Engineering & Design Handbook Edited

Handbook for Disc Springs Please refer any questions to: Schnorr Corporation 4355 Varsity Drive Suite A Ann Arbor, MI

Views 258 Downloads 6 File size 2MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Handbook for Disc Springs

Please refer any questions to: Schnorr Corporation 4355 Varsity Drive Suite A Ann Arbor, MI 48108 Phone 734-677-2683 Fax 734-975-0408 eMail: [email protected] Internet: http://www.schnorr.com

© Adolf Schnorr GmbH + Co. KG 2003 All rights reserved. Reprinting, in full or part, is only possible with express permission and acknowledgement of the source. Compiled by Dipl.-Ing. (FH) Eberhard Fromm and Ing. (grad.) Wolfgang Kleiner. We reserve the right to make technical changes without notice. All information is published to the best of our knowledge and has been checked with great care. However, we can accept no responsibility for errors or omissions. We reserve the right to supply features other than those specified. Art.-No. 900 507 / 04.03 Production: Hela Werbung, Heilbronn

2

Introduction

Basic Calculation with Examples

p. 13

1

Design and Operation Limits

p. 29

2

Possible Combinations

p. 35

3

Practical use of disc springs

Manufacture

p. 41

4

This part answers questions resulting from the practical use of disc springs. It is best to select a disc spring by consulting the tables in chapter 9.

Tolerances

p. 49

5

Application

p. 55

6

Materials

p. 65

7

Special Types

p. 77

8

Dimensional Tables

p. 81

9

Theoretical basis This part contains the theoretical basis for the calculation and design of disc springs. You only need to consult chapter 1–2 if you yourself are specifying a special spring size or wish to analyse an existing spring with regard to load and stress.

Firm grip for bolts by SCHNORR -Serrated Safety Washers (Rib washers) and SCHNORR HDS Load Washers ®

3

p. 5

Security Elements for Bolted Connections

p. 137 10

Supplement

p. 149

Foreword SCHNORR has now manufactured Disc Springs for over 60 years. This period has been marked by extraordinary technical developments and Disc Springs have found many new and important applications due to their special characteristics and advantages. In order to meet customer requirements, SCHNORR has constantly raised the quality of its products and researched solutions to customer problems. Looking back, the development of the SCHNORR® Handbook for Disc Springs, which had its origin in the 1930s, is a mirror of SCHNORR’s endeavours. The 1942 issue, 60 years ago, already contained characteristic diagrams for 21 standard springs as well as application and installation standards and instructions for empirically based spring calculations. Each new issue revised the technical content to conform to the state of the art. SCHNORR would like to acknowledge and thank all of its colleagues at the Technical Universities of Braunschweig and Darmstadt for their suggestions and developments in the field of disc springs. Their continued collaboration will ensure that the SCHNORR® Handbook continues to be the source of technical advise on Disc Springs, as it has been for many decades.

Dieter Jentsch, Manager Adolf Schnorr GmbH + Co. KG

4

Introduction A disc spring is a conical shell which can be loaded along its axis either statically or dynamically. The loads are normally applied to the upper inner edge and the lower outer edge. Either a single spring or a stack of springs can be used.

A spring stack can consist of either single springs or parallel spring sets. Disc springs are available either with or without contact flats.

The Story of the Disc Spring Although the disc spring has found a wider application during the last few decades, it is still an old established machine component. The original inventor is not known, but more than 130 years ago (on 26.12.1861 to be precise) Julien Francois Belleville of Dunkirk was granted French Patent Number 52399 for a spring design which already contained the principle of the disc spring. The importance this invention achieved is unknown, but the fact that even today France and the Anglo Saxon countries still speak of “Belleville Springs” infers a broad dissemination of this or similar springs. Today this tends to denote a disc spring of inferior quality, which still reflects the not always satisfactory design and function of springs at that time. This

is no wonder considering that in the last century neither the theoretical conditions for calculations nor the necessary materials for manufacture were available. Not until 1917 did Fr. Dubois develop the theory on which the calculation of the disc spring is based in his dissertation “The Strength of the Conical Shell” [1] at the ETH in Zurich. However, it still took several decades until this was adopted in practice. For a long time disc springs continued to be calculated – if at all – in accordance with the theory of the flat perforated plate. Then in 1936 two Americans, Almen and László, published a simplified method of calculation [2] which allowed a quick and practically correct method for calculating disc springs.

1940

As these two documents substantiate, SCHNORR was and is substancially involved in the development of disc springs.

5

1995

Introduction In the meantime, the disc spring had been introduced into numerous areas of technology. Starting with applications in the construction of cutting and presswork tools, where the disc spring is especially ad van tage ous because of the large num ber of variations possible with the same spring size, new applications were quickly found in machine, engine and motor vehicle manufacture. Technological development is often advanced rapidly in time of war. The disc spring was no exception and its spreading was strongly promoted by the Second World War. For example, its excellent damping characteristics with multiple parallel layers were utilised for the suspension of artillery breeches. Calculation methods and material technology were further developed. After the war the conditions were created for the introduction of the disc spring into all areas of technology. Adolf Schnorr, who had founded a mechanical workshop in 1908, already began to experiment with the disc spring in the 1920s. He needed high-quality springs for precision tools, with which he had made himself a name, and had come across the disc spring after a long search. As he was unable to procure them anywhere, he went about producing these springs himself. Initially he produced only for his own needs, but the demand had already increased so greatly by the early 1930s that he decided to give up toolmaking for customers and devote himself entirely to the manufacture of the “SCHNORR Spring”. From that time on SCHNORR has manufactured disc springs and continually opened up new applications with its many domestic and foreign customers.

Features of the Disc Spring Compared with other types of springs, the disc spring has a number of advantageous properties, of which the following should be named: 1. Very large loads can be supported with a small installation space. 2. Depending on the dimensional relationships, its spring characteristic can be designed to be linear or regressive and with a suitable arrangement also progressive. 3. Due to the nearly unlimited number of possible combinations of individual disc springs, the characteristic curve and the column length can be further varied within additional limits. 4. High service life under dynamic load if the spring is properly dimensioned. 5. Provided the permissible stress is not exceeded, no impermissible relaxation occurs. 6. With suitable arrangement, a large damping effect may be achieved. 7. Stock keeping is minimised, as the individual spring sizes can be combined universally. 8. Because the springs are of an annular shape, force transmission is abso lutely concentric. On the basis of these excellent properties, the disc spring has been adopted in nearly all areas of technology during the last several decades.

6

Checklist for disc spring design Due to the relatively simple geometrical shape the complexity of disc springs in production and application is very often underrated. There are possibilities for mistakes in outlining a disc spring solution, which inevitably cause faulty design or even failures later on. Then it is very difficult to find better substitutes, because most of the times the installation space is fixed. With a correct design these problems are easy to avoid. The main difficulty is to realize these in the design stage to get an optimum disc spring solution. Since for most of the designers the disc spring is not daily bread and to many the rules for disc spring design are little known, the most important aspects are summarized here. Spring force The calculation of the force of a disc spring is based on a model by Almen and László. Its accuracy in the usable range of the character line of the spring is very good. Yet there is a slow rise at the beginning of the measured load/deflection curve, because disc springs never are perfectly symmetrical. They so to speak have to be pressed even. Also the spring force rises in the last part of the load/ deflection curve more than calculated, when the spring is loaded in between two parallel planes, since the leverage changes due to the never ideally even surfaces (see chapter 1.7). Static loading In the design of a new disc spring a certain stress level should not be surpassed for static loading. The maximum allowable limit is given by the reference stress σom. Its value should not exceed the value of the tensile strength Rm of the material to avoid plastic deformations of the spring, i.e. setting losses (chapter 2.1).

7

Dynamic loading Most of the disc springs only can bear a limited dynamic load. The life time depends on the load span as well as on the load level (chapter 2.2). The number of cycles, which is to be expected under a certain load condition, can be estimated from fatigue diagrams (chapter 2.2 and chapter „diagrams“). It is also necessary to preload disc springs in a dynamic application to at least 15% to 20% of their maximum deflection, to avoid compression-tension alternating stresses in the beginning of the deflection range of the spring (chapter 2.2). Stacking Disc springs can be stacked „face to face“ (series arrangement), which means their deflections add up, or they can be stacked in the same sense (parallel arrangement), then their forces add up (chapter 3). The latter induces increased friction and a stronger hysteresis effect (chapter 6.5). Thus the force in loading direction is higher and in unloading direction lower than the calculated force. Applying suitable lubrication (MoS2 containig grease) can reduce the hysteresis effect. The various possibilities of stacking disc springs can be combined in a stack. Different types of stacking in one spring stack can be used to generate a progressive character line. It is necessary to pay attention to the weaker parts in a combined stacking though, because these normally are pressed flat quite fast, which is not allowed in dynamic loading. If necessary a deflection limitation has to be provided. Guide The surface of guide elements in dynamic disc spring applications always has to be harder than the disc springs themselves. A minimum of 55 HRC is advisable, otherwise

Introduction the surfaces can be damaged. This again causes uneven movement during the deflection of the spring. The characteristics will be changed and even fatigue cracks can occur (chapter 6.4). Wrong guide clearance also can change the dynamics of loading in a detrimental way (chapter 6.3). Stack length Friction and other influences make a spring stack move unevenly. It deflects more on the side of the loading. This effect usually can be neglected for a „normal“ spring stack, but not for long stacks. Therefore the length of a spring stack should not exceed three times the value of the outer diameter. If it is longer, the stack can be stabilized by dividing it with guide washers, which as a rule of thumb should have a thickness of at least one and a half times the guide diameter (chapter 6.1).

thicknesses (table chapter 7.4). Also almost all high alloy steels may show stress corrosion cracking at high working stresses. Hydrogen embrittlement During the application of certain chemical or electrochemical processes (such as galvanic coating) hydrogen can get into the material and can cause delayed brittle fractures. This cannot be avoided entirely by thermal treatment. Thus processes, which do not bear this risk, are to be preferred.

Material The best material for disc springs is standard spring steel. It is always used as long as there are no particular circumstances, which may necessitate a special material. In general special materials have a lower tensile strength and most of the times a different Young’s modulus compared to the standard spring steels. Therefore springs out of these materials generally cannot be designed with the same free height, which means that the spring forces are lower (chapter 7). Temperature The different materials have different temperature ranges (see table chapter 7.4). Too high temperatures may have a tempering offset, which again results in a loss of force and, in extreme cases, in plastic deformation (setting losses). Corrosion Disc springs can be protected against corrosion either by suitable coatings or by using corrosion resistant materials. Such materials are only available in a limited variety of

8

Standards for Disc Springs For disc springs the following 2 standards are applicable: ● DIN 2092 Disc Springs, calculation and ● DIN 2093 Disc Springs, dimensions and quality specifications. New editions of both of these appeared in January 1992. These standards are governing our production and are also basic for the pre sent SCHNORR ® Handbook for Disc Springs. DIN 2092 covers the standard calculations based on a paper by J.O. Almen and

A. László [2] which has been proven in practice for many years. It has been modified in the last few years to include disc springs with contact flats. DIN 2093 contains 3 dimensional series for disc springs differentiated by outer diameter, thickness and h0/t ratio. It also contains comprehensive quality requirements for type, dimensions, material, permissible stress, permissible set, guide clearance and the testing of disc springs. Details of these requirements can be found in chapter 2 and 4 – 7.

Disk Springs from the SCHNORR Product Range

The SCHNORR® Production Programme In addition to springs as per the dimensions contained in DIN 2093, we manufacture many more spring sizes in accordance with our works standard, for which we also apply the quality regulations of DIN 2093. These also include the springs of the ”Z“ series with dimensions in inches and the ”K“ series intended for the special purpose of preload9

ing ball bearings. The technical data for all these springs of standard spring steel can be found in the tables in chapter 9. Besides these, we also supply many disc springs in special sizes from 3.0 mm to 1000.0 mm in diameter and up to a thickness of 80.0 mm of spring steel and all technically possible special materials. Such springs of-

Introduction fer the advantage of being optimally adapted to the respective requirements. However, in each individual case the practicality of production must be examined, and the final decision always remains ours. We recommend you contact our Technical Consulting Service in the design stage, when we will gladly offer our knowledge, experience and resources in the calculation and design of disc springs.

From section “Features of the Disc Spring” it can also be seen that the characteristics of the disc spring are also excellently suited for locking screw. We have developed our Original SCHNORR® Serrated Safety Washers for this purpose. These are detailed in chapter 10 together with Load Washers as per DIN 6796.

10

Diagram of a Disc Spring

b) with contact flats

a) without contact flats Figure 1 Single spring, cross-section and position of reference points

Symbols and Units Symbols

Unit

Designation

De

mm

Outside diameter

Di

mm

Inside diameter

Dw

mm

Diameter at the root of slots in a disc spring

D0

mm

Diameter of centre of rotation

E

N/mm2

Young’s modulus

F

N

Spring force of a single spring

F1, F2, F3

N

Spring force for deflections s1, s2, s3

Fc

N

Calculated spring force of a single spring when flat

Fges

N

Spring force of a spring set or stack

∆F

N

Force lost in setting

K1,K2,K3,K4

Constants for calculations (see chapter 1)

L0

mm

Unloaded length of the spring stack or spring sets

L1, L2, L3

mm

Length of the loaded spring stack or spring set for forces F1, F2, F3

Lc

mm

Calculated length of the spring stack or set when springs are flat

N

11

Number of cycles to failure

R

N/mm

Spring rate

W

Nmm

Spring work

Introduction Symbols

Unit

Designation

h0

mm

Cone height of an unloaded single spring (calculated h0 = l0 – t)

h0’

mm

Cone height of an unloaded spring with reduced thickness t’ (and contact flats, calculated h0’ = l0 – t’)

mm

Height of an unloaded single spring

s

mm

Deflection of a single spring

s1, s2, s3

mm

Deflections relative to loads F1, F2, F3

sges

mm

Deflection of a spring set or stack

t

mm

Thickness of individual

t’

mm

Reduced spring thickness for springs with contact flats (group 3)

i l0

No. of single springs or sets in series in a stack

n

No. of parallel springs in a set

wM, wR

Friction factors

δ = De/Di

Diameter ratio

µ

Poisson's ratio (for spring steel = 0.3)

σ

N/mm2

Calculated stress

σOM, σI, σII, σIII, σIV

N/mm2

Calculated stress at points OM, I, II, III and IV as per figure 1

σo

N/mm2

Calculated maximum stress for springs with dynamic loads

σu

N/mm2

Calculated minimum stress for springs with dynamic loads

σh

N/mm2

Stress range for the working stroke of dynamically loaded springs

σO

N/mm2

Maximum stress for fatigue resistance

σU

N/mm2

Minimum stress for fatigue resistance

σH = σ O – σ U

N/mm

Permissible stress range for fatigue resistance

2

12

Basic Calculation Chapter 1

13

Basic Calculation 1.1 Calculation for a Single Spring ........................................................... 15 1.2 Equations for Calculations ................................................................ 15 Characteristics .......................................................................................................... 15 Spring Force............................................................................................................... 16 Stress Calculations..................................................................................................... 17 Spring Rate ................................................................................................................ 17 Spring Work............................................................................................................... 18 1.3 Disc Springs without Contact Flats ...................................................... 18 1.4 Disc Springs with Contact Flats and Reduced Thickness ............................ 19 1.5 Disc Springs of Special Materials ........................................................ 21 1.6 Spring Parameters for Dimensions and Calculation ................................... 21 1.7 Characteristics of a Single Spring ........................................................ 22 1.8 Calculation Examples ....................................................................... 24

14

1.1 Calculation for a Single Spring The calculations of Almen and László assume that a spring flank rotates arround a centre of rotation during deflection, placed in the centre of the spring flank at diameter D0. Formula 1

D0 =

De − Di ln De / Di

The rotation of the cross section is the reason for the various stresses and the spring effect. The calculations assume that Young’s modulus ‘E’ remains linear for the material, the spring cross-section is rectangular with sharp corners and the spring remains in one plane during deflection. The load is applied at points I and III. There is residual stress in the spring after being manufactured and heat treated and can be ignored.

