Ensayo Sobre La Lluvia Acida

La Lluvia Ácida “Amenaza Ecológica” En diversas regiones del Perú se ha detectado la ocurrencia de lluvia ácida. Este fe

Views 106 Downloads 3 File size 246KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

La Lluvia Ácida “Amenaza Ecológica” En diversas regiones del Perú se ha detectado la ocurrencia de lluvia ácida. Este fenómeno, que ha puesto en estado de emergencia grandes áreas del hemisferio norte, es uno de los desastres ecológicos de nuestro tiempo. Provoca impactos ambientales importantes. Ciertos ecosistemas son más susceptibles que otros a la acidificación. Típicamente, éstos tienen normalmente suelos poco profundos, no calcáreos, formados por partículas gruesas que yacen sobre un manto duro y poco permeable de granito, gneis o cuarcita. En estos ecosistemas puede producirse una alteración de la capacidad de los suelos para descomponer la materia orgánica, interfiriendo en el reciclaje de nutrientes. En cualquier caso, además de los daños a los suelos, hay que resaltar los producidos directamente a las plantas, ya sea a las partes subterráneas o a las aéreas, que pueden sufrir abrasión (las hojas se amarillean), como ocurre en una buena parte de los bosques de coníferas del centro y norte de Europa y en algunos puntos de la cuenca mediterránea. Además, la producción primaria puede verse afectada por la toxicidad directa o por la lixiviación de nutrientes a través de las hojas. No obstante, existen algunos casos en que se ha aportado nitrógeno o fósforo al medio a través de la precipitación ácida en los que la consecuencia ha sido el aumento de producción ya que ese elemento era limitante. Hay también evidencias incontrovertibles de daños producidos en los ecosistemas acuáticos de agua dulce, donde las comunidades vegetales y animales han sido afectadas, hasta el punto de que las poblaciones de peces se han reducido e incluso extinguido al caer el pH por debajo de 5, como ha ocurrido en miles de lagos del sur de Suecia y Noruega. Estos efectos se atenúan en aguas duras (alto contenido en carbonatos), que amortiguan de modo natural la acidez de la precipitación. Así, de nuevo, los arroyos, los ríos, las lagunas y los lagos de zonas donde la roca madre es naturalmente de carácter ácido son los más sensibles a la acidificación. Uno de los grandes peligros de la lluvia ácida es que su efecto en un ecosistema particular, además de poder llegar a ser grave, es altamente impredecible. El problema de la lluvia ácida tuvo su origen en la Revolución Industrial, y no ha dejado de empeorar desde entonces. Hace tiempo que se reconoce la gravedad de sus efectos a escala local, como ejemplifican los periodos de smog ácido en áreas muy industrializadas, así como su gran capacidad destructiva en zonas alejadas de la fuente contaminante. Una extensa área que ha sido objeto de múltiples estudios es el norte de Europa, donde la lluvia ácida ha erosionado estructuras, dañado los bosques y las cosechas, y puesto en peligro o diezmado la vida en los lagos de agua dulce. La preocupación por la lluvia ácida quedó de manifiesto por primera vez en foros internacionales de relevancia, como en la Conferencia de las Naciones Unidas sobre el Medio Ambiente Humano celebrada en Estocolmo (Suecia) en 1972.

