0.003 0.002

K1 30 0.022 0.014 0.01 0.009 0.005 0.002 0.002

40 0.015 0.01 0.007 0.006 0.003 0.002 0.001

10 0.55 0.5 0.45 0.37 0.3 0.27

TABLE 20.1 Cofficent for bending moment and twisting moment in circular beam 2f C1 C2 No of support

7.594 7.117 6.691 6.311 5.961 5.668 5.395 5.142 4.911 4.704 1.192 4.331 4.165 4.010 3.867 3.729 3.721 3.487 3.373 3.271 3.169 3.078 2.988 2.903 2.822 2.746 2.673 2.604 2.538 2.475 2.412 2.355 2.300 2.245 2.192 2.147 2.102 2.047 2.004 1.963 1.921 1.879 1.840 1.803 1.767 1.732 1.697 1.664 1.631 1.600 1.569 1.539 1.509 1.483 1.455 1.429

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0

4 5 6 8 9 10 12

90 72 60 45 40 36 30

0.137 0.108 0.089 0.066 0.06 0.054 0.045

0.07 0.054 0.045 0.03 0.027 0.023 0.017

TABLE 4.1 for (Krishna Raju) intze tank design Cofficent for bending moment and twisting moment in circular beam No of support

2f

Negative bending moment at support K1

4 6 8 10 12

90 72 60 45 40

0.0342 0.148 0.0083 0.0054 0.0037

Positive bending moment at center of span K2

0.0176 0.0075 0.0041 0.0023 0.0014

1.402 1.377 1.350 1.326 1.303 1.280 1.256 1.235 1.212 1.191 1.170 1.149 1.129 1.110 1.091 1.072 1.053 1.035 1.017 1.000 0.981 0.965 0.949 0.931 0.916 0.901 0.884 0.869 0.853 0.838 0.824 0.809 0.792 0.780 0.766 0.753 0.739 0.726 0.712 0.700 0.687 0.674 0.661 0.649 0.637 0.624 0.612 0.601 0.588 0.577 0.565 0.553 0.543 0.531 0.520 0.508

35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0

0.498 0.487 0.476 0.466 0.455 0.444 0.434 0.424 0.414 0.403 0.394 0.384 0.374 0.364 0.353 0.344 0.335 0.325 0.315 0.306 0.296 0.287 0.277 0.268 0.259 0.249 0.238 0.231 0.222 0.213 0.203 0.194 0.185 0.176 0.167 0.158 0.149 0.139 0.132 0.123 0.114 0.105 0.096 0.087 0.079 0.070 0.061 0.052 0.044 0.035 0.026 0.017 0.009 0.000

63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0 76.5 77.0 77.5 78.0 78.5 79.0 79.5 80.0 80.5 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 86.5 87.0 87.5 88.0 88.5 89.0 89.5 90.0

456-2000) M-50 1.4 fs = 120 =fy200

2.0

fs =145 =fy250 1.6 1.2 0.8 0.4

0

0.4

0.8 Modification factore

Fs= steel stress of service load =0.58fy for steeel fy 500 = Fs 290 fy 415 = Fs 240 fy 328 = Fs 190 fy 250 = Fs 145 fy 207 = Fs 120

N/mm2 N/mm2 2

N/mm N/mm2 N/mm2

1.2

ts for cylenlidrical tank (Reyolndhand book) K1 20 0.5 0.43 0.39 0.37 0.28 0.22 0.2

K2 30 0.45 0.38 0.35 0.32 0.24 0.19 0.17

oment and twisting moment in circular beam fm C3

40 0.4 0.33 0.3 0.27 0.21 0.16 0.14

10 0.32 0.35 0.44 0.48 0.62 0.73 0.8

20 0.46 0.53 0.58 0.63 0.73 0.81 0.85

30 0.53 0.6 0.65 0.69 0.74 0.85 0.87

40 0.5 0.66 0.7 0.73 0.83 0.88 0.9

0.021 0.014 0.009 0.005 0.004 0.003 0.002

19.25 15.25 12.75 9.5 8.5 7.25 6.25

r (Krishna Raju) intze tank design oment and twisting moment in circular beam Maximum twesting moment or torqu K3

fm

0.0053 0.00015 0.0006 0.00003 0.0017

19.25 15.25 12.75 9.5 8.5

fs =145 =fy250 fs =190 =fy328 fs =240 =fy415 fs = 290

1.2

Fig 7.1

1.6

2.0

=fy500

2.4

2.8

3.2