Although today there are more accurate methods of calculation [10] [12] [13], there is no reason to abandon the simple and convenient formulas of DIN 2092. For standard dimensions they produce values which correspond well to the measured results.

Figure 2 Position of the centre of rotation and point OM

1.2 Equations for Calculations These are valid for all disc springs: Characteristics Formula 2 Formula 3

Formula 4

Formula 5

δ = De / Di 2

⎛ δ − 1⎞ ⎜ ⎟ 1 ⎝ δ ⎠ K1 = • π δ +1− 2 δ − 1 ln δ δ −1 −1 6 ln δ K2 = • π ln δ K3 =

3 δ −1 • π ln δ

Formula 6

2

K4 = −

15

2

⎛ t' ⎞ ⎜ ⎟ ⎝ t⎠ with C1 = ⎛ 1 l0 t' 3 ⎞ ⎛ 5 l0 t' 3 ⎞ ⎜ • − + ⎟⎜ • − + ⎟ ⎝ 4 t t 4⎠ ⎝ 8 t t 8⎠

C1 ⎛C ⎞ + ⎜ 1 ⎟ + C2 ⎝ 2⎠ 2

1

Basic Calculation Spring Force Formula 7

F=

4E t4 s⎡ s⎞ ⎤ ⎛ h s⎞⎛ h • • K24 • ⎢K24 • ⎜ 0 − ⎟ ⎜ 0 − ⎟ + 1⎥ 2 ⎝ t t ⎠ ⎝ t 2t ⎠ ⎦ t⎣ 1− µ K1 • D2e

For disc springs manufactured to group 1 and 2 (chapter 4) K4 = 1: Formula 8a

F=

4E t4 s ⎡⎛ h s⎞⎛ h s⎞ ⎤ • • ⎢⎢⎜ o − ⎟ ⎜ o − ⎟ + 1⎥⎥ 2 2 t ⎠ ⎝ t 2 t ⎠ ⎥⎦ 1− µ K1 • De t ⎢⎣⎝ t

For disc springs manufactured to group 3 with contact flats and reduced thickness, t’ and h0’ must be used (h0’ = l0 – t’): Formula 8b

F=

4E t'4 s ⎡ ⎛ h' s ⎞ ⎛ h' s ⎞ ⎤ • K24 • ⎢K24 ⎜ 0 − ⎟ ⎜ 0 − ⎟ +1⎥ 2 t' ⎣ ⎝ t' t' ⎠ ⎝ t' 2 t' ⎠ ⎦ 1− µ K1 • De2

Young’s modulus ‘E’ is virtually independent of the heat treatment condition and tensile strength of the material. For steel springs with dimensions in accordance with DIN 2093, formula 7 provides values which correspond closely to the measured values. The limitations and extent of this are explained in greater detail in chapter 1.

The force of a disc spring does not increase linearly with the deflection, but is always regressively curved. Its pitch, i.e. the rate, decreases with increasing stroke. The rate of curvature is determined exclusively by the ratio h0/t, as can be seen in figure 3. See also chapter 1. Figure 3 Spring characteristic cur ve with respect to ho/t and s/ho

16

Stress Calculations Formula 9

σOM = − Formula 10

4E t2 s 3 • • K4 • • 2 t π 1− µ K1 • D2e

⎤ 4E t2 s⎡ s⎞ ⎛h σl = − • • K4 • ⎢K4 • K2 ⎜ 0 − ⎟ + K3 ⎥ 2 ⎝ t 2t ⎠ t⎣ 1 − µ K1 • D2e ⎦

Formula 11

σll = −

⎤ 4E t2 s⎡ s⎞ ⎛h • • K4 • ⎢K4 • K2 ⎜ 0 − ⎟ − K3 ⎥ 2 ⎝ t 2t ⎠ t⎣ 1 − µ K1 • D2e ⎦

σlll = −

⎤ 4E 1 s⎡ t2 s⎞ ⎛h • • K4 • • ⎢K4 • (K2 − 2K3 ) • ⎜ 0 − ⎟ − K3 ⎥ 2 ⎝ t 2t ⎠ δ t⎣ 1− µ K1 • D2e ⎦

σlV = −

⎤ 4E 1 s⎡ t2 s⎞ ⎛h • • K4 • • ⎢K4 • (K2 − 2K3 ) • ⎜ 0 − ⎟ + K3 ⎥ 2 2 ⎝ ⎠ δ t⎣ t 2t 1− µ K1 • De ⎦

Formula 12

Formula 13

Here 4E = 905 495 N / mm2 1 − µ2 also applies to spring steel. Positive values are tensile stress and negative values are compressive stress. It is important to re-

member that this the calculated stress is a nominal value and that the actual stress is considerably lower, as it is considerably influenced by the ever-present internal stress.

Spring Rate Through differentiation of the spring load F in accordance with the deflection s, the following formula is obtained for spring rate R: Formula 14

R=

2 ⎡ ⎧⎪⎛ h ⎞ 2 dF 4E t3 h s 3 ⎛ s ⎞ ⎫⎪ ⎤ = • • K24 • ⎢K24 ⎨⎜ 0 ⎟ − 3 • 0 • + ⎜ ⎟ ⎬ + 1⎥ 2 2 ds 1 − µ K1 • De t t 2⎝ t⎠ ⎪ ⎥ ⎢ ⎪⎩⎝ t ⎠ ⎭ ⎦ ⎣

The spring rate between any two adjacent points, F1, s1 and F2, s2 can be approximated by means of the following simple formula: Formula 15

R=

17

F2 − F1 s2 − s1

1

Basic Calculation Spring Work The work done by a disc spring can be obtained by integrating formula 7 for the load F according to the deflection s: Formula 16

S



W = F • ds = 0

2E 1− µ

2



t5 K 1 • D2e

2 2 ⎤ s⎞ ⎛h ⎛ s⎞ ⎡ • K 24 • ⎜ ⎟ • ⎢K 24 • ⎜ 0 − ⎟ + 1⎥ ⎝ t⎠ ⎢ ⎝ t 2t ⎠ ⎥⎦ ⎣

For a limited area of application it can be integrated between the two deflections s1 and s2.

1.3 Disc Springs without Contact Flats For disc springs without contact flats K4 = 1 and h0 = l0– t. This applies to all disc springs in production groups 1 and 2 (see chapter 2), i.e. with a thickness of up to 6.0 mm. Because of the rectangular cross-section with rounded corners, as is specified for springs in groups 1 and 2, the application of load in practice always takes place via slightly shortened lever arms (figure 4). Due to the h/H tolerance for the outer and inner diameters, the lever arms are shortened even further. This results in an increase in the spring load by the factor

This conditions takes the standard DIN 2093 into consideration in that the thickness tolerances toward the minus side are clearly larger than toward the plus side. Therefore, we manufacture all springs with a slightly reduced disc thickness. This reduction in the lever arm length is also an explanation for the fact that the permissible deviations for the spring loads for groups 1 and 2 are considerably larger toward the plus than the minus side.

De − Di De' − Di'

in virtually all springs compared to the values calculated with formula 7.

Figure 4 Cross-section of a disc spring in group 2

18

1.4 Disc Springs with Contact Flats and Reduced Thickness For disc springs with a thickness of more than 6.0 mm, DIN 2093 specifies small contact surfaces at points I and III in addition to the rounded corners. Figure 5 shows a schematic cross-section of a spring in group 3 as per DIN 2093. The corresponding springs of our factory standard are also manufactured in the same manner. These contact flats improve definition of the point of load application and, particularly for spring stacks, reduce friction at the guide rod. The result is a considerable reduction in the lever arm length and a corresponding increase in the spring load. This is in turn compensated for by a reduction in the spring thickness from t to t’. When calculating disc springs with contact flats and reduced thickness, the factor K4 must be calculated using formula 6, and t replaced with t’ and h0 with h0’ = l0 – t’ in the equations 7 to 16.

Figure 5 Cross-section of a disc spring in group 3

19

The reduced thickness t’ is specified in accordance with the following conditions: ● The overall height l0 remains unaltered. ● The width of the contact flats is to be approximately 1/150 of the outside diameter. ● The spring load for a reduced-thickness spring must be the same at s = 0.75 h0 as for an unreduced spring. The dimension t’ is specified for those disc springs contained in DIN 2093. The mean factor t’/t is: Series t’/t

A

B

C

0.94

0.94

0.96

For other springs the factor for t’/t is dependent on the dimensional ratio δ and h0/t from figure 6. The curves were calculated for disc springs with σOM = –1600 N/mm2. For springs with different stress sOM, we would ask you to contact our Technical department. As the overall height is not reduced, springs with reduced thickness inevitably have an increased flank angle and a greater cone height h0’ than springs of the same nominal dimension without reduced thickness. Therefore, the characteristic curve is altered and becomes more curved. Figure 7 shows the characteristic curves for springs of the series A, B and C as per DIN 2093 with and without contact flats and reduced thickness.

1

Basic Calculation Figure 6 Factor t’/t for disc springs with sOM = –1600 N/mm2

Figure 7 Calculated characteristics for disc springs with and without contact flats. Fc is valid for springs without contact flats (continuos line).

20

1.5 Disc Springs of Special Materials When special materials are used with different ‘E’ moduli and Poisson’s ratio µ, it is recommended that the corresponding ‘E’ modulus is used, but that the value of 0.91 for 1–µ2 be retained. This is justified with the fact that formula 7 for steel with

E = 206 000 N/mm2 and µ = 0.3 provides loads 8 – 9% higher, however this is more or less balanced out again by radii and crosssection-related shortening of the lever arm.

1.6 Spring Parameters for Dimensions and Calculation Disc springs are determined essentially by the following three parameters: δ

=

Outside diameter De Innendurchmesser Di

ho/t =

Cone height l0 – t Disc thickness t

De/t =

Outside diameter De Disc thickness t

If at all possible, the parameters above should be within the following values: δ = 1.75...2.5 h0/t = 0.4...1.3 De/t = 16...40 For smaller values δ, smaller values of h0/t and De/t also apply and vice-versa.

21

For steel springs with dimensions within these limits, formula 7 can be used without restriction. For very thin disc springs (De/t > 50) the formula results in spring forces which are too high. For very narrow disc washers with a ratio of diameters of De/Di < 1.75, the shortening of the lever arm must be considered when calculating the force. This is brought about by the rectangular cross-section and by the rounded edges (chapter 1) and results in the calculation of too low a load. In all such cases please consult us.

1

Basic Calculation

1.7 Characteristics of a Single Spring The value h0/t determines the amount of curvature of the spring characteristic (figure 3). For h0/t < 0.4, the characteristic is almost linear, as the value h0/t increases, the _curve becomes more regressive. At h0/t = √2 the curve has a nearly horizontal segment (at s = h0 it has a horizontal tangent). This means that springs can be developed with an almost horizontal characteristic, which gives very little load increase with deflection. However, this type of spring with h0/t > 1.3 is not suitable for long spring stacks, as individual springs within the stack may move unevenly and be overloaded. As a result, such springs should only be used alone. From the dependence of the characteristic curvature from the ratio h0/t, follows that

the characteristic curve of disc springs of the same dimensions changes when they are formed to a different height. Conversely, at the same height h0, a thinner disc will have a more regressive characteristic curve than a thicker disc (figure 8). On the other hand, the force of the flattened disc spring increases linearly. If, for example, a spring calculation cannot predict this in a satisfactory manner, then a first step in the form of a change in the free height may already produce the desired load/deflection diagram. Here, however, the permissible stress must be observed, as these increase with increasing cone height h0.

Figure 8 Characteristic of a sin gle disc with different height h0

22

_ At h0/t > √2, the spring force reaches a maximum and then decreases again. In some cases the decreasing segment of the curve is utilised. Under certain conditions the spring must be loaded beyond the flat position, for which certain design conditions must be given (figure 9).

1

Figure 9 Spring loaded beyond the flat position

For the normal arrangement of disc springs a progressive increase in the spring force occurs at deflections of s > 0.75 h0 which deviates from the calculated value. This results from the shift in the load points to smaller lever arms, because the disc springs

roll on each other or on the abutments. Therefore, it is recommended that only approx. 75 to 80 % of the spring deflection is utilised. For this reason, the spring force is only indicated at s ≈ 0.75 h0 in DIN 2093 (figure 10).

Figure 10 Calculated and actual characteristic

23

Basic Calculation

1.8 Calculation Examples The section ”Diagrams“ contains the characteristics for all springs in our standard range. The ”life lines“ also allow the fatigue life to be estimated for various working strokes. In

spite of this we show several examples of the calculation and checking of disc springs below.

Example 1: Checking Fatigue Life of a Disc Spring Given: Spring 45 x 22.4 x 1.75; l0 = 3.05 mm Preload F1 = 1580 N Final load F2 = 2670 N Frequency f = 1000/min To be determined: Is the stress within the acceptable range – what is the estimated fatigue life. Solution: From the tables of section 9.2 we can obtain the following data: s/h0 0.25 0.5 0.75 1.0

s [mm] 0.325 0.650 0.980 1.300

F [N] 1524 2701 3659 4475

s [N/mm²] 433 814 1148 1421

With the help of these four points the load and stress relative to the deflection may be drawn.