1

Aunque sus mecanismos no son todavía del todo conocidas, la lluvia ácida se ha producido desde las eras geológicas más antiguas, y fue identificada hace mas de 130 años. Sin embargo por las alarmantes características alcanzadas en los últimos años, hoy es considerada la “bomba de tiempo ecológica” más peligrosa. Los esfuerzos empeñados en la reducción de las emisiones de contaminantes ácidos cosecharon unos éxitos iniciales alentadores: los niveles de azufre atmosférico, por ejemplo, han caído espectacularmente a lo largo de los 30 últimos años en gran parte de Europa y región oriental de Norteamérica. Nosotros nos propusimos sopesar si tales reducciones en los compuestos de azufre beneficiaban o no al medio. En ese contexto, nos preocupaba que los responsables de la política ambiental y los científicos pudieran estar subestimando el papel de las bases atmosféricas. Considerando la importancia de las especies químicas básicas tanto para el crecimiento de los bosques como para la prevención de la lluvia ácida, decidimos investigar si los niveles de polvo atmosférico han cambiado, a lo largo del tiempo, en respuesta a las emisiones más bajas impuestas por la nueva legislación. Se dictaron normas para limitar las emisiones de polvo porque, se sabía desde hacía tiempo, la inhalación de partículas microscópicas suspendidas en el aire acarrea múltiples problemas de salud, amén de reducir la visibilidad y originar un sinfín de trastornos ambientales. Los gobiernos de Norteamérica y Europa han venido elaborando a lo largo de los últimos 20 años normas de calidad del aire en punto a partículas suspendidas; tales normas diferían de las que regulaban la contaminación ácida. (El polvo atmosférico procedente de otras fuentes parece haber disminuido también. Gary J. Stensland y Donald F. Gatz, de la Inspección de Aguas del estado de Ilinois, han hallado que las emisiones de partículas que contienen bases han descendido con la disminución del tráfico por carreteras sin asfaltar). Antes de la reciente alarma sobre la lluvia acida, se creyó que la solución contra los humos tóxicos eran las chimeneas altas. Como quien esconde basura bajo la alfombra, las grandes plantas térmicas, químicas y metalúrgicas construyeron chimeneas tan altas que sus humos no llegaran al suelo al menos no cerca de casa. Nada más que en Norteamérica hay más de 180 chimeneas de más de 150 metros, de las cuales 20 tiene 300m o más. Una sola de ellas de 375m, en Ontario, Canadá hasta hace unos años, producía 7,000 Ton de SO2 al día (hoy no llega a 2,000 Ton, gracias a la instalación de filtros). El humo de estas chimeneas, al igual que el de otras tantas en el resto del mundo, se lo lleva el viento y a donde va.Veamoslo. Cuando los humos con tóxicos y partículas nocivas suben a la atmosfera estas son arrastradas por los vientos cuando los vientos llegan a precipitarse produce un complejo químico, el agua de las nubes con ayuda de la radiación solar reacciona con los anhídridos y óxidos y se forman ácidos que se disuelven; la concentración puede ser tan alta que los efectos serian desastrosos y lamentables.los ácidos corroen las instalaciones sanitarias produciendo cobre que tiñe el pelo. En el caso de los lagos, se libera aluminio que irrita las mucosas de los peces ahogándolos matando la vida animal. Ciertos ecosistemas son más susceptibles que otros a la acidificación. Típicamente, éstos tienen normalmente suelos poco profundos, no calcáreos, formados por partículas gruesas que yacen sobre un manto duro y poco permeable de granito, gneis o cuarcita. 2

