Historia de La Medicion de La Velocidad de La Luz

HISTORIA DE LA MEDICION DE LA VELOCIDAD DE LA LUZ Por largo tiempo, la luz fue un fenómeno misterioso, y fueron los anti

Views 708 Downloads 13 File size 105KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

HISTORIA DE LA MEDICION DE LA VELOCIDAD DE LA LUZ Por largo tiempo, la luz fue un fenómeno misterioso, y fueron los antiguos griegos quienes por primera vez discutieron sobre cómo se mueve la luz. Aunque Empédocles (492-432, a. C.) estaba en el camino correcto al postular que la luz del Sol se debía demorar un cierto tiempo en alcanzar la tierra, finalmente, se impuso la idea de Aristóteles (384-322, a. C.), quien consideraba que la luz “era instantánea”. Hasta los experimentos del físico persa Alhazen en el siglo XI, existían dos teorías contrapuestas sobre la luz y la visión: según la teoría de la emisión, la visión se produce mediante rayos que emanan de los ojos; la teoría de la intromisión, por su parte, propone que son los rayos que llegan a los ojos procedentes de los objetos los que nos permiten ver a éstos. Para la primera teoría, la velocidad de los "rayos visuales" debe ser infinita, puesto que si abrimos los ojos durante la noche, vemos las estrellas inmediatamente. Pero Alhazén, en su Libro de Óptica, publicado en 1201, mostró con sus experimentos que la teoría de la intromisión es la correcta, y propuso con acierto que la luz debía tener una velocidad finita, más lenta en los cuerpos más densos. Las discusiones habrían continuado sin fin, de no ser por Galileo (15641642), quien desestimó la suposición de instantaneidad de la velocidad de la luz y propuso un método para determinar su velocidad. En el método de Galileo, dos observadores con lámparas encendidas -pero cubiertas- se separan a una distancia conocida. Uno descubre su lámpara y el segundo observador, en cuanto la percibe, descubre la suya. Si los observadores miden el tiempo transcurrido, entonces pueden calcular la velocidad de acuerdo a la fórmula:

El mismo Galileo, trabajando a distancias de separación de alrededor de 1.000 metros, no pudo detectar retardo alguno. Esto lo llevó a sugerir que la luz viajaba a lo menos diez veces más rápido que el sonido. Hoy sabemos que el valor de la velocidad de la luz es muy grande (ver más abajo), por eso entendemos por qué Galileo no detectó ningún retardo en el tiempo, ya que la luz recorre los 1.000 metros en 3,3 millonésimas de segundo (3,3 x10-6 s). Medir tiempos tan breves en el siglo XVII era imposible. MEDIDAS BASADAS EN OBSERVACIONES ASTRONÓMICAS Ole Roemer (1644-1710) Fue el primero en medir la velocidad de la luz en 1676. utilizando el intervalo de tiempo transcurrido entre dos eclipses consecutivos (unas 42 h) . Comparando los resultados obtenidos durante un período largo de tiempo, encontró que cuando la Tierra se alejaba de Júpiter, los intervalos de tiempo

eran mayores que el valor medio, mientras que cuando se aproximaban a Júpiter, los intervalos eran algo más cortos. De ello dedujo que la causa de estas diferencias era la variación de la distancia entre Júpiter y la Tierra.

Roemer dedujo de sus observaciones que la luz necesitaba un tiempo de unos veintidós minutos para recorrer una distancia igual al diámetro de la órbita terrestre. El mejor valor obtenido para esta distancia, en tiempos de Röemer, era de 1'72·108 millas. Aunque no hay testimonio de que Roemer hiciera realmente el cálculo, si hubiera utilizado los datos anteriores habría encontrado una velocidad de 214000 km/s Concluyó (correctamente) que la diferencia en tiempos estaba relacionada con el tiempo que tarda la luz en recorrer la distancia (variable) entre la Júpiter y la Tierra. Con el conocimiento que había en aquel entonces acerca de esta distancia pudo estimar la velocidad de la luz con un error menor al 30%

Figura 1 ROEMER

James Bradley (1692-1762) Estudió la velocidad observando las aberraciones de las estrellas, que es el desplazamiento aparente de las estrellas debido al movimiento de la Tierra alrededor del Sol. Obtuvo un valor de 301000 Km/s. MEDIDAS SOBRE LA TIERRA Louis Fizeau. El primer método terrestre para medir la velocidad de la luz fue proyectado en 1849 por el físico francés Armand Hippolyte Louis Fizeau, aunque observaciones astronómicas anteriores habían proporcionado una velocidad aproximadamente correcta. En la actualidad, la velocidad de la luz en el vacío se toma como 299.792.458 m/s, y este valor se emplea para medir grandes distancias a partir del tiempo que emplea un pulso de luz o de