Figure 11 Disc spring 45 x 22.4 x 1.75; l0 = 3.05 mm

The following values may be obtained from the diagram (figure 12): s1 = 0.34 mm, s2 = 0.64 mm σu = 450 N/mm² σo = 804 N/mm² From the fatigue diagram for group 2 springs figure 19, we obtain σU= 450 N/mm2 with a maximum stress of σO = 920 N/mm2. Therefore the spring is fatigue resistant as σo< σO.

Figure 12 Diagram for spring 45 x 22.4 x 1.75 mm, l0 = 3.05 mm

24

Example 2: Disc Springs with a high h0 /t Ratio Given: Guide diameter 30 mm Installed length l1 Preload F1 Working defl. s2 – s1 Spring load F2

= = = =

4,9 mm 2000 N min. 1.05 mm 2500 N max.

Required: Suitable Disc Spring Dimensions Solution: Spring inside diameter Di = 30.5 mm Spring outside diameter De = 60 mm (selected because of the favourable De/ Di ratio). Because of the very small load range and the small installed length only a spring with a high h0/t ratio is suitable. Selected: Disc spring 60 x 30.5 x 1.5 mm; l0 = 3.5 mm h0/t = 1.333; δ = 1.967 Calculation: First the factors are calculated using formula 3. 4 and 5: K1 = 0.688 K2 = 1.212 K3 = 1.365

1

Figure 13 Disc spring 60 x 30.5 x 1.5 mm

The stress σOM can be checked using formula 9: σOM = –1048 N/mm² This value lies well under the limit of –1600 N/mm², the spring will therefore not set. Now the spring loads can be calculated to formula 8a, preferably for the 4 deflections s = 0.25h0, s = 0.5 h0, s = 0.75h0 and s = h0. One obtains the following values: s/h0 0.25 0.5 0.75 1.0

s [mm] 0.5 1.0 1.5 2.0

F [N] 1338 2058 2367 2469

With these 4 points the spring diagram can be drawn.

Figure 14 Diagram for spring 60 x 30.5 x 1.5 mm, l0 = 3.5 mm

25

Basic Calculation One can read and for Deflection

F1 = 2100 N s1 = 1.05 mm F2 = 2400 N s2 = 1.61 mm s2 – s1 = 0.56 mm

The deflection of a single spring is not sufficient, therefore two in series must be used. This arrangement gives: Unloaded length: Preloaded length: Preloaded deflection: Preload: Deflection s2 = s1 + 1.05 Final load

= 7.0 mm = 4.90 mm = 2.1 mm = 2100 N = 3.15 mm F2 = 2390 N L0 L1 s1 F1

To check the fatigue life we must use the stresses at s1 = 1.05 and s2 = 1.575 mm. Figure 17 shows that point III is the dominant one, this gives: s1: s2:

σu = 843 N/mm² σo = 1147 N/mm²

By utilising the fatigue life diagram in figure 19 we can see that the expected life will be in the order of 1,000,000 cycles.

Example 3: Calculation of a Disc Spring with Contact Flats Given: Disc spring 200 x 82 x 12 mm; l0 = 16.6 mm h0= 4.6 mm; δ = 2.439; h0/t = 0.383 Required: The spring characteristic and the stresses σII and σIII Although this spring is to our works standard we show below how the calculations are made and results can be checked in the tables section 9.2. From the formula 3 to 5 we first calculate the constants K1 to K3: K1 = 0.755 K2 = 1.315 K3 = 1.541

The static design can be checked by the calculation of σOM, the reduced thickness is not considered and we use the values of t and h0. This gives: σOM = –1579 N/mm² As the acceptable value for σOM is 1600 N/mm², the spring is correct. From figure 6 and considering d and h0/t the reduction factor t’/ t can be obtained: t’/t = 0.958 Therefore t’ = 11.5 mm and h0’ = 5.1 mm. Constant K4 can be calculated from formula 6: K4 = 1.0537

Figure 15 Disc spring 200 x 82 x 12 mm

26

1

Figure 16 Spring force and stresses for spring 200 x 82 x 12 mm, t’ = 11.5 l0 = 6.6 mm

Now from formula 8b, 11 and 12 the spring force and both stresses can be calculated: s/h0 s [mm] F [N] σII [N/mm2] σIII [N/mm2] 0.25 1.15 66924 416 389 0.5 2.3 127191 890 747 0.75 3.45 182737 1421 1072 1.0 4.6 235503 2011 1366 With this spring the greater values of stress are on the inner diameter which should be used. Finally the value of the stress σOM for the reduced thickness can be checked: σOM’ = σOM · K4 · t’/t σOM’ = –1595 N/mm²

27

28

Design and Operation Limits Chapter 2

29

Design and Operation Limits 2.1 Allowable Stress for Static or Quasistatic Loads ...................................... 31 Static Design .............................................................................................................. 31 Permissible Stress ..................................................................................................... 31 2.2 Permissible Stress for Dynamic Loads ................................................... 31 Critical Stress Affecting Dynamic Failure.................................................................... 32 Minimum Preload to Prevent Superficial Cracks ........................................................ 32 Permissible Stress ..................................................................................................... 33

30

2.1 Allowable Stress for Static or Quasistatic Loads Static Design Static or rarely changing loads exist when: a) Disc springs carry only static, non-changing loads b) Disc springs are subject to occasional load changes at greater time intervals and less than 10,000 load cycles during the planned service life.

Disc springs are normally designed with an overall height l0, so that they can be flattened under static or rarely changing loads without the overall height l0 reducing by more than the permissible tolerance. The stress σOM at point OM defined in formula 9 applies here.

Permissible Stress Plastic de for ma ti ons occur, when the stresses in certain areas exceed the yield strength. Reference stress is σOM. Its value should not exceed the tensile strength Rm of the material used. For spring steel as per DIN EN 10132-4 and DIN 17221 the tensile strength is Rm≈1600 N/mm2. For other materials, the respective applicable yield point values must be used. Disc springs as per DIN 2093 and our factory standards listed in the tables in

chapter 9 were designed according to an earlier method using the stress at point I. For this reason, some of these springs exceed the permissible stress at the point OM. As these springs have been manufactured for years with this overall height l0, we have not changed the height. With these types of springs there is the possibility of slight setting in use.

2.2 Permissible Stress for Dynamic Loads Dynamic loads occur in disc springs when the load continuously changes between a preload deflection s1 and a deflection s2. Under the influence of a change in stress of σh, dynamically loaded disc springs can be divided into two groups by service life (see also DIN 50100): a) Disc springs with longer life. These disc springs are intended to withstand load cycles of at least 2 · 106 and more without

31

breaking. If a considerably longer life is required, please consult us. It may be that only an endurance test can provide exact information. b) Disc springs with a limited service life. These disc springs are intended to achieve a limited number of load cycles in the range between 104 ≤ N < 2 · 106 before failure.

2

Design and Operation Limits Critical Stress Affecting Dynamic Failure For disc springs carrying dynamic loading, the calculated tensile stress on the underside of the spring are the determining factors, as fatigue cracks always start here. In dependency on the dimensional ratios δ = De/Di and h0/t and the relative deflection s/h0, the

largest stress range σh may occur at both point II and point III. Whether point II or point III is decisive can be derived figure 17 for springs with and without contact flats.

Figure 17 Decisive point of crosssection to be used to determine fatigue life

We recommend calculating the stress for both points using formulas 11 and 12 . Use the larger value to determine fatigue life using the

applicable diagrams (figure 18 – 20).

Minimum Preload to Prevent Superficial Cracks After heat treatment all disc springs are going to be scragged or prestressed, which causes a plastic deformation in the region of crosssectional point I (see section 4.4). This results in residual tensile stress at this point in the unloaded spring. When loaded there is then a change from tensile to compressive stress

which can result in the formation of cracks during dynamic loading. To avoid these the tensile stress must be balanced out by applying a suitable prestress. Therefore, dynamically loaded disc springs should be preloaded to at least s = 0.15 to 0.20 h0.

32

Permissible Stress The stress calculated for the working range of the spring is compared with the fatigue diagrams in figure 18 – 20. These provide standard values of the permissible stress range σH for N ≥ 2·106, N = 5·105 and N = 105 load cycles in dependency on the minimum stress σU for dynamically loaded, non-shotpeened disc springs. Intermediate values for other load cycles can be estimated. A fatigue diagram is indicated for each of the 3 manufacturing groups as per DIN 2093. These groups are divided by the disc thickness as follows: Group 1: t less than 1.25 mm Group 2: t = 1.25 to 6 mm Group 3: t over 6 to 14 mm

These diagrams were developed from laboratory tests on test machines with an even sinusoidal load by means of statistical evaluation, whereby a survival rate of 99% was assumed. This means that for a large enough sample a failure rate of 1% can be expected due to fatigue. The diagrams are applicable to single springs and spring stacks with up to 10 single springs stacked in series, operating at room temperature with hardened and perfectly finished inner or outer guides and minimum preload deflection of s1 = 0.15 to 0.20 h0 (page 32).

Figure 18 Fatigue resistance diagram for group 1

It should be noted that in practice the type of loads applied in many cases deviates from a nearly sinusoidal frequency. In the case of an impact-type load cycle and as the result of natural frequencies, the actual material load-

33

ing is considerably greater than the calculated value. The values of the diagrams may only be used for these types of loading under inclusion of the appropriate safety factors.

2

Design and Operation Limits For disc springs of materials others than those specified in DIN 2093, for spring stacks with more than 10 or with multiply parallelstacked individual springs, and in the case of other unfavourable influences of a chemical

or thermal nature, sufficient data to predict fatigue are not yet available. In such cases additional safety factors must also be applied and we recommend that you consult us.

Figure 19 Fatigue resistance diagram for group 2

Figure 20 Fatigue resistance diagram for group 3

34

Possible Combinations Chapter 3

35

Possible Combinations 3.1 Possible Combinations of Single Springs ............................................... 37 3.2 Stacks in Series ............................................................................. 37 3.3 Stacks in Parallel ........................................................................... 38 3.4 Stacks from Spring Sets .................................................................... 38 3.5 Progressive Spring Characteristics ...................................................... 39

36

3.1 Possible Combinations of Single Springs The shape of the disc spring as a conical disc allows single springs to be combined in different ways. As a result, the characteristic of a spring combination can be varied in almost any way desired and adapted to the requirements. In principle the following possibilities exist (figure 21):

● Single-series spring stack (series stacking) ● Parallel springs in spring sets (parallel stacking) ● Spring stack of parallel sets in series

3

Figure 21 Schematic representation of characteristic lines possible with springs of the same size in different combinations

The determination of the characteristic for assembled disc springs stack is based on the

characteristic of the single spring (figure 21, chart a).

3.2 Stacks in Series A stack of “i” springs in single series (figure 21, chart b) results in the following without considering friction: Spring Load: Formula 17

Fges = F

Spring Deflection: Formula 18

sges = i · s

Unloaded Stack Length: Formula 19

37

L0

= i · l0

Only the deflection is multiplied by the number of springs in series, not the load.

Possible Combinations

3.3 Stacks in Parallel A set of “n” single springs in parallel (figure 21, chart c) results in the following without considering friction Spring Load: Formula 20

Fges = n · F

In this case the spring load must be multiplied by the number of springs in parallel, where as the deflection remains as for a single spring. For springs in Group 3 with contact flats and reduced disc thickness, t must be replaced with t’ in formula 22.

Spring Deflection: Formula 21

sges = s

Unloaded Set Height: Formula 22

L0

= l0 + (n – 1) · t

3.4 Stacks from Spring Sets This is the combination of parallel sets in series (figure 21, chart d). For “i” sets in series and “n” springs in parallel following results without considering friction:

With this arrangement the spring load is proportional to the number of disc springs in parallel, while the deflection is proportional to the number of sets. In formula 25 t must be replaced with t’ if necessary.

Spring Load: Formula 23

Fges = n · F

Spring Deflection: Formula 24

sges = i · s

Unloaded Stack Length: Formula 25

L0

= i · [l0+(n – 1) · t]

38

3.5 Progressive Spring Characteristics In many cases it is a requirement that the spring load increases progressively as the deflection increases, i.e. the rate of the characteristic increases instead of (as it is typical for disc springs) decreasing (figure 22). Such characteristic curves can be achieved in various ways.

3

Figure 22 Various types of spring characteristics

With a spring stack as shown in figure 23, chart a, the di scs of the 1, 2 and 3-fold layering will be flattened in sequence when a load is applied. The characteristic of such a spring stack results in the addition of the individual characteristics, as shown schematically in figure 23. The same results can be achieved by combining springs of different thickness to form a stack (figure 23, chart b).

Figure 23 Progressive characteristic with disc springs

39

In this case it must be considered that the spring sets stacked 1 or 2-fold or the thinner single discs are subjected to very high stresses if disc springs as per DIN 2093 or the SCHNORR Factory standard have been selected. However, this overloading can be prevented with a smaller cone height or with spacer sleeves or rings to limit the deflection.

Possible Combinations Other ways of obtaining a progressive characteristic are shown in figures 24 to 26. By inserting intermediate rings of differing thicknesses, the deflection of a spring stack consisting of disc springs of the same thickness can be limited in steps. As a result, the spring rate increases with increasing deflection (figure 24). Care must be taken to ensure that the permissible stress is not exceeded for springs without spacer rings (section 3 of the stack). Figure 24 Spring arrangements for a progressive characteristic

A progressive characteristic can also be obtained by combining disc springs with flat washers. With this arrangement as shown in figure 25, the disc springs of a group of 2 disc springs with a flat washer between them first deflect until they all 3 parts lie parallel. From this point on the two disc springs act as a parallel pair and the flat washer is unloaded again, as it moves toward its original state. Washers and disc springs may also have different thicknesses or be arranged so that 3 or more layers result.

Figure 25 Spring arrangements for a progressive characteristic

Figure 26 shows a stack consisting of disc springs of 3 different thicknesses. Here external rings are used as spacers to limit the deflection to protect the thinner springs from overloading.

If you should have a requirement for similar spring arrangements, please consult our Technical Consulting Service. We will be glad to make the appropriate calculations for you.