En estos ecosistemas puede producirse una alteración de la capacidad de los suelos para descomponer la materia orgánica, interfiriendo en el reciclaje de nutrientes. En cualquier caso, además de los daños a los suelos, hay que resaltar los producidos directamente a las plantas, ya sea a las partes subterráneas o a las aéreas, que pueden sufrir abrasión (las hojas se amarillean), como ocurre en una buena parte de los bosques de coníferas del centro y norte de Europa y en algunos puntos de la cuenca mediterránea. Además, la producción primaria puede verse afectada por la toxicidad directa o por la lixiviación de nutrientes a través de las hojas. No obstante, existen algunos casos en que se ha aportado nitrógeno o fósforo al medio a través de la precipitación ácida en los que la consecuencia ha sido el aumento de producción ya que ese elemento era limitante. Hay también evidencias incontrovertibles de daños producidos en los ecosistemas acuáticos de agua dulce, donde las comunidades vegetales y animales han sido afectadas, hasta el punto de que las poblaciones de peces se han reducido e incluso extinguido al caer el pH por debajo de 5, como ha ocurrido en miles de lagos del sur de Suecia y Noruega. Estos efectos se atenúan en aguas duras (alto contenido en carbonatos), que amortiguan de modo natural la acidez de la precipitación. Así, de nuevo, los arroyos, los ríos, las lagunas y los lagos de zonas donde la roca madre es naturalmente de carácter ácido son los más sensibles a la acidificación. Esto es muy grave para nuestro planeta, las emisiones de gas son cada vez más intensas los ecosistemas se desestabilizan, en varias regiones del Perú y del mundo ocurren sucesos nunca antes vistos que causan daños tanto económicos, sociales y humanas, y entre ellos están por supuesto la lluvia acida. Uno de nuestros grandes problemas ecológicos que amenazan con destruir a nuestro planeta en unos años más adelante. Nuestro desarrollo en la tecnología ha sido grandiosa desde muchos años el hombre busca a través de esto encontrar soluciones para nuestras necesidades pero sin darse cuenta que a la vez que creaban-destruían y eso es nuestro planeta; el cual ha padecido todas las irregularidades de nosotros. Todo esto se ha acumulado hace mucho tiempo dando lugar a fenómenos extraños como es la ya mencionada la lluvia acida. Este problema es de causa humana, las cantidades de gases contaminantes que se botan a diario de las fabricas, industrias y hasta de nuestras propias casa que sin saberlo contaminamos más el ambiente. Los gases que contaminan mucho el planeta están en anhídrido sulfuroso y oxido de nitrógeno que su acidez es muy elevada y dañina para nuestra salud. La acidez se mide por la concentración de iones (átomos con carga eléctrica) de hidrogeno. En una escala, la lluvia acida comienza en un pH de 5.5.asi, cuando hablamos del vinagre-pH3- estamos hablando una acidez 100 veces mayor de lo que se considera un lago ácido (con pH5). Aunque es difícil imaginarlo, en dos ocasiones (cierto que casos extremos) se llega a registrar- en Pensilvania y Virginia, EE.UU.- lluvias con 2.7 y 1.5 de pH (grado alcalino). Para complicar más las cosas, hay factores naturales que hacen a unos más vulnerables que otros. Un suelo alcalino(o el agua de mar) neutralizan la lluvia acida y, en casos extremos, hasta puede beneficiarse de sus nitratos como abono. Pero estos casos son raros y, como suele suceder, se dan mas donde no hay industria. Es una de las consecuencias de la contaminación del aire. Cuando cualquier tipo de combustible se quema, diferentes productos químicos se liberan al aire. El humo de las fábricas, el que proviene de un incendio o el que genera un automóvil, no sólo contiene partículas de 3