ondas de radio para alcanzar un objetivo y volver. Este es el principio del radar. El conocimiento preciso de la velocidad y la longitud de onda de la luz también permite una medida precisa de las longitudes. De hecho, el metro se define en la actualidad como la longitud recorrida por la luz en el vacío en un intervalo de tiempo de 1/299.792.458 segundos. La velocidad de la luz en el aire es ligeramente distinta según la longitud de onda, y en promedio es un 3% menor que en el vacío; en el agua es aproximadamente un 25% menor, y en el vidrio ordinario un 33% menor. Su dispositivo experimental fue: la luz de una fuente intensa era reflejada por un espejo semitransparente y luego se llevaba a un foco en un punto por medio de una lente. Después de convertirse en un haz de rayos paralelos por una segunda lente, la luz recorría 8'67 km hasta la cima de una colina, donde un espejo y una lente reflejaban la luz de nuevo en sentido contrario. Regresando por la misma trayectoria, algo de luz pasaba a través del espejo y entraba en el ojo del observador. El propósito de la rueda dentada giratoria era cortar el haz luminoso en destellos momentáneos, y medir el tiempo empleado por esas señales en llegar hasta el espejo distante y regresar de vuelta. Con la rueda en reposo y en tal posición que la luz pase por la abertura entre los dientes, el observador verá una imagen de la fuente de luz. Si ahora, la rueda se pone a girar con una velocidad que aumenta lentamente, se alcanzará pronto una situación en la cual la luz pasa a través del hueco de la rueda, regresará justo al mismo tiempo para ser detenida por los dientes de la rueda. Bajo estas condiciones, la imagen se eclipsará completamente para el observador. Aumentando más esa velocidad, reaparecerá la luz, incrementando su intensidad hasta alcanzar un máximo. Esto ocurrirá cuando los destellos enviados a través de las aberturas respectiva-mente. Con una rueda de 720 dientes, Fizeau observó este máximo a la velocidad de 25 revoluciones por segundo. El tiempo requerido para que la luz viaje de ida y vuelta se puede calcular como 1/25 veces, 1/720 o 1/18000 de s. Esto da una velocidad de 313.000 km/s a partir de la distancia de ida y vuelta de 17'34 km.

Figura 2 EXPERIEMENTO DE LOUIS FIZEAU

León Foucault. Foucault, Léon (1819-1868), físico francés, nació en París y trabajó con el físico francés Armand Fizeau en la determinación de la velocidad de la luz. Foucault demostró, por su parte, que la velocidad de la luz en el aire es mayor que en el agua. En 1851 hizo una demostración espectacular de la rotación de la Tierra suspendiendo un péndulo con un cable largo desde la cúpula del Panteón en París: el movimiento del péndulo reveló la rotación de la Tierra sobre su eje. Foucault fue uno de los primeros en mostrar la existencia de corrientes (corrientes de Foucault) generados por los campos magnéticos, y el creador de un método para medir la curvatura de los espejos telescópicos. Entre los dispositivos que inventó están un prisma polarizador y el giroscopio en el que se basa el compás giroscópico moderno. Foucault modificó el aparato de Fizeau, reemplazó la rueda dentada por un espejo giratorio. Introduciendo entre la rueda y el espejo un tubo lleno de agua, comprobó que la velocidad de la luz en el agua es menor que en el aire, pero la teoría corpuscular, creída insostenible en aquellos tiempos, exige que sea mayor. En 1850, Foucault completó y publicó los resultados de un experimento en el que había medido la velocidad de la luz en el agua. Fue un experimento crucial para la larga controversia que existía sobre la naturaleza de la luz. De acuerdo con Newton y sus discípulos, la luz estaba formada por pequeñas partículas que emanan de una fuente, por otra parte, Huygens, suponía que la luz compuesta por ondas, similares en naturaleza quizás a las ondas del agua o a las ondas sonoras. Ahora bien, la teoría corpuscular de Newton requería que la luz se propague más deprisa en un medio denso como el agua que en un medio de menor densidad como el aire, mientras que la teoría ondulatoria de Huygens, exigía que se propague más despacio. Enviando la luz a un lado y a otro en un tubo largo lleno de agua, Foucault

halló que su velocidad era menor que en el aire, lo cual constituye una confirmación brillante de la teoría ondulatoria de Huygens. Albert Abraham Michelson En 1887 Michelson inventó el interferómetro, que utilizó en el famoso experimento del éter realizado con el químico estadounidense Edward Williams Morley. En aquella época, la mayoría de los científicos creían que la luz viajaba como ondas a través del éter. También opinaban que la Tierra viajaba por el éter. El experimento Michelson-Morley demostró que dos rayos de luz enviados en diferentes direcciones desde la Tierra se reflejaban a la misma velocidad. De acuerdo con la teoría del éter, los rayos se habrían reflejado a velocidades distintas. De esta forma, el experimento demostró que el éter no existía. Michelson sobresalió con sus contribuciones y mejoras. Reemplazando la rueda dentada por un pequeño espejo de ocho caras y aumentando la trayectoria de la luz cerca de 70 km, Michelson obtuvo el valor de 299.796 km/s en 1926.

Figura 3 EXPERIMENTO DE MICHELSON

Años después, Michelson también midió la velocidad de la luz en el agua y encontró un valor de 225.000 km/s. Esta es justo 3/4 partes la velocidad en el vacío. En el vidrio común, la velocidad es aún menor, siendo alrededor de 2/3 de la velocidad en el vacío, o sea, 200.000 km/s. La velocidad en el aire es muy poco más pequeña que la velocidad en el vacío, difiriendo únicamente en 70 km/s, al nivel del mar, y menos a altitudes elevadas, donde el aire tiene menor densidad. Para la mayoría de los casos, se puede despreciar esta diferencia, y decir que la velocidad en el aire es la misma que en el vacío.

No sería hasta que Maxwell hiciera sus avances en el campo del electromagnetismo, que fuera posible la medición de la velocidad de la luz de forma indirecta mediante la permeabilidad magnética y la permitividad eléctrica. Con la teoría de Maxwell sobre el papel, fueron muchos los que mejoraron las mediciones de la velocidad de la luz. El valor actual de la velocidad de la luz (c) fue adoptado en la Conferencia General de Pesos y Medidas del año 1983 y es de c=299 792 458 metros por segundo, es decir, cerca de 300 millones de metros por segundo o 3 x 108 m /s. Este se considera un valor exacto y con ayuda de él se define la unidad de longitud denominada metro. Un metro es la distancia que recorre la luz en el vacío en el lapso de tiempo de 1 / 299 792 458 de segundo.