Figure 26 Spring arrangements for a progressive characteristic

40

Chapter 4

Manufacture

41

Manufacture 4.1 Classification by Group ..................................................................... 43 4.2 Fine Blanked or Turned Disc Springs? ................................................... 43 4.3 Heat Treatment .............................................................................. 45 4.4 Scragging or Presetting .................................................................... 45 4.5 Shot Peening ................................................................................. 45 4.6 Corrosion Protection ........................................................................ 46 Phosphating ............................................................................................................... 46 Browning.................................................................................................................... 46 Metallic Surface Treatment......................................................................................... 46 Zinc .......................................................................................................................... 46 Cadmium.................................................................................................................. 46 Nickel ....................................................................................................................... 46 Electroplating ............................................................................................................. 47 Mechanical or Peen Plating ........................................................................................ 47 Metal Spray ................................................................................................................ 47 Chemical Nickel Plating.............................................................................................. 47 Dacromet Coating ...................................................................................................... 47

42

4.1 Classification by Group The large dimensional range in which disc springs are made requires very different production methods. The methods employed range from simple stamping and stamping with extra machining to hot forged and rolled rings, which are turned or ground to obtain their final shape. DIN 2093 specifies 3 manufacturing groups: Group 1: Thickness t less than 1.25 mm Group 2: Thickness t from 1.25 to 6 mm Group 3: Thickness t more than 6 to 14 m For these groups the following manufacturing methods are specified: Group 1:

● Stamped, ● Cold formed, ● Corners rounded

Group 2:

● ● ● ●

Stamped, Cold formed, De and Di turned, Corners radiused

Group 3:

● ● ● ●

Cold or hot formed, Machined all over, Corners radiused, With contact flats and reduced thickness

All SCHNORR disc springs as per DIN 2093 and our factory standards are made to these requirements. Special sizes are also assigned to the appropriate group if production is possible or no other production method has been agreed upon. The manufacturing process is shown schematically for the three groups in figure 27.

4.2 Fine Blanked or Turned Disc Springs? For group 2 manufacture the standard allows the following alternative: ● Fine blanked ● Cold formed ● Corners rounded The machining method is left to the manufacturer’s discretion, unless it is expressly specified by the customer. This means that the user can specify which version is to be supplied! The group 2 springs we deliver are exclusively turned on the inside and outside diameter, as we still consider this the best method. During turning the unavoidable

43

machining grooves result in the circumferential direction, and thus lie in the same direction as the maximum stress, whereas stamping grooves (which also result during fine blanking!) run at a right angle to the maximum stress, which leads to a much lower impact strength[11]. If fine-cut springs are required to reach the life expectancy laid down in DIN 2093, there is clear evidence that these turned springs are more suitable for the highest demands.

4

Manufacture

Figure 27 The manufacturing process of several groups

44

4.3 Heat Treatment Heat treatment is of major importance for properties of a spring. Therefore, we heat treat all springs of ordinary spring steel – as long as they are not manufactured of springhard material – using an isothermal annealing. This enables a so-called bainite stage to ensure that the springs attain the highest

strength, and at the same time a high degree of toughness and optimal fatigue resistance. According to DIN 2093 the hardness of disc springs should be 42 – 52 HRC. With the springs we manufacture, hardness is related inversely to disc thickness.

4.4 Scragging or Presetting After heat treatment each spring is flattened at least once. This reduces the overall height by means of plastic deformation. Tensile stress results on the upper side, which counteracts the compressive stress caused by subsequent loadings and so reduces the stress peaks. Further plastic deformation is

thereby avoided during later loading of the spring. According to DIN 2093 each disc spring must be scragged so that following loading equivalent to twice the spring force F(s = 0.75 h ), the limit deviations for the spring force are not exceeded. 0

4.5 Shot Peening It has been shown that shot peening can be very beneficial to springs subjected to dynamic loads. It can considerably improve the working life far in excess of the values shown in figures 18, 19 and 20. Shot peening produces compressive stress at the surface

45

which partially counteracts internal tensile stress resulting from setting. Therefore shotpeened springs will generally set more than usual. For this reason, surface bonding by means of shot peening is not recommended for springs carrying static loads.

4

Manufacture

4.6 Corrosion Protection In practice the presence of corrosive media is so common and the forms of attack so numerous that it is not possible to deal with the entire problem in detail here. We must refer you to the literature in the supplement. It can only be established here that ordinary spring steel must offer no corrosion protection of their own. Therefore, disc springs of these types of steel must be protected against

corrosion with a suitable surface treatment. A wide range of methods are available for this purpose from which the best suited must be selected for each individual case. More information on corrosion-resistant steel can be found in section 7.3. The most important surface treatment methods are:

Phosphating This is the standard process generally applied to all low alloy steels unless otherwise agreed. A zinc phosphate layer is produced on the surface, which is then impregnated with corrosion-protection oil. The protection achieved in this way is sufficient in the vast majority of all cases. Primarily for inside

applications, but a lso out of doors, if the springs are installed with weather protection, no additional protection is required. According to DIN 50960, the designation for phosphate treatment is: Surface coating as per DIN 50942 Fe/Znph r10 f.

Browning This process simply produces an oxidised surface, which is then coated with a corrosion-resistant oil. The corrosion resistance is not as good as phosphating, therefore this

treatment is mostly used where a phosphate coating or its abrasion is a problem. DIN 50960 defines browning as follows: Surface coating as per DIN 50938 Fe/A f.

Metallic Surface Treatment Metals for Surface Treatment ● Zinc is by far the most commonly used coating metal. As it lies lower than steel in the electrochemical series at room temperature, it forms a so-called cathodic protection and is attacked first by corrosion. With a chromated surface the onset of corrosion can be significantly delayed. The most effective is yellow chromating, which should always be chosen over clear chromating. ● Cadmium also offers very good corrosion protection, but is only rarely used now for environmental protection reasons.

● Nickel is resistant to a large number of media and is frequently used as a coating metal. It is placed higher than steel in the electrochemical series, i.e. in the case of the formation of a local element (e.g. at a damaged point in the nickel coating) nickel acts as a cathode and the base metal is attacked. For this reason the nickel must always be a dense, non-porous coating.

46

Electroplating With electroplating virtually any metal can be precipitated as a surface coating. However, when treating high-tensile steels – such as those always used for disc springs and lock washers – the danger of hydrogen embrittlement cannot be excluded with the current state of technology. Post plating bake is also no guarantee that this risk is completely Mechanical or Peen Plating With this process the parts to be treated are moved in a barrel together with peening bodies, e.g. glass beads, and a so-called promoter and the coating metal (preferably zinc) is added in powdered form. This powder is deposited on the surface and is compacted by the peening bodies. An even, mat coating results, which can then be chromated like a

Metal Spray This treatment is primarily for disc springs with diameters above 150 mm which cannot be mechanically zinc plated. As a rule, sprayed zinc coatings are relatively thick and have a granular surface which also makes them

elimi nated. Therefore, we only use elec tropla ting if it is specified as mandatory or there is no other alternative. Designation of a galvanically produced 8 µm thick zinc coating with transparent chro ma ting is: Surface coating as per DIN 50961 Fe/Zn 8 cB.

galvanic coating. The usual layer thickness is 8 µm, however thicknesses of up to 40 µm are possible. It is of particular importance that no hydrogen embrittlement can occur when the process is carried out properly. Designation of a mechanically applied 8 mm thick zinc coating with yellow chromating is: Surface coating mech Zn 8 cC.

excellently suited as a base for paints. However, the adhesion is inferior to mechanical zinc coating and it may become delaminated during dynamic loading.

Chemical Nickel Plating

47

With this treatment, also known as “electroless nickeling”, a nickel-phosphor alloy is precipitated onto the surface with a chemical method. This results in a thick, hard layer

with sharp contours and outstanding corrosion and abrasion resistance. The coating is usually applied in layers with a thickness of 15 – 30 µm.

Dacromet Coating This is an inorganic silver-grey metallic coating of zinc and aluminium flakes in a chromatic compound. The parts are treated in a barrel or on racks and the coating then baked on at over 280°C. Dacromet-treated springs

exhibit excellent resistance in a salt spray test. With the usual processing technology there is absolutely no possibility of hydrogen embrittlement.

4

48

Tolerances Chapter 5

49

Tolerances 5.1 Diameter Tolerances ........................................................................ 51 5.2 Thickness Tolerances ...................................................................... 52 5.3 Overall Height Tolerances ................................................................. 52 5.4 Load Tolerances ............................................................................. 52 Single Disc Springs.................................................................................................... 52 Spring Stacks............................................................................................................. 53 5.5 Permissible Setting .................................................................................................. 54

50

Disc Springs Tolerances This applies, for example, to our ball-bearing disc springs (section 8.1 and 9.5). If closer tolerances are required than those specified in DIN 2093, please consult us.

The following maximum deviations are laid down in DIN 2093. They are valid for all SCHNORR disc springs as per the DIN and our works standards. In general we also apply these tolerances to special sizes, however, if they deviate greatly from the DIN springs, wider tolerances must be specified.

5.1 Diameter Tolerances For the outside diameter De, the tolerance field h12 is applied, and for the inner diameter Di it is H12.

Permissible deviation in mm

De or Di [mm]

over 3 to 6 over 6 to 10 over 10 to 18 over 18 to 30 over 30 to 50 over 50 to 80 over 80 to 120 over 120 to 180 over 180 to 250 over 250 to 315 over 315 to 400 over 400 to 500

51

For the concentricity the tolerances applied are: for De to 50 mm: 2 · IT 11 for De over 50 mm: 2 · IT 12

De

0 / –0.12 0 / –0.15 0 / –0.18 0 / –0.21 0 / –0.25 0 / –0.30 0 / –0.35 0 / –0.40 0 / –0.46 0 / –0.52 0 / –0.57 0 / –0.63

Di

+0.12 / 0 +0.15 / 0 +0.18 / 0 +0.21 / 0 +0.25 / 0 +0.30 / 0 +0.35 / 0 +0.40 / 0 +0.46 / 0 +0.52 / 0 +0.57 / 0 +0.63 / 0

Concentricity

0.15 0.18 0.22 0.26 0.32 0.60 0.70 0.80 0.92 1.04 1.14 1.26

5

Tolerances

5.2 Thickness Tolerances Tolerances allowed in DIN 2093 are as follows: t or t’ Group 1 Group 2 Group 3

Tolerance for t

[mm]

[mm]

0.2 to 0.6 > 0.6 to < 1.25 1.25 to 3.8 > 3.8 to 6.0 > 6.0 to 16.0

+0.02/–0.06 +0.03/–0.09 +0.04/–0.12 +0.05/–0.15 +0.10/–0.10

For springs in group 3 the tolerance is applied to the reduced thickness t’. We use the thickness to ensure that spring loads are within tolerance and therefore will in some cases deviate from the above figures.

5.3 Overall Height Tolerances t Group 1 Group 2

Group 3

Tolerance for lo

[mm]

[mm]

< 1.25 1.25 to 2.0 > 2.0 to 3.0 > 3.0 to 6.0 > 6.0 to 16.0

+0.10/–0.05 +0.15/–0.08 +0.20/–0.10 +0.30/–0.15 +0.30/–0.30

To ensure the specified spring forces, DIN 2093 allows the overall height tolerance to be slightly exceeded.

5.4 Load Tolerances Single Disc Springs For single disc springs the following maximum deviations are allowed: t [mm]

Tolerances for F at the test length lP = l0 – 0.75 h0 Group 1 < 1.25 +25 % /–7.5 % Group 2 1.25 to 3.0 +15 % /–7.5 % > 3.0 to 6.0 +10 % /–5 % Group 3 > 6.0 to 16.0 +5 % /–5 %

With a single spring the spring force must be checked at the height l0 – s. This should be carried out with the spring pressed between two lubricated, hardened, ground and polished plates. Measurements are always taken in loading direction.

52

For the determination of the variation between loading and unloading, a stack of 10 springs in single series is used. The stack is fitted with a guide rod as described in section 6.3 and abutment plates inserted at both ends as per section 5.4. Before testing, the

stack should be loaded with twice the spring force F(s = 0.75 h ). During unloading the measured spring force at the length L0 – 7.5 h0 must at least reach the percentage of the loading characteristic shown in the table (figure 28). 0

5 Figure 28 Test points on the loading/unloading characteristic curve

Series A

Series B

Series C

Group 1 min. 90% min. 90% min. 85% Group 2 min.92.5% min.92.5% min. 87.5% Group 3 min. 95% min. 95% min. 90%

53

Tolerances

5.5 Permissible Setting All springs experience a loss of load or relaxation in the course of time, which is primarily dependent on the occurring stress and the temperature-time curve. For disc springs the stress distribution in the crosssection also plays a role determined by the dimensional relationships δ and h0/t. The relaxation can therefore be related to stress σ OM, because it best reflects all other influences. Depending on the installation situation, the load loss may occur as creeping or

relaxation. Creeping is described as a loss of length ∆l which the spring suffers under a constant load F, and relaxation as a loss in load ∆ F if the spring is installed at a constant length l. Approximate values for the permissible relaxation of disc springs under static loads are provided in figure 29 and 30. If working temperatures above 100°C occur, we recommend you contact our Technical department.

Figure 29 Permissible relaxation for disc springs of Ck steel

Figure 30 Permissible relaxation for disc springs of chrome and chromevanadium-alloy steel as per DIN EN 10132-4 and DIN 17221

54

Chapter 6

Application

55

Application 6.1 Spring Stacks and their Features ......................................................... 57 6.2 Alignment of Spring Stacks ................................................................ 57 6.3 Guide Clearance ............................................................................. 58 6.4 Guide Elements and Abutments ........................................................... 59 6.5 Friction ....................................................................................... 60 Causes of Friction ...................................................................................................... 60 The Magnitude and Factors Influencing Friction......................................................... 61 Calculation of Friction as per DIN 2092...................................................................... 62 Lubrication ................................................................................................................. 64 The Effects of Friction ................................................................................................ 64

56

6.1 Spring Stacks and their Features The best spring arrangement is the one which uses the least number of individual springs. In order to achieve this goal, the outside diameter should always be as large as possible. This automatically keeps the stack length short.

With an increasing number of disc springs, the friction and the uneven deflection of individual discs within the stack increases. We recommend L0 < 3 · De as the approximate stack length. If it is not possible to avoid a longer stack, then it should be divided into 2 or possibly 3 partial stacks with suitable washers. These washers should be guided as exactly as possible (figure 31). In order to keep the friction within reasonable limits, no more than 2 or 3 springs should be stacked in parallel unless a large friction loss is expressly desired. Particularly in the case of dynamic loading, considerable warming must be expected with 2 or more springs in parallel. Whenever possible, the abutments of a disc spring stack should contact the outside diameter, however this is only possible at both abutments with an even number of individual springs or spring sets. 6

Figure 31 Division of a long spring stack

6.2 Alignment of Spring Stacks Within a spring stack the disc springs do not always move evenly (figure 32). This naturally leads to overloading at one end of the stack with consequential reduction in fatigue life. This is also the reason why, with dynamic loads, the first breaks occur at an end of the spring stack in most cases. Therefore, we recommend that the spring stack be aligned on the guide rod with a “vee bar” and then maintained in position with a light preload. After alignment the spring stack should not be completely relaxed. This procedure has been found most satisfactory in practice for minimizing friction in spring stacks. If it is not possible to 57

align the stack for design reasons, the stack should be compressed flat once or twice. This also has the effect of centralising the springs and reducing friction. The friction is usually somewhat less in a vertically arranged stack than in the horizontal installation position. It is therefore better to have long stacks arranged vertically rather than horizontally. With a dynamically loaded stack there is a running in period during which the friction is reduced, especially with multiple layering. The reason for this is a certain smoothing effect at both the contact edges and the touching spring flanks.