color gris (fácilmente visibles), sino que además poseen una gran cantidad de gases invisibles altamente perjudiciales para nuestro medio ambiente. Centrales eléctricas, fábricas, maquinarias y coches "queman” combustibles, por lo tanto, todos son productores de gases contaminantes. Algunos de estos gases (en especial los óxidos de nitrógeno y el dióxido de azufre) reaccionan al contacto con la humedad del aire y se transforman en ácido sulfúrico, ácido nítrico y ácido clorhídrico. Estos ácidos se depositan en las nubes. La lluvia que producen estas nubes, que contienen pequeñas partículas de acido, se conoce con el nombre de "lluvia ácida". El humo y los gases provenientes de automotores y fábricas forman ácidos al mezclarse con el aire. Si el humo contiene dióxido de azufre, al mezclarse con el vapor de agua, la lluvia contendrá ácido sulfúrico. Si el humo contiene óxido de nitrógeno, en el agua de lluvia habrá ácido nítrico. Los componentes tóxicos que forman la lluvia acida son el dióxido de azufre y el oxido de nitrógeno provenientes de la combustión del carbón o de hidrocarburos. Mediante una serie de reacciones químicas, el dióxido de azufre se transforma en trióxido de azufre que a su vez y a través de algunos catalizadores ambientales o bien por la acción directa de la luz solar, se transforma en acido sulfúrico provocando importantes daños ambientales al regresar a la tierra a través de la lluvia acida. El término "lluvia ácida" abarca la sedimentación tanto húmeda como seca de contaminantes ácidos que pueden producir el deterioro de las superficies de los materiales. Estos contaminantes que escapan a la atmósfera al quemarse carbón y otros componentes fósiles reaccionan con el agua y los oxidantes de la atmósfera y se transforman químicamente en ácido sulfúrico y nítrico. Los compuestos ácidos se precipitan entonces a la tierra en forma de lluvia, nieve o niebla, o pueden unirse a partículas secas y caer en forma de sedimentación seca. La lluvia ácida por su carácter corrosivo, corroe a las construcciones y a las infraestructuras. Puede disolver, por ejemplo, el carbonato de calcio, CaCO3, y afectar de esta forma a los monumentos y edificaciones construidas con mármol o caliza. La lluvia ácida se forma generalmente en las nubes altas donde el SO2 y los NOx reaccionan con el agua y el oxígeno, formando una solución diluida de ácido sulfúrico y ácido nítrico. La radiación solar aumenta la velocidad de esta reacción. La lluvia, la nieve, la niebla y otras formas de precipitación arrastran estos contaminantes hacia las partes bajas de la atmósfera, depositándolos sobre las hojas de las plantas, los edificios, los monumentos y el suelo. A través del ciclo hidrológico, el agua se mueve en plantas y animales, ríos, lagos y océanos, evaporándose a la atmósfera y formando nubes que viajan empujadas por el viento, de tal suerte que si transportan contaminantes, éstos pueden alcanzar casi cualquier lugar sobre la superficie terrestre. Una lluvia limpia es imposible de despojar de partículas de polvo y polen y de un pH cercano al 5.6 (ligeramente ácido). Al adicionarse SO2 y NOx el pH se torna dramáticamente. 4

Desde la revolución industrial, la acidez de las precipitaciones ha aumentado espectacularmente en muchas partes del mundo. Actualmente representa uno de los aspectos más preocupantes de la contaminación atmosférica. La contribución de las emisiones contaminantes de las llamadas grandes instalaciones de combustión y, en particular, de las centrales térmicas de carbón, al deterioro atmosférico y a los graves impactos sobre bosques, monumentos y salud humana, resulta indudable. La lluvia ácida es una precipitación acuosa que contiene en disolución los ácidos sulfúrico y nítrico producidos por la combinación de los óxidos de azufre y de nitrógeno y otros componentes (mercurio, cadmio, óxido de carbono). Una lluvia se considera ácida si su pH es inferior a 5,6; este valor correspondería a unas condiciones atmosféricas preindustriales debido a los gases que lleva disueltos, incluido el dióxido de carbono.La lluvia ácida es una consecuencia directa de los mecanismos de autolimpieza de la atmósfera. Esta lluvia depende de la mezcla de contaminantes, pero, ¿qué contienen estas mezclas? Cuando los combustibles fósiles arden y los minerales que contienen azufre se funden, este se convierte en dióxido de azufre gaseoso; además, las elevadas temperaturas de la combustión provocan la oxidación de nitrógeno atmosférico y la consiguiente formación de óxido de nitrógeno y en menor grado de dióxido de nitrógeno. Cuando estos contaminantes primarios salen de sus fuentes, la concentración atmosférica de los mismos disminuye: al mezclarse las nubes (penachos) de aire contaminado con el aire limpio, al perderse los contaminantes cuando se depositan y al transformarse algunos de ellos. Con la formación de contaminantes secundarios tienen lugar dos transformaciones de especial importancia: a) la reacción a la luz del sol entre los óxidos de nitrógeno y los hidrocarburos (queroseno) para formar el ozono; b) la creciente posibilidad de transformarse con el tiempo en ácidos sulfúricos y nítricos. La mayoría de los primeros reaccionan con otras sustancias para formar partículas, como el sulfato de amoníaco, mientras que cantidades significativas de ácido nítrico alcanzan sus objetivos en forma de gas. No obstante, los productos de la reacción en partículas de ácido nítrico han llegado a ser relativamente más importantes a medida que cobran importancia las emisiones de gases contaminantes de los vehículos. En Europa, ya en el período de 1956 a 1966, la Red Química Europea del Aire, de España, detectó que la precipitación se había hecho cada vez más ácida en algunas partes de Europa durante este período. Los agentes que producen la lluvia ácida La producción de energía es la fuente de mayores emisiones de contaminantes a la atmósfera, seguida del transporte y otras actividades industriales. La industria energética produce grandes cantidades de óxidos, partículas en suspensión y compuestos orgánicos volátiles. La contribución del transporte y refinerías a estas emisiones sufre un incremento continuo sin retroceso y con períodos de ascensos bruscos a causa del crecimiento del transporte por carretera. Sin embargo, el sector industrial ha ido reduciendo sus emisiones a causa de la disminución de la actividad y la sustitución de combustibles.