Application

Figure 32 Example of the uneven deflection within a spring stack

6.3 Guide Clearance Disc springs always need a guide element to prevent lateral movement. The guide can be on the outside De or the inside Di of the springs, but inside guidance on a bolt or shaft is preferred to the outside guidance in a sleeve, because it offers design and economic advantages. For the clearance between the guide and the spring DIN 2093 recommends the following values.

Di or De to 16 mm over 16 to 20 mm over 20 to 26 mm over 26 to 31.5 mm over 31.5 to 50 mm over 50 to 80 mm over 80 to 140 mm over 140 to 250 mm

Clearance 0.2 mm 0.3 mm 0.4 mm 0.5 mm 0.6 mm 0.8 mm 1.0 mm 1.6 mm

58

These values represent the difference in the diameters. Under certain conditions this guide clearance can be reduced, e.g. with high-speed spindles. In order to avoid jamming of the individual disc springs on the guide bolt or in the guide sleeve, the spring cross-sections must be designed to be rectangular (figure 33). All four corners are slightly rounded with a radius of approximately t/8.

Figure 33 With the rectangular spring cross section jamming at the guide pin during deflection is prevented

On compression the spring cross-section turns about a centre of rotation S on the diameter D0 (figure 33). If in the unloaded condition the contact point of the spring on the guide is below a horizontal through point S, there is no reduction in the in si de diame ter. The same holds true for an outside guide where the contact point is above the horizontal. For springs with a ratio of h0/t > 1 this is not always the case and a reduction of the inner

diameter must be expected. Howe ver, this re duction is mostly very small and with stan dard springs is covered by the gui de clearance laid down in table on page 58. The calculations to determine the variations in the diameter are very easy today and we recommend you contact our Technical department if you require additional information on this subject.

6.4 Guide Elements and Abutments The guide elements and abutments should be hardened if possible to a minimum of 55HRC and a minimum case depth of 0.8 mm. The surface of the guide rod should be smooth and, if possible, ground. For dynamic applica-

59

tions we recommend lubrication with a high pressure grease containing MoS2. For static applications guides may be unhardened.

6

Application

6.5 Friction Due to friction, the actual loads obtained when loading and unloading the spring stack may deviate from the figures calculated. These variations are in many cases inconvenient, but at times required for application reasons.

Therefore, it is often necessary to calculate the friction and take this into consideration.

Causes of Friction The total friction with disc spring stacks arises because of 4 different components (figure 34): 1. The internal friction through elastic deformation of the material. It occurs with each deflection of the material and cannot be altered. 2. Friction on the end abutments through the radial movement between the spring and the abutment surface. This only occurs with the end springs in the stack, as there is no relative movement between the other springs to each other. 3. Friction of the springs on the guide due to axial movement of the springs during deflection. 4. Friction between springs in the case of parallel stacking. The first three types of friction occur with single springs and single series spring stacks. It is therefore a fact that friction with disc springs is always greater than with coil springs.

Figure 34 Friction in disc springs

60

The Magnitude and Factors Influencing Friction The amount of friction depends on very many factors: Geometric factors: ● ● ● ●

Shape of the cross section Radii on the corners Amount of guide clearance Surface roughness of the springs and guide elements

Material factors: ● ● ● ●

Material of the springs and guide elements Hardness of the springs and guide elements Surface protection of the springs Type of lubricant

Assembly factors: ● Number of parallel stacked springs ● Length of the spring stack Load dependant factors: ● Length of spring stroke ● Speed of loading (frequency) 6 The value of the different factors on the total friction varies considerably from case to case and we can only give the following indications: The geometric factors have already been mentioned in section 6.3. A frequently underrated influence is the surface treatment. For example, zinc plated springs have less friction than those phosphated. With parallel stacking the greatest friction is between the springs, with an increase in proportion to the number of parallel springs. This can, however,

61

be reduced by means of a suitable grease (see page 64). It is known from experience that relatively large deflection s/h0 or (s2 – s1)/h0 cause more friction than smaller deflections. These fac tors should all be considered for high frequency spring applications. Because of the large number of influences, it is not possible to derive an exact calculation for friction in disc spring stacks.

Application However, from many tests with various spring sizes a figure has been derived of ± 2.5% per parallel spring (+ loading, – unloading). This results in the following values: Influence of friction on spring load 1 single spring

± 2... 3 %

2 in parallel

± 4... 6 %

3 in parallel

± 6... 9 %

4 in parallel

± 8...12 %

5 in parallel

± 10...15 %

Figure 35 shows the principal load variations for one to 4 springs in parallel. Figure 35 Influence of friction on spring force for various parallel stackings

Calculation of Friction as per DIN 2092 DIN 2092, Issue 1/92 gives a method of calculating the friction FR on spring load. This omits the internal friction and the friction on the guide rod (section 6.5 Nos. 1 and 3). This must be obtained through an additional calculation. The values below for surface and edge friction to DIN 2092 give a relatively wide range. Therefore, it is our opinion that, although this process is theoretically correct, in the end it does not provide any better results than the consideration of the friction with a simple, percentile addition. For completeness we have shown this calculation method below. The following formula applies:

Formula 26

FgesR = F

n 1 ± wM(n − 1) ± wR

Where: F n wM wR – +

= = = = = =

Calculated spring load to formula 7 Number of springs in parallel Coefficient of surface friction Coefficient of edge friction On loading On unloading

With n = 1 formula 26 describes relationships for a single spring between 2 flat plates. For the friction coefficients wM and wR, DIN 2092 gives the following values:

62

Series par DIN 2093

wM

Series A Series B Series C

0.03...0.05 0.02...0.04 0.01...0.03

0.005...0.030 0.003...0.020 0.002...0.015

wR

When calculated with these values, formula 26 provides the following numbers, which are considerably easier to understand: Alteration of the calculated spring load through the friction is in %. + = Increase in load when loading / – = Reduction in load when unloading n=1

n=2

n=3

+3.63... +8.70

+4.17... +12.36

–4.76

–3.38... –7.41

–3.85... –9.91

+4.17

+2.35... +6.38

+2.67... +8.70

–2.25... –5.66

–2.53... –7.41

Series A

+3.09... –2.91...

Series B

+2.04... –1.96...

–3.85

Series C

+5.26

+1.01...

+3.09

+1.21... +4.71

+1.42... +6.38

–0.99...

–2.91

–1.19... –4.31

–1.38... –5.66

These results are presented in figure 36.

6

Figure 36 Friction for disc springs as per DIN 2092

63

Application Lubrication The large variation in figure 36 shows the influence of lubrication on the friction. The choice of the correct lubricant is therefore often of decisive influence. As well as reducing friction, it can prevent galling of one spring on another when stacked in parallel. Similarly, it can help prevent corrosion. The lubricants which may be used are: ● Oil is frequently used for springs in machine construction, especially with central lubrication or an assured continuous oil supply.

● Grease is more suitable if relubrication is difficult or cannot be done on a regular basis. ● Slip paints are based on MoS2 and are an elegant solution to providing permanent lubrication. It also provides a high degree of corrosion resistance.

The Effects of Friction Friction mainly affects the deflection of the spring, i.e. it modifies the spring loads. It must be added when loading the spring and subtracted when the spring is unloaded. Between the actual loading and unloading curve there is a hysteresis loop. The effect of the number of parallel springs on the hysteresis is shown in figure 35. This frictional work is turned into heat and with high

frequency dynamic loading this can be considerable. In such cases, single stacked disc springs should be prefered and good lubrication is essential. With spring energy storage the hysteresis is a total loss and cannot be recovered. However, with springs for damping, this hysteresis effect is useful and the frictional work is a measure of the damping.

64

Materials Chapter 7

65

Materials 7.1 General Requirements ............................................................................................. 67 7.2 Standard Materials .................................................................................................. 68 C 60S ....................................................................................................................... 68 C 67S, C 75S............................................................................................................ 68 51 CrV 4................................................................................................................... 68 7.3 Materials for Special Requirements ....................................................................... 68 Corrosion Resistant Steels ......................................................................................... 68 X 10 CrNi 18-8 ......................................................................................................... 68 X 7 CrNiAl 17 7 ........................................................................................................ 69 X 5 CrNiMo 17 12 2 ................................................................................................. 69 Steels for Higher Temperatures.................................................................................. 69 X 22 CrMoV 12 1...................................................................................................... 69 X 39 CrMo 17-1 ....................................................................................................... 70 Copper Alloys............................................................................................................. 70 CuSn 8 ..................................................................................................................... 70 CuBe 2 ..................................................................................................................... 70 Nickel and Cobalt Alloys............................................................................................. 70 NIMONIC 90............................................................................................................. 71 INCONEL X 750 and INCONEL 718 .......................................................................... 71 DURATHERM 600 .................................................................................................... 71 7.4 Table of Material Properties ................................................................................... 72

66

7.1 General Requirements The essential of a spring is that it has the quality to react to loading by elastic deformation. Therefore, materials with high elasticity are necessary. As in each case a small design is desired, spring materials should have the highest tensile strength and a high elastic limit. In addition to high strain in the elastic region, there must also be sufficient plasticity. This allows the manufacture of cold formed springs which will not break through the greatest unforeseen overloading. Moreover, a high fatigue limit is required which is however not a characteristic value of the material as, for example, the tensile strength. For a high fatigue strength, a high degree of purity, a homogenous structure and a smooth carbon-free surface are presupposed. These requirements are fulfilled very well by steel, therefore most springs are made of steel. Apart from this there will be the requi-

rement in some cases for corrosion resistance, heat resistance or anti-magnetic properties where special materials will be required. An important property of spring material is Young’s Modulus (E). From this material constant is derived a linear relationship between load and deflection. The ‘E’ of steel is practically not affected by heat treatment, but it is temperature dependent and this must be taken into consideration at higher working temperatures (figure 37).

7

Figure 37 Temperature dependence of ‘E’ and related reduction in load

67

Materials Materials for disc springs are principally supplied in the following forms: ● ● ● ●

Cold rolled strip as per DIN EN 10140 Hot rolled strip as per DIN EN 10048 Plate as per DIN EN10029 Forgings as per DIN 7521 and 7526

In the tables on pages 72 to 75 list the properties of all the materials from which disc springs are manufactured. The following notes give clarification of this.

7.2 Standard Materials ● C 60S: Both types are quality steels as per DIN EN 10132-4. We use them for our Original Schnorr Serrated Safety Washers and Load Washers as per DIN 6796 where the loading is only static. ● C 67S and C 75S: These high grade steels as per DIN EN 10132-4 are used for cold formed springs to group 1. For lightly loaded springs, for example our “K” springs for preloading ball bearings, these materials can be processed in the spring-hard condition.

● 51 CrV 4 (1.8159): This is a chrome vanadium refined alloy steel of the highest quality. It is available in cold rolled form as per DIN EN 10132-4, hot rolled and forgings as per DIN 17221 for the manufacture of disc springs. It has very good through-hardening capability and is therefore suitable for making springs up to 50 mm thick. The relaxation is less than for non-alloyed steel (see section 5.5), which allows use up to 250°C (with a suitable reduction in load).

7.3 Materials for Special Requirements Special requirements such as corrosive or high temperature enviroments often require the use of materials designed for these applications. These materials, in general, have lower tensile strength than standard materials and should only be specified, if absolutely

necessary. These springs have a lower overall height than comparable sizes made of standard materials resulting in lower spring force. This must be taken into consideration using these materials.

Corrosion Resistant Steels ● X 10 CrNi 18-8 (1.4310): This chrome nickel alloyed steel as per DIN EN 10151 is the material most used for corrosion resistant springs. Because of its austenitic structure with ferritic inclusions, it cannot be hardened in the usual way, but by cold forming it can obtain the strength required for disc springs. Considerable cold forming is necessary and the strength reduces with increasing thick-

ness. Therefore, the material is normally not available thicker than 2.5 mm. In fact, springs can only be supplied to this thickness. Whereas the material in the soft condition is hardly magnetic, the cold working process will make it more or less magnetic again, making it unsuitable for completely non-magnetic springs.

68

● X 7 CrNiAl 17 7 (1.4568): This steel as per DIN EN 10151 precipitation hardened produces an austenitic/ferritic structure. It will also be processed in the work hardened condition and may be hardened by subsequent heat treatment. A disadvantage compared to steel 1.4310 is the lower corrosion resistance and sensitivity to stress corrosion. We therefore only recommend its use for springs over 2.5 mm thickness if no other material is available.

● X 5 CrNiMo 17 12 2 (1.4401): The strength of this material is somewhat less than either of the two forgoing. Not withstanding that it offers higher corrosion resistance and lowest magnetism. Although also contained in DIN 17224, it is often difficult to obtain and therefore only seldom used.

Steels for Higher Temperatures When considering springs for use at higher working temperatures it must be remembered that both tensile strength and Young’s modulus ‘E’ are reduced compared with the values at room temperature. ● X 22 CrMoV 12 1 (1.4923): This heat treatable chrome-molybdenum steel has been used very successfully for heat resistant disc springs. Springs of 1.5 to 6 mm thickness

are made from strip or plate. For thicker springs, forged rings can be used. Figure 38 shows the mechanical properties and Young’s modulus ‘E’ with respect to temperature. It should be noted that with a chrome content of 12% this steel is not corrosion resistant.

7

Figure 38 Yield stress and ‘E’ modulus of steel X 22 CrMoV 12 1 with respect to temperature.

69

Materials ● X 39 CrMo 17-1 (1.4122): Here we have a chrome-molybdenum alloyed heat treatable martensitic steel which is also suitable for corrosion resistant springs. Because of the molybdenum it may be used up to 400°C. However, at these temperatures both the tensile strength and ‘E’ are reduced. In order to achieve the required properties, this steel must be hardened to higher values which raises the question of stress corrosion. Unfortunately, in the light of cur-

rent technical knowledge we cannot completely discount the possibility of delayed brittle fracture.

Copper Alloys Copper alloys are absolutely non-magnetic and have very good electric conductivity. Moreover, they are corrosion-resistant against many media. These characteristics make them suitable for many disc spring applications. ● CuSn 8 (2.1030): Tin bronze as per DIN EN 1654 is an alloy of copper and tin, which obtains its spring properties from cold working. The tensile strength is certainly lower than spring steel and the ‘E’ modulus is only 55% of the value for steel. This must be considered in the spring calculation and allows their use in applications where very low spring loads are required.

● CuBe 2 (2.1247): Beryllium copper is an outstanding spring material. This heat treatable alloy has strength values comparable with steel. However, Young’s modulus ‘E’ is only 60% of that for steel. It has very good corrosion resistance and may be used at very low temperatures nearing absolute zero.

Nickel and Cobalt Alloys From the large number of nickel-chrome and nickel-chrome-cobalt based alloys some have achieved importance for disc springs. By alloying with aluminium, titanium and/or niobium/tantalum they are precipitation hardenable. These materials are very tough, that is to say they have high strength and a low elastic ratio. Therefore, the probability of more set in the spring must be considered. Against this are the outstanding fatigue pro-

perties. With correct spring proportions this is good over the total spring travel. Because of the material composition they have outstanding corrosion resistance to many media. All these alloys are very expensive and often hard to work, and as a rule have long deliveries. They are therefore only used where no other material is suitable due to technical considerations.

70

● NiCr 20 Co 18 Ti (Nimonic 90) (2.4632, 2.4969): These nickel-chrome-cobalt alloy gives the least problems in processing and is therefore the most often used. It has very good heat resistance and can be used up to 700°C with suitable dimensioning. ● NiCr 15 Fe 7 TiAl (Inconel X 750) (2.4669) and NiCr 19 NbMo (Inconel 718) (2.4668): These nickel-chrome alloys are practically cobalt-free, and are therefore used in reactor applications. The hardening process is difficult and expensive. The application is limited and only used in special cases. NIMONIC and INCONEL are trade names of Inco Alloys International.

● DURATHERM 600: This is a heat treatable alloy of the cobalt-nickel series with outstanding mechanical properties. At a tempe ra ture of 0°C the material is non-magnetic. It can be used at very high temperatures (600°C and over). The very high price of this alloy limits its use to very special applications. DURATHERM is a trade name of Vacuumschmelze GmbH in Hanau.

7

71

Materials

7.4 Table of Material Properties Short Name Steel for Normal Applications Spring Steel C 60S C 67S C 75S 51 CrV 4

AISI ASTM

1060 1070 1078 6150

Corrosion Resistant Steel X 10 CrNi 18-8 301 X 7 CrNiAl 17-7 631 X 5 CrNiMo 17-12-2 316 X 5 CrNi 18-10 304 Heat Resistant Steel X 22 CrMoV 12-1 – X 39 CrMo 17-1 – Copper Alloys CuSn 8 – CuBe 2 – Nickel and Cobalt Alloys NiCr 20 Co 18 Ti HEV6 (Nimonic 90) 5829C (AMS) NiCr 15 Fe 7 TiAl 688 (Inconel X 750) 5542L (AMS) NiCr 19 NbMo 5596J (AMS) (Inconel 718) Duratherm 600 – Nickel and Cobalt Alloys (contd.) NiCr 20 Co 18 Ti HEV6 (Nimonic 90) 5829C (AMS) NiCr 15 Fe 7 TiAl 688 (Inconel X 750) 5542L (AMS) NiCr 19 NbMo 5596J (AMS) (Inconel 718) Duratherm 600 – –

Mat.-No. Standard

Chemical Analysis in % C

Si

Mn

1.1211 1.1231 1.1248 1.8159

DIN EN 10132-4 DIN EN 10132-4 DIN EN 10132-4 DIN EN 10132-4 DIN 17221

0.57...0.65 0.65...0.73 0.70...0.80 0.47...0.55 0.47...0.55

0.15...0.35 0.15...0.35 0.15...0.35 max. 0.40 0.15...0.40

0.60...0.90 0.60...0.90 0.60...0.90 0.70...1.10 0.70...1.10

1.4310 1.4568 1.4401 1.4301

DIN EN 10151 DIN EN 10151 DIN EN 10151 DIN EN 10151

0.05...015 max. 0.09 max. 0.07 max. 0.07

max. 2.0 max. 0.7 max. 1.0 max 1.0

max. 2.0 max. 1.0 max. 2.0 max. 2.0

1.4923 DIN EN 10269 0.18...0.24 1.4122 DIN EN 10088-2 0.33...0.45 Sn 2.1030 DIN EN 1654 7.5...8.5 2.1247 DIN EN 1654 – Ni 2.4632 / 2.4969 Balance

max. 0.5 max. 1.0 P 0.01...0.4 – Cr 18.0...21.0

0.40...0.90 max. 1.5 Be – 1.8...2.1 Co 15.0...21.0

2.4669

70.0 min.

14.0...17.0

1.0 max.

2.4668

50.0...55.0

17.0...21.0

1.0 max.

– 2.4632 / 2.4969

Balance S 0.015 max.

12 P 0.03 max.

40...41 B 0.02 max.

2.4669

0.015 max.

0.020 max. –

2.4668

0.015 max.

0.015 max. 0.006 max.







72

P max.

S max.

Cr

V

Mo

Ni

0.025 0.025 0.025 0.025 0.030

0.025 0.025 0.025 0.025 0.030

max. 0.40 max. 0.40 max. 0.40 0.90...1.20 0.90...1.20

– – – 0.10...0.25 0.10...0.20

max. 0.10 max. 0.10 max. 0.10 max. 0.10 –

max. 0.40 max. 0.40 max. 0.40 max. 0.40 –

0.045 0.040 0.045 0.045

0.015 0.015 0.015 0.015

16.0...19.0 16.0...18.0 16.5...18.5 17.0...19.5

– – – –

max. 0.8 – 2.0...2.5 –

6.0...9.5 6.5...7.8 10.0...13.0 8.0...10.5

0.025 0.040 Ni + Co – max. 0.3 Ti 2.0...3.0

0.015 0.03 Cu Balance Balance Al 1.0...2.0

11.0...12.5 0.25...0.35 0.80...1.20 0.30...0.80 15.5...17.5 – 0.8...1.3 max. 1.0

2.25...2.75

0.40...1.00 0.08 max.

0.70...1.15

0.3...0.7

1.8...2.2 Nb + Ta –

C 0.13 max.

N

– – max. 0.11 max. 0.11

Si 1.0 max.

Mn 1.0 max.

Fe 1.5 max.

Cu 0.2 max.

Zr 0.15 max.

0.50 max.

1.0 max.

5.0...9.0

0.5 max.



0.02...0.08 0.35 max.

0.35 max.

Balance

0.2 max.



– Mo –

– W –

8.7





0.7...1.2





4.8...5.5

2.8...3.3





4

3.9

7

73



Materials

Short Name Steel for Normal Applications Spring Steel C 60S C 67S C 75S 51 CrV 4

AISI ASTM

Mat.-No. REF

1060 1070 1078 6150

1.1211 1.1231 1.1248 1.8159

Standard

DIN EN 10132-4 DIN EN 10132-4 DIN EN 10132-4 DIN EN 10132-4 DIN 17221

Corrosion Resistant Steel X 10 CrNi 18-8 301 1.4310 DIN EN 10151 X 7 CrNiAl 17-7 631 1.4568 DIN EN 10151 X 5 CrNiMo 17-12-2 316 1.4401 DIN EN 10151 X 5 CrNi 18-10 304 1.4301 DIN EN 10151 Heat Resistant Steel X 22 CrMoV 12-1 – 1.4923 DIN EN 10269 X 39 CrMo 17-1 – 1.4122 DIN EN 10088-2 Copper Alloys CuSn 8 – 2.1030 DIN EN 1654 CuBe 2 – 2.1247 DIN EN 1654 Nickel and Cobalt Alloys NiCr 20 Co 18 Ti HEV6 2.4632 / 2.4969 (Nimonic 90) 5829C (AMS) NiCr 15 Fe 7 TiAl 2.4669 (Inconel X 750) 5542L (AMS) NiCr 19 NbMo 5596J (AMS) 2.4668 (Inconel 718) Duratherm 600 – –

Physical and Mechanical Properties Density E-modulus in kN/mm2 Kg/dm3 at RT 100 200 300 °C °C °C °C 7.85 7.85 7.85 7.85

206 206 206 206

202 202 202 202

– – – 196

– – – –

7.90 7.90 7.95 7.90

190 195 180 185

186 190 176 179

180 180 171 171

– 171 – –

7.7 7.7

216 215

209 212

200 205

190 200

8.3 8.8

115 135

110 131

– 125

– –

8.18

220

216

208

202

8.28

214

207

198

190

8.19

199

195

190

185

8.50

220

215

208

202

74

500 °C

600 °C

Working Temperature N/mm2

Tensile Strength mm

Thickness range

Availability

400 °C – – – –

– – – –

– – – –

–20...+100 –20...+100 –20...+100 –50...+200

1150–1750 1200–1800 1200–1800 1200–1800

0.2...7.0 0.1...2.5 0.1...1.5 0.3...80

easy easy easy easy

– – – –

– – – –

– – – –

–200...+200 –200...+300 –200...+200 –200...+200

1150–1500 1150–1700 1000–1500 1000–1500

0.2...2.5 0.2...4.0 0.2...1.6 0.2...1.6

easy less easy difficult less easy

179 190

167 –

– –

–50...+500 –50...+400

1200–1400 1200–1400

1.5...20 0.3...6.0

easy easy

– –

– –

– –

–50...+100 –260...+200

590–690 1270–1450

0.1...6.0 0.1...2.5

easy easy

193

187

178

–200...+700

≥ 1100

to 6.35

difficult

179

170

158

–200...+600

≥ 1170

to 6.35

difficult

179

174

167

–200...+600

≥ 1240

to 6.35

difficult

195

188



–200...+550

1150–1550

0.1...2.0

difficult

The values quoted for E-modulus and tensile strength are for reference only. The range of working temperature and thickness only serve as an indication. The heat treatment and the hardness of disc springs made from heat resistant steels is deviating from the standards mentioned above.

75

7

76

Special Types Chapter 8

77

Special Types 8.1 Disc Springs for Preloading Bearings ..................................................................... 79 8.2 Slotted Disc Springs ................................................................................................. 79 8.3 Disc Springs with Trapezoidal Cross-Section .......................................................... 80

78

8.1 Disc Springs for Preloading Bearings With every ball bearing there is radial play so it may function correctly. This radial play or clearance can cause considerable noise at high speeds. In many cases it is possible to achieve a quiet running bearing assembly by the use of a suitable disc spring to apply an axial load to the bearing. Similarly, the springs can be used to accommodate the build up of tolerances or thermal movements within the assembly. SCHNORR has, in close cooperation with SKF in Schweinfurt, designed a special range of disc springs for this purpose – our “K” springs for ball bearings. In addition to the normal range “slotted” springs are available up to a diameter of 95 mm. This special design generates very small loads and will accommodate large deflections

(section 9.5). We will be pleased to send our special “K” Spring leaflet on request. Because of the different dimensions of these springs compared with “normal” disc springs, the load and dimensional tolerances of DIN 2093 (chapter 5) do not apply. For the dimensions of “K” Disc Springs please see section 9.5.

8.2 Slotted Disc Springs The inclusion of slots on either the inner or outer diameter creates a lever which works on the unslotted portion of the spring. This has the effect of reducing the spring load and increasing the deflection (figure 39). The resulting spring has a softer characteristic with a large deflection and in proportion to the outside diameter smaller spring loads. It

is most important with this type of spring that the permissible stresses in the annular portion are not exceeded and, if necessary, the outside diameter must be increased to compensate.

8

Figure 39 Slotted Disc Spring

79

Special Types Taking these limitations and a few design features into account, this type of spring has many possible applications. The classic example is the automotive clutch spring. Notable are the slotted ball bearing preload springs which give extremely low loads (see section 8.1 and the dimension tables section 9.3). The first approximation for the calculation of slotted disc springs can be achieved by considering the lever arm and the formula in section 1.2.

The loads generated depend to a large extent on the shape of the slots or the corresponding fingers. The deflection of the fingers is only a small percentage of the total deflection and can be ignored. An exact calculation is given in [7]. If you need to consider the use of slotted Disc Springs we recommend you contact our Technical department so the design and manufacture may be discussed.

8.3 Disc Springs with Trapezoidal Cross-Section By the use of a trapezoidal cross-section it is possible to equalise the stresses on the spring upper and lower surfaces. The advantageous tensile stresses on the lower surface contribute to a better fatigue life. The equal compressive stresses on the upper surface result in more set. A similar distribution of the tensile stresses at points II and III to give the optimum fatigue life can also be achieved with a rectangular cross-section spring if the ratios δ and h0/t are correctly chosen [5] [6]. In this regard therefore, the trapezoidal crosssection offers no advantages. Compared with a standard spring having a similar angle on the top surface, a trapezoidal spring will give less deflection. This can be increased by including intermediate rings, but these will

also increase the overall stack length and require more space. The main advantage of the trapezoidal cross-section disc spring is the ability to limit the stroke without additional parts. It is therefore possible to design a spring which is relatively fatigue free over the complete deflection range with relatively little increase in load towards the end of the stroke. With the same installation space and under consideration of the permissible stresses, no more favourable spring data (more force or more deflection) can be achieved with disc springs with a trapezoidal crosssection than with springs with a square crosssection. These few advantages and the higher manufacturing costs are the reasons why the trapezoidal disc spring is of no practical importance today.

Figure 40 Disc Spring with trapezoidal cross section

80

Chapter 9

Dimensional Tables

81

Dimensional Tables 9.1 Explanation of the Tables ........................................................................................ 83 Article Reference ........................................................................................................ 83 Load and stress specifications ................................................................................... 83 9.2 Dimension Tables for SCHNORR Disc Springs .......................................................... 84 9.3 Dimension Tables for Corrosion Resistant SCHNORR Disc Springs ........................ 98 9.4 Dimension Tables for Heat Resistant SCHNORR Disc Springs ............................... 108 9.5 Dimension Tables for SCHNORR “K” Disc Springs ................................................ 128 9.6 Dimension Tables for SCHNORR “Z” Disc Springs ................................................ 134

82

9.1 Explanation of the Tables The following tables list the springs to DIN 2093 as well as those to Schnorr Works Standards. Those to DIN 2093 are shown in heavy type. The prefix A, B and C show the corresponding series. All sizes are normally kept in stock and the heavy type does not indicate a better delivery. The article number quoted is for normal manufacture from spring steel with phosphate finish.