5

Son las centrales térmicas las que producen enormes cantidades de contaminantes atmosféricos, y sobre todo los arranques y las paradas son momentos críticos en los que las emisiones son especialmente altas También se producen en la incineración de basuras, en diversos procesos industriales como la obtención de papel y de cartón y por oxidación del SH2 en los procesos bacterianos de descomposición de la materia orgánica. El dióxido de nitrógeno se origina en los procesos de combustión a elevadas temperaturas, en la fabricación de explosivos, en erupciones volcánicas, en tormentas de gran aporte eléctrico. La minería a cielo abierto tiene mayores impactos ambientales que la minería subterránea porque destruye enteramente los ecosistemas sobre los que se practica, pero como precisa menos mano de obra y por lo tanto tiene menos costos, es la más aplicada. La mayor preocupación por el impacto de la lluvia ácida sobre los ecosistemas acuáticos se centra en los efectos sobre la población piscícola. La creciente acidificación de los lagos ha causado la muerte de peces y el agotamiento de las reservas. Los efectos negativos se han atribuido a disminuciones repentinas del pH; sus descensos graduales con el tiempo, provocan una acidez prolongada que obstaculiza la reproducción científica y el desove, con lo cual su fauna disminuye y se reproducen las especies más tolerantes. Otro problema es que la deposición ácida conduce a la movilización de metales tóxicos, especialmente el aluminio, y este puede ser otro factor que contribuye a la mortandad de los peces. La deposición ácida puede causar daños a los ecosistemas terrestres aumentando la acidez del suelo, disminuyendo la cantidad de nutrientes, movilizando los metales tóxicos, eliminando importantes sustancias del suelo y cambiando su composición. La precipitación ácida causa una reducción de la productividad forestal afectando a las distintas clases de árboles. En un estudio de un período de 15 años, se demostró que la lluvia ácida esta lixiviando importantes nutrientes de las plantas como el ácido, el magnesio y el potasio de los suelos haciéndolos inutilizables para los árboles. Además moviliza el aluminio en los suelos forestales, que disminuyen la proporción entre el calcio y dicho elemento hasta el punto en que se deteriora el crecimiento de las raíces. Además de los árboles, se ha centrado la atención en los efectos sobre un amplio espectro de cultivos. Las Excesivas cantidades de cationes de hidrógeno introducidos en el suelo por precipitación ácida pueden cambiarse por cationes de metal pesado introduciéndose en el suelo y las corrientes de agua. Los componentes metálicos pueden contaminar a los peces comestibles y el agua potable y así, pasar a las personas. Otra cuestión preocupante es que la deposición ácida puede acelerar la lixiviación, la movilización y acumulación de metales pesados tóxicos y otras sustancias químicas y nocivas en vertederos de residuos peligrosos. Su acción directa sobre los seres humanos 6