Figure 41 Cross section with main dimensions

Article Reference Reference for a Disc Spring with De = 40 mm. Di = 20.4 mm and t =1.5 mm: Disc Spring 40 x 20.4 x 1.5 or for a spring to DIN 2093: Disc Spring DIN 2093-B 40 or with the article number: Disc Spring 012800 Load and stress specifications The load and the corresponding stresses are given for the four points s = 0.25 h 0, s = 0.5 h0, s = 0.75 h0 and s = h0. This allows the relevant graphs for load and stress to be accurately drawn. At s = 0.75 h0, DIN 2093 quotes rounded values for the deflection s. Spring load F and the corresponding stress s are calculated exactly for the rounded values. The quoted stress at s = 0.75 h0 is the tensile stress on 83

the underside at point II or III whichever is the greater. Static or infrequently loaded springs may be compressed to the flat condition (see section 2.1). It should be noted that from s = 0.75 h0 the actual characteristic progressively increases from that calculated (see sections 1.7 and figure 10). For dynamic application the calculation in section 2.2 must be completed. With the help of the drawn graph for stress and the fatigue life diagrams (figures 18 – 20) the expected dynamic life may be obtained without calculation. All values are based on a Young’s modulus ‘E’ of 206000 N/mm2 with µ = 0.3 and are therefore only valid for Disc Springs from spring steel to DIN EN 10132-4 and DIN 17221 (e.g. 51 CrV 4 or C 67S). The use of other materials necessitates recalculation with the correct value for Young’s modulus ‘E’. For lower tensile strength the free height h0 and the overall height l0 must be amended (see chapters 1 and 2). When considering the use of special sizes or springs from special materials we recommend you leave the work to us. We will be pleased to go through the necessary calculations quickly, at no cost and advise you of the possibilities of manufacture.

9

Dimensional Tables

9.2 Dimension Tables for SCHNORR Disc Springs Article No.

000100 000200 000300 000400 000550 000600 000700 000800 000900 001000 001100 001200 001300 001400 001500 001600 001700 001800 001900 002000 002100 002200 002300 002050 002500 002700 002750 002800 002900 003000 003100 003200 003300 003500 003600

Ordering Dimensions

C B A

C B A

C B A C B A

De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

6 8 8 8 8 8 8 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12.5 12.5 12.5 12.5 14 14 14 15 15 15 15 15 15

3.2 3.2 3.2 3.2 4.2 4.2 4.2 3.2 3.2 3.2 4.2 4.2 5.2 5.2 5.2 4.2 4.2 4.2 5.2 5.2 6.2 6.2 5.2 6.2 6.2 6.2 7.2 7.2 7.2 5.2 5.2 5.2 5.2 6.2 6.2

0.3 0.2 0.3 0.4 0.2 0.3 0.4 0.3 0.4 0.5 0.4 0.5 0.25 0.4 0.5 0.4 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.35 0.5 0.7 0.35 0.5 0.8 0.4 0.5 0.6 0.7 0.5 0.6

0.45 0.4 0.55 0.6 0.45 0.55 0.6 0.65 0.7 0.75 0.7 0.75 0.55 0.7 0.75 0.8 0.85 1 0.9 0.95 0.85 0.95 0.85 0.8 0.85 1 0.8 0.9 1.1 0.95 1 1.05 1.1 1 1.05

0.15 0.20 0.25 0.20 0.25 0.25 0.20 0.35 0.30 0.25 0.30 0.25 0.30 0.30 0.25 0.40 0.35 0.40 0.40 0.35 0.35 0.35 0.35 0.45 0.35 0.30 0.45 0.40 0.30 0.55 0.50 0.45 0.40 0.50 0.45

0.50 1.00 0.83 0.50 1.25 0.83 0.50 1.17 0.75 0.50 0.75 0.50 1.20 0.75 0.50 1.00 0.70 0.67 0.80 0.58 0.70 0.58 0.70 1.29 0.70 0.43 1.29 0.80 0.38 1.38 1.00 0.75 0.57 1.00 0.75

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

0.044 0.064 0.093 0.126 0.055 0.080 0.107 0.157 0.211 0.266 0.193 0.243 0.109 0.170 0.214 0.297 0.374 0.450 0.345 0.415 0.310 0.373 0.382 0.251 0.346 0.488 0.308 0.425 0.676 0.468 0.588 0.708 0.828 0.553 0.665

–1623 –710 –1332 –1421 –1003 –1505 –1605 –1147 –1311 –1365 –1384 –1441 –957 –1531 –1595 –1228 –1343 –1841 –1619 –1700 –1544 –1853 –1288 –1250 –1388 –1666 –1018 –1293 –1551 –1079 –1226 –1324 –1373 –1275 –1377 84

∅ 6 – 15 mm Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 0.038 0.050 0.063 0.050 0.063 0.063 0.050 0.088 0.075 0.063 0.075 0.063 0.075 0.075 0.063 0.100 0.088 0.100 0.100 0.088 0.088 0.088 0.088 0.113 0.088 0.075 0.113 0.100 0.075 0.138 0.125 0.113 0.100 0.125 0.113 85

45 12 46 69 21 52 78 51 75 104 79 110 30 88 122 85 116 224 150 196 134 214 111 84 120 239 68 120 284 101 133 171 214 138 178

343 233 401 365 409 501 343 378 285 410 405 359 380 485 343 385 293 421 493 372 475 531 245 506 420 403 418 419 390 401 383 269 358 424 400

0.075 0.100 0.125 0.100 0.125 0.125 0.100 0.175 0.150 0.125 0.150 0.125 0.150 0.150 0.125 0.200 0.175 0.200 0.200 0.175 0.175 0.175 0.175 0.225 0.175 0.150 0.225 0.200 0.150 0.275 0.250 0.225 0.200 0.250 0.225

84 750 20 433 79 750 130 792 33 753 89 938 147 749 82 697 133 663 195 884 140 760 206 778 48 702 155 912 228 749 141 714 208 671 405 954 263 923 361 828 239 894 394 1007 200 568 130 932 215 791 457 864 106 770 210 787 547 826 154 735 221 711 302 630 395 789 229 787 314 752

0.110 0.150 0.190 0.150 0.190 0.190 0.150 0.260 0.230 0.190 0.230 0.190 0.230 0.230 0.190 0.300 0.260 0.300 0.300 0.260 0.260 0.260 0.260 0.340 0.260 0.230 0.340 0.300 0.230 0.410 0.380 0.340 0.300 0.380 0.340

117 26 105 186 39 119 210 98 182 282 192 297 58 213 329 178 282 557 350 502 324 547 270 152 291 673 123 279 813 175 280 409 555 291 426

1187 600 1057 1281 1044 1325 1218 951 1168 1447 1084 1280 980 1303 1238 988 1122 1600 1291 1350 1249 1417 955 1284 1105 1419 1061 1101 1341 998 992 1093 1291 1100 1060

0.150 0.200 0.250 0.200 0.250 0.250 0.200 0.350 0.300 0.250 0.300 0.250 0.300 0.300 0.250 0.400 0.350 0.400 0.400 0.350 0.350 0.350 0.350 0.450 0.350 0.300 0.450 0.400 0.300 0.550 0.500 0.450 0.400 0.500 0.450

153 30 126 238 42 142 269 108 220 357 232 377 63 257 418 206 352 694 424 641 404 699 337 160 363 855 131 338 1040 181 321 499 704 334 519

1753 733 1290 1832 1251 1621 1750 1158 1698 2028 1322 1803 1169 1591 1749 1205 1687 2358 1596 1990 1569 1795 1444 1542 1388 1957 1274 1363 1836 1202 1199 1625 1865 1331 1307

Dimensional Tables

∅ 15 – 22.5 mm Article No.

003700 003800 003900 004100 004300 004400 004500 004600 004700 004800 004900 005000 005100 005200 005300 005400 005500 005550 005600 005700 005800 005900 006000 006100 006200 006300 006400 006500 006600 006700 006800 006900 007000 007100 007200

Ordering Dimensions

C B

A

C B A

C B

A

C B A

De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

15 15 15 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20 20 20 22.5 22.5 22.5

6.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 6.2 6.2 6.2 6.2 6.2 8.2 8.2 8.2 8.2 9.2 9.2 9.2 8.2 8.2 8.2 8.2 8.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 11.2 11.2 11.2

0.7 0.7 0.8 0.4 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.5 0.7 0.8 1 0.45 0.7 1 0.6 0.7 0.8 0.9 1 0.5 0.8 0.9 1 1.1 1.25 1.5 0.6 0.8 1.25

1.1 1.1 1.2 0.9 1.05 1.15 1.2 1.25 1 1.1 1.2 1.25 1.3 1.1 1.25 1.3 1.4 1.05 1.2 1.4 1.3 1.35 1.4 1.45 1.55 1.15 1.35 1.45 1.55 1.55 1.75 1.8 1.4 1.45 1.75

0.40 0.40 0.40 0.50 0.45 0.45 0.40 0.35 0.60 0.60 0.60 0.55 0.50 0.60 0.55 0.50 0.40 0.60 0.50 0.40 0.70 0.65 0.60 0.55 0.55 0.65 0.55 0.55 0.55 0.45 0.50 0.30 0.80 0.65 0.50

0.57 0.57 0.50 1.25 0.75 0.64 0.50 0.39 1.50 1.20 1.00 0.79 0.63 1.20 0.79 0.63 0.40 1.33 0.71 0.40 1.17 0.93 0.75 0.61 0.55 1.30 0.69 0.61 0.55 0.41 0.40 0.20 1.33 0.81 0.40

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

0.778 0.654 0.740 0.444 0.672 0.786 0.888 1.002 0.677 0.850 1.024 1.197 1.353 0.762 1.073 1.213 1.524 0.651 0.999 1.418 1.191 1.393 1.574 1.776 1.978 0.876 1.394 1.573 1.752 1.913 2.181 2.610 1.361 1.799 2.814

–1428 –1646 –1881 –988 –1333 –1555 –1580 –1555 –816 –1021 –1225 –1310 –1361 –1101 –1412 –1468 –1468 –1052 –1363 –1558 –1202 –1302 –1373 –1416 –1574 –1024 –1386 –1560 –1733 –1560 –1969 –1418 –1178 –1276 –1534 86

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 0.100 0.100 0.100 0.125 0.113 0.113 0.100 0.088 0.150 0.150 0.150 0.138 0.125 0.150 0.138 0.125 0.100 0.150 0.125 0.100 0.175 0.163 0.150 0.138 0.138 0.163 0.138 0.138 0.138 0.113 0.125 0.075 0.200 0.163 0.125 87

222 256 367 84 172 254 308 363 85 130 191 236 286 140 255 309 425 121 233 451 214 262 315 374 494 141 304 412 544 548 890 857 240 306 693

328 479 523 399 420 461 343 386 319 350 382 253 333 417 434 292 388 440 421 382 432 416 398 311 374 422 421 452 484 379 484 427 488 412 383

0.200 0.200 0.200 0.250 0.225 0.225 0.200 0.175 0.300 0.300 0.300 0.275 0.250 0.300 0.275 0.250 0.200 0.300 0.250 0.200 0.350 0.325 0.300 0.275 0.275 0.325 0.275 0.275 0.275 0.225 0.250 0.150 0.400 0.325 0.250

411 727 474 909 689 997 131 735 304 790 461 871 579 749 697 820 126 583 206 646 317 708 414 600 523 745 222 769 446 815 564 660 814 824 186 809 417 792 865 814 342 797 442 775 557 748 685 696 917 823 219 776 547 793 754 856 1010 920 1050 809 1708 1030 1695 877 370 897 533 771 1330 815

0.300 0.300 0.300 0.380 0.340 0.340 0.300 0.260 0.450 0.450 0.450 0.410 0.380 0.450 0.410 0.380 0.300 0.450 0.380 0.300 0.530 0.490 0.450 0.410 0.410 0.490 0.410 0.410 0.410 0.340 0.380 0.230 0.600 0.490 0.380

578 666 982 155 412 641 825 1004 139 245 400 550 733 265 594 791 1181 214 572 1254 413 570 751 949 1288 254 745 1045 1418 1531 2507 2576 425 710 1952

1195 1291 1423 1018 1115 1238 1218 1287 791 885 980 1034 1256 1056 1135 1124 1309 1106 1126 1295 1103 1080 1048 1147 1336 1067 1112 1206 1300 1301 1665 1381 1227 1083 1316

0.400 0.400 0.400 0.500 0.450 0.450 0.400 0.350 0.600 0.600 0.600 0.550 0.500 0.600 0.550 0.500 0.400 0.600 0.500 0.400 0.700 0.650 0.600 0.550 0.550 0.650 0.550 0.550 0.550 0.450 0.500 0.300 0.800 0.650 0.500

733 844 1261 165 503 798 1059 1319 137 267 462 672 912 288 725 984 1537 223 699 1631 453 668 921 1201 1648 268 929 1323 1815 1976 3222 3340 444 855 2509

1734 1624 1800 1220 1377 1539 1749 1831 944 1070 1195 1580 1803 1279 1412 1624 1842 1333 1387 1826 1327 1320 1300 1690 1944 1283 1394 1520 1646 1821 2310 1843 1478 1335 1825

9

Dimensional Tables

∅ 23 – 31.5 mm Article No.