se refleja en el aumento de las enfermedades cardiovasculares y de las vías respiratorias, de la conjuntivitis y de las alergias. La precipitación ácida puede acelerar la corrosión de metales y la erosión de las piedras. La frecuencia cada vez mayor de neblinas contaminantes en áreas rurales y desiertas puede afectar al clima de la tierra. Las zonas que tienen más fuentes de acidez están entre las que sufren mayor cantidad de precipitación ácida, pero sólo el transporte a largas distancias de óxido de azufre y nitrógeno desde estas fuentes puede explicar la lluvia ácida en lugares distantes de las fuentes de contaminación. Aunque una parte sustancial de las emisiones de SO2 se deposita cerca de sus fuentes, una proporción significativa se dispersa por lugares lejanos. Esta proporción que no se deposita "in situ" se difundirá por la atmósfera y se transformará por oxidación en sulfatos; una situación similar acontece a las emisiones de óxido de nitrógeno, donde ciertas cantidades se convierten en aerosoles de nitrato. El efecto de la lluvia ácida varía según el pH del suelo sobre el que caiga: mientras que los terrenos graníticos dan lugar a suelos ácidos, lo que acentúa el problema, las rocas calcáreas dan lugar a suelos básicos, que convierten los ácidos sulfúricos y nítricos en sulfatos y nitratos. Extractado de la revista electrónica Möbius, del Departamento de Ciencias Naturales del Instituto de Bachillerato Villa de Vallecas, España. Los contaminantes atmosféricos primarios que dan origen a la lluvia ácida pueden recorrer grandes distancias, siendo trasladados por los vientos cientos o miles de kilómetros antes de precipitar en forma de rocío, lluvia, llovizna, granizo, nieve, niebla o neblina. Cuando la precipitación se produce, puede provocar importantes deterioros en el ambiente. La lluvia normalmente presenta un pH de aproximadamente 5.65 (ligeramente ácido), debido a la presencia del CO2 atmosférico, que forma ácido carbónico, H2CO3. Se considera lluvia ácida si presenta un pH de menos de 5 y puede alcanzar el pH del vinagre (pH 3). Estos valores de pH se alcanzan por la presencia de ácidos como el ácido sulfúrico, H2SO4, y el ácido nítrico, HNO3. Estos ácidos se forman a partir del dióxido de azufre, SO2, y el monóxido de nitrógeno que se convierten en ácidos. Los hidrocarburos y el carbón usados como fuente de energía, en grandes cantidades, pueden también producir óxidos de azufre y nitrógeno y el dióxido de azufre emitidos por fábricas, centrales eléctricas y vehículos que queman carbón o productos derivados del petróleo. Una gran parte del SO2 (dióxido de azufre) emitido a la atmósfera procede de la emisión natural que se produce por las erupciones volcánicas, que son fenómenos irregulares. Sin embargo, una de las fuentes de SO2 es la industria metalúrgica. El SO2 puede proceder también de otras fuentes, por ejemplo como el sulfuro de dimetilo, (CH3)2S, y otros derivados, o como sulfuro de hidrógeno, H2S. Estos compuestos se oxidan con el oxígeno atmosférico dando SO2. Finalmente el SO2 se oxida a SO3 (interviniendo en la 7

reacción radicales hidroxilo y oxígeno) y este SO3 puede quedar disuelto en las gotas de lluvia, es el de las emisiones de SO2 en procesos de obtención de energía: el carbón, el petróleo y otros combustibles fósiles contienen azufre en unas cantidades variables (generalmente más del 1%), y, debido a la combustión, el azufre se oxida a dióxido de azufre. S + O2 → SO2 Los procesos industriales en los que se genera SO2, por ejemplo, son los de la industria metalúrgica. En la fase gaseosa el dióxido de azufre se oxida por reacción con el radical hidroxilo por una reacción intermolecular. SO2 + OH· → HOSO2· seguida por HOSO2· + O2 → HO2· + SO 3 En presencia del agua atmosférica o sobre superficies húmedas, el trióxido de azufre (SO3) se convierte rápidamente en ácido sulfúrico (H2SO4). SO3(g) + H2O (l) → H2SO4(l) El NO se forma por reacción entre el oxígeno y el nitrógeno a alta temperatura. O2 + N2 → 2NO Una de las fuentes más importantes es a partir de las reacciones producidas en los motores térmicos de los automóviles y aviones, donde se alcanzan temperaturas muy altas. Este NO se oxida con el oxígeno atmosférico, O2 + 2NO → 2NO2, y este 2NO2 y reacciona con el agua dando ácido nítrico (HNO3), que se disuelve en el agua. 3NO2 + H2O → 2HNO3 + NO La acidificación de las aguas de lagos, ríos y mares dificulta el desarrollo de vida acuática en estas aguas, lo que aumenta en gran medida la mortalidad de peces. Igualmente, afecta directamente a la vegetación, por lo que produce daños importantes en las zonas forestales, y acaba con los microorganismos fijadores de N. La lluvia ácida por su carácter corrosivo, corroe las construcciones y las infraestructuras. Puede disolver, por ejemplo, el carbonato de calcio, CaCO3, y afectar de esta forma a los monumentos y edificaciones construidas con mármol o caliza. Un efecto indirecto muy importante es que los protones, H+, procedentes de la lluvia ácida arrastran ciertos iones del suelo. Por ejemplo, cationes de hierro, calcio, aluminio, plomo o zinc. Como consecuencia, se produce un empobrecimiento en ciertos nutrientes esenciales y el denominado estrés en las plantas, que las hace más vulnerables a las plagas. Los nitratos y sulfatos, sumados a los cationes lixiviados de los suelos, contribuyen a la eutrofización de ríos y lagos, embalses y regiones costeras, lo que

8

deteriora sus condiciones ambientales naturales y afecta negativamente a su aprovechamiento. Un estudio realizado en 2005 por Vincent Gauci de Open University, sugiere que cantidades relativamente pequeñas de sulfato presentes en la lluvia ácida tienen una fuerte influencia en la reducción de gas metano producido por metanógenos en áreas pantanosas, lo cual podría tener un impacto, aunque sea leve, en el efecto invernadero. Entre las medidas que se pueden tomar para reducir la emisión de los contaminantes precursores de éste problema tenemos las siguientes: Reducir el nivel máximo de azufre en diferentes combustibles. Trabajar en conjunto con las fuentes fijas de la industria para establecer disminuciones en la emisión de SOx y NOx, usando tecnologías para control de emisión de estos óxidos. * Impulsar el uso de gas natural en diversas industrias. * Introducir el convertidor catalítico de tres vías. * La conversión a gas en vehículos de empresas mercantiles y del gobierno. * Ampliación del sistema de transporte eléctrico. * Instalación de equipos de control en distintos establecimientos. * No agregar muchas sustancias químicas en los cultivos. * Adición de un compuesto alcalino en lagos y ríos para neutralizar el pH. * Control de las condiciones de combustión (temperatura, oxigeno, etc.). Muchos países tienen normas sobre la calidad del aire con respecto a las sustancias peligrosas que pueda contener. Estas normativas marcan los niveles máximos de concentración que permiten garantizar la salud pública, y controlan los niveles de emisión (lo que emite la fuente contaminante) e inmisión (lo que recibe el organismo receptor, por ejemplo una persona). En ese sentido, se han establecido normas para limitar las emisiones contaminantes del aire que producen las diferentes fuentes de contaminación. Sin embargo, la naturaleza de este problema no podrá resolverse sin un acuerdo internacional. En marzo de 1985, en una convención auspiciada por las Naciones Unidas, 49 países acordaron proteger la capa de ozono. En el Protocolo de Montreal, renegociado en 1990 y 1992, se establecieron los calendarios de reducción progresiva de los clorofluorocarbonos (CFCs) y las ayudas a los países en vías de desarrollo para realizar esta eliminación. En diciembre de 1997 se celebró en Japón la Tercera Conferencia de las Naciones Unidas sobre Cambio Climático donde más de 160 países adoptaron el denominado 9

Protocolo de Kioto. Este tratado establece que los países industrializados deben reducir, antes del año 2012, sus emisiones de gases causantes del efecto invernadero a niveles un 5% más bajos de los registrados en 1990. El Protocolo de Kioto entró en vigor en febrero de 2005.

10