007400 007500 007600 007700 007800 007900 008000 008100 008200 008350 008600 008700 008800 008900 009000 009100 009200 009300 009400 009500 009600 009700 009800 009900 010000 010100 010200 010300 010400 010500 010650 010700 010800 010900 011000

Ordering Dimensions

C B

A

C B A

C B A

De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 28 28 28 28 28 28 28 28 28 28 28 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5

8.2 8.2 8.2 8.2 10.2 10.2 10.2 12.2 12.2 12.2 10.2 12.2 12.2 12.2 12.2 12.2 10.2 10.2 10.2 10.2 12.2 12.2 12.2 14.2 14.2 14.2 14.2 12.2 12.2 12.2 16.3 16.3 16.3 16.3 16.3

0.7 0.8 0.9 1 0.9 1 1.25 1 1.25 1.5 1 0.7 0.9 1 1.25 1.5 0.8 1 1.25 1.5 1 1.25 1.5 0.8 1 1.25 1.5 1 1.25 1.5 0.8 1.25 1.5 1.75 2

1.5 1.55 1.6 1.7 1.65 1.7 1.9 1.6 1.85 2 1.75 1.6 1.6 1.8 1.95 2.05 1.75 1.9 2.05 2.2 1.95 2.1 2.25 1.8 1.8 2.1 2.15 2.1 2.2 2.35 1.85 2.15 2.4 2.45 2.75

0.80 0.75 0.70 0.70 0.75 0.70 0.65 0.60 0.60 0.50 0.75 0.90 0.70 0.80 0.70 0.55 0.95 0.90 0.80 0.70 0.95 0.85 0.75 1.00 0.80 0.85 0.65 1.10 0.95 0.85 1.05 0.90 0.90 0.70 0.75

1.14 0.94 0.78 0.70 0.83 0.70 0.52 0.60 0.48 0.33 0.75 1.29 0.78 0.80 0.56 0.37 1.19 0.90 0.64 0.47 0.95 0.68 0.50 1.25 0.80 0.68 0.43 1.10 0.76 0.57 1.31 0.72 0.60 0.40 0.38

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

1.939 2.192 2.472 2.753 2.270 2.527 3.172 2.255 2.807 3.359 3.105 1.994 2.543 2.832 3.526 4.219 3.233 4.062 5.057 6.051 3.789 4.717 5.645 2.760 3.468 4.317 5.166 5.035 6.268 7.501 3.442 5.384 6.443 7.546 8.605

–1173 –1257 –1320 –1466 –1500 –1556 –1806 –1467 –1834 –1834 –1371 –1238 –1238 –1573 –1720 –1622 –1078 –1277 –1419 –1490 –1415 –1583 –1676 –1282 –1282 –1702 –1562 –1250 –1349 –1448 –1077 –1442 –1730 –1570 –1923 88

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 0.200 0.188 0.175 0.175 0.188 0.175 0.163 0.150 0.150 0.125 0.188 0.225 0.175 0.200 0.175 0.138 0.238 0.225 0.200 0.175 0.238 0.213 0.188 0.250 0.200 0.213 0.163 0.275 0.238 0.213 0.263 0.225 0.225 0.175 0.188 89

279 332 391 507 463 538 870 475 863 1159 492 331 367 585 848 1040 348 512 737 1003 590 844 1149 435 476 907 1033 587 761 1033 384 791 1260 1391 2199

397 384 251 315 469 451 422 429 399 473 397 499 389 500 357 425 375 385 327 424 467 451 406 515 414 513 371 426 385 351 448 449 501 382 481

0.400 0.375 0.350 0.350 0.375 0.350 0.325 0.300 0.300 0.250 0.375 0.450 0.350 0.400 0.350 0.275 0.475 0.450 0.400 0.350 0.475 0.425 0.375 0.500 0.400 0.425 0.325 0.550 0.475 0.425 0.525 0.450 0.450 0.350 0.375

448 733 560 714 687 595 909 723 802 877 964 849 1627 923 872 813 1630 868 2250 994 870 745 515 919 644 730 1021 938 1573 792 2007 898 553 692 872 718 1339 735 1899 911 992 870 1519 849 2159 883 681 950 832 776 1634 968 1970 795 951 788 1343 723 1912 774 594 825 1409 844 2314 950 2669 814 4239 1020

0.600 0.560 0.530 0.530 0.560 0.530 0.490 0.450 0.450 0.380 0.560 0.680 0.530 0.600 0.530 0.410 0.710 0.680 0.600 0.530 0.710 0.640 0.560 0.750 0.600 0.640 0.490 0.830 0.710 0.640 0.790 0.680 0.680 0.530 0.560

544 717 925 1249 1055 1325 2320 1217 2331 3338 1168 601 868 1359 2232 2910 661 1135 1853 2745 1266 2089 3065 801 1107 2246 2854 1170 1800 2697 687 1923 3249 3905 6148

1007 988 1046 1241 1221 1204 1511 1152 1404 1586 1041 1265 1031 1312 1320 1410 947 1004 1225 1478 1204 1200 1423 1304 1086 1369 1281 1091 1009 1276 1132 1194 1354 1310 1607

0.800 0.750 0.700 0.700 0.750 0.700 0.650 0.600 0.600 0.500 0.750 0.900 0.700 0.800 0.700 0.550 0.950 0.900 0.800 0.700 0.950 0.850 0.750 1.000 0.800 0.850 0.650 1.100 0.950 0.850 1.050 0.900 0.900 0.700 0.750

602 842 1119 1536 1273 1629 2955 1536 3000 4320 1436 635 1050 1647 2814 3821 723 1337 2322 3511 1482 2590 3949 859 1342 2785 3680 1309 2207 3413 722 2359 4077 5036 8054

1221 1214 1563 1820 1512 1487 2159 1446 2010 2178 1295 1519 1268 1624 1895 1988 1149 1226 1797 2074 1480 1491 2049 1577 1344 1703 1806 1320 1254 1838 1363 1478 1689 1826 2267

9

Dimensional Tables

∅ 34 – 50 mm Article No.

011100 011200 011300 011400 011500 011600 011700 011850 011900 012000 012100 012200 012300 012400 012500 012600 012700 012800 012900 013000 013100 013250 013300 013400 013500 013600 013700 013800 013900 014000 014100 014200 014300 014400 014500

Ordering Dimensions

C B A

C B A C B A

C

De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

34 34 34 34 34 34 34 35.5 35.5 35.5 40 40 40 40 40 40 40 40 40 40 40 45 45 45 50 50 50 50 50 50 50 50 50 50 50

12.3 12.3 12.3 14.3 14.3 16.3 16.3 18.3 18.3 18.3 14.3 14.3 14.3 16.3 16.3 18.3 20.4 20.4 20.4 20.4 20.4 22.4 22.4 22.4 18.4 18.4 18.4 18.4 18.4 20.4 20.4 22.4 22.4 25.4 25.4

1 1.25 1.5 1.25 1.5 1.5 2 0.9 1.25 2 1.25 1.5 2 1.5 2 2 1 1.5 2 2.25 2.5 1.25 1.75 2.5 1.25 1.5 2 2.5 3 2 2.5 2 2.5 1.25 1.5

2.25 2.35 2.5 2.4 2.55 2.55 2.85 2.05 2.25 2.8 2.65 2.75 3.05 2.8 3.1 3.15 2.3 2.65 3.1 3.15 3.45 2.85 3.05 3.5 2.85 3.3 3.5 4.1 4.4 3.5 3.85 3.6 3.9 2.85 3.1

1.25 1.10 1.00 1.15 1.05 1.05 0.85 1.15 1.00 0.80 1.40 1.25 1.05 1.30 1.10 1.15 1.30 1.15 1.10 0.90 0.95 1.60 1.30 1.00 1.60 1.80 1.50 1.60 1.40 1.50 1.35 1.60 1.40 1.60 1.60

1.25 0.88 0.67 0.92 0.70 0.70 0.43 1.28 0.80 0.40 1.12 0.83 0.53 0.87 0.55 0.58 1.30 0.77 0.55 0.40 0.38 1.28 0.74 0.40 1.28 1.20 0.75 0.64 0.47 0.75 0.54 0.80 0.56 1.28 1.07

Weight/ 1000 pcs. [kg] 6.006 7.477 8.948 7.074 8.465 7.911 10.57 4.952 6.865 10.97 10.40 12.45 16.63 11.89 15.89 15.04 7.067 10.53 14.06 15.72 17.52 11.34 15.89 22.77 16.13 19.31 25.79 32.14 38.35 24.85 30.97 23.82 29.68 13.82 16.54

Stress σ OM at s = h0 [N/mm2] –1201 –1322 –1442 –1435 –1572 –1658 –1790 –1042 –1258 –1611 –1213 –1299 –1455 –1392 –1571 –1712 –1024 –1359 –1733 –1595 –1871 –1227 –1396 –1534 –892 –1204 –1338 –1784 –1873 –1371 –1543 –1511 –1653 –1006 –1207 90

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 0.313 0.275 0.250 0.288 0.263 0.263 0.213 0.288 0.250 0.200 0.350 0.313 0.263 0.325 0.275 0.288 0.325 0.288 0.275 0.225 0.238 0.400 0.325 0.250 0.400 0.450 0.375 0.400 0.350 0.375 0.338 0.400 0.350 0.400 0.400 91

637 815 1097 913 1224 1291 2097 458 731 1864 904 1114 1800 1224 1972 2182 565 1109 2175 2336 3351 1041 1524 2773 757 1379 1918 3703 5043 1966 3008 2247 3261 854 1242

429 394 321 461 447 495 445 427 409 393 406 376 393 430 375 365 422 431 484 392 470 497 433 383 325 423 259 407 530 397 373 466 364 410 447

0.625 0.550 0.500 0.575 0.525 0.525 0.425 0.575 0.500 0.400 0.700 0.625 0.525 0.650 0.550 0.575 0.650 0.575 0.550 0.450 0.475 0.800 0.650 0.500 0.800 0.900 0.750 0.800 0.700 0.750 0.675 0.800 0.700 0.800 0.800

998 789 1395 734 1982 730 1546 858 2192 841 2313 933 4003 952 712 786 1277 766 3576 837 1459 750 1929 702 3363 855 2102 802 3663 825 4030 810 876 776 1953 810 4041 920 4481 835 6453 997 1620 914 2701 814 5320 815 1178 597 2184 779 3392 609 6733 917 9546 1138 3478 745 5601 817 3924 872 6044 806 1328 755 2028 828

0.940 1175 0.830 1825 0.750 2725 0.860 1990 0.790 2997 0.790 3163 0.640 5803 0.860 831 0.750 1699 0.600 5187 1.050 1780 0.940 2550 0.790 4781 0.980 2758 0.830 5195 0.860 5642 0.980 1018 0.860 2616 0.830 5730 0.680 6544 0.710 9359 1.200 1891 0.980 3659 0.750 7716 1.200 1375 1.350 2606 1.130 4586 1.200 9315 1.05013688 1.130 4702 1.010 7902 1.200 5222 1.050 8510 1.200 1550 1.200 2512

1083 1026 1225 1190 1186 1316 1527 1076 1073 1332 1033 981 1392 1122 1359 1333 1067 1134 1314 1339 1573 1253 1148 1296 817 1069 1054 1529 1824 1048 1330 1220 1324 1035 1145

1.250 1258 1.100 2162 1.000 3397 1.150 2347 1.050 3704 1.050 3908 0.850 7498 1.150 884 1.000 2059 0.800 6747 1.400 1984 1.250 3061 1.050 6096 1.300 3281 1.100 6580 1.150 7171 1.300 1072 1.150 3201 1.100 7258 0.900 8456 0.95012243 1.600 2007 1.300 4475 1.00010037 1.600 1459 1.800 2837 1.500 5603 1.60011673 1.40017650 1.500 5745 1.35010098 1.600 6329 1.40010817 1.600 1646 1.600 2844

1304 1255 1807 1464 1472 1635 2150 1302 1329 1878 1253 1207 1988 1376 1948 1946 1283 1410 1646 1871 2219 1514 1421 1825 984 1293 1577 2244 2590 1295 1922 1509 1920 1251 1397

9

Dimensional Tables

∅ 50 – 80 mm Article No.

014600 014700 014800 014950 015000 015100 015200 015300 015400 015500 015600 015700 015800 015900 016050 016100 016200 016300 016400 016500 016600 016700 016800 016900 017000 017100 017200 017300 017400 017500 017600 017700 017800 017850 017900

Ordering Dimensions

B A C B A

C B A

C B A

C B

De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

50 50 50 56 56 56 60 60 60 60 60 60 60 60 63 63 63 63 70 70 70 70 70 70 70 71 71 71 80 80 80 80 80 80 80

25.4 25.4 25.4 28.5 28.5 28.5 20.5 20.5 20.5 25.5 25.5 30.5 30.5 30.5 31 31 31 31 25.5 30.5 30.5 35.5 35.5 40.5 40.5 36 36 36 31 31 31 36 36 41 41

2 2.5 3 1.5 2 3 2 2.5 3 2.5 3 2.5 3 3.5 1.8 2.5 3 3.5 2 2.5 3 3 4 4 5 2 2.5 4 2.5 3 4 3 4 2.25 3

3.4 3.9 4.1 3.45 3.6 4.3 4.1 4.3 4.7 4.4 4.65 4.3 4.7 5 4.15 4.25 4.8 4.9 4.5 4.9 5.1 5.1 5.8 5.6 6.2 4.6 4.5 5.6 5.3 5.5 6.1 5.7 6.2 5.2 5.3

1.40 1.40 1.10 1.95 1.60 1.30 2.10 1.80 1.70 1.90 1.65 1.80 1.70 1.50 2.35 1.75 1.80 1.40 2.50 2.40 2.10 2.10 1.80 1.60 1.20 2.60 2.00 1.60 2.80 2.50 2.10 2.70 2.20 2.95 2.30

0.70 0.56 0.37 1.30 0.80 0.43 1.05 0.72 0.57 0.76 0.55 0.72 0.57 0.43 1.31 0.70 0.60 0.40 1.25 0.96 0.70 0.70 0.45 0.40 0.24 1.30 0.80 0.40 1.12 0.83 0.53 0.90 0.55 1.31 0.77

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

22.09 27.52 32.85 20.85 27.81 41.57 38.16 47.69 57.04 44.20 52.86 39.94 47.77 55.10 32.53 44.85 53.86 62.13 50.78 59.53 71.19 65.21 86.13 77.04 95.15 44.66 56.11 88.63 82.01 98.01 130.0 91.92 121.9 63.54 84.92

–1408 –1760 –1659 –1174 –1284 –1565 –1284 –1376 –1560 –1527 –1592 –1572 –1782 –1834 –1315 –1360 –1679 –1524 –1135 –1430 –1502 –1615 –1845 –1813 –1700 –1295 –1246 –1594 –1233 –1321 –1480 –1497 –1626 –1311 –1363 92

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 0.350 1949 0.350 3473 0.275 4255 0.488 1458 0.400 1910 0.325 4142 0.525 2318 0.450 3018 0.425 4449 0.475 3447 0.413 4495 0.450 3447 0.425 5083 0.375 6591 0.588 2364 0.438 2942 0.450 4891 0.350 5399 0.625 2408 0.600 3755 0.525 4676 0.525 5028 0.450 8757 0.400 8391 0.300 11544 0.650 2861 0.500 2894 0.400 7379 0.700 3678 0.625 4531 0.525 7319 0.675 5401 0.550 8163 0.738 3698 0.575 4450 93

430 494 424 483 415 371 409 297 414 451 369 486 502 437 536 410 477 383 406 475 433 493 430 411 458 532 402 393 425 393 378 487 362 544 434

0.700 3491 810 0.700 6437 938 0.550 8214 897 0.975 2259 889 0.800 3335 778 0.650 7895 795 1.050 3802 758 0.900 5379 685 0.850 8234 909 0.950 6081 847 0.825 8352 812 0.900 6145 914 0.850 9407 953 0.750 12574 937 1.175 3658 986 0.875 5270 773 0.900 8981 904 0.700 10359 815 1.250 3771 748 1.200 6297 883 1.050 8376 814 1.050 9007 928 0.900 16634 925 0.800 16099 877 0.600 22728 946 1.300 4432 980 1.000 5054 754 0.800 14157 837 1.400 5933 785 1.250 7847 735 1.050 13677 823 1.350 9196 909 1.100 15168 799 1.475 5715 1000 1.150 7838 814

1.050 4762 1.050 9063 0.83012044 1.460 2621 1.200 4438 0.98011441 1.580 4737 1.350 7302 1.28011615 1.430 8195 1.24011803 1.350 8342 1.28013269 1.13018225 1.760 4237 1.310 7179 1.35012536 1.05015025 1.880 4441 1.800 8031 1.58011453 1.58012316 1.35023923 1.20023351 0.90033672 1.950 5144 1.500 6725 1.20020535 2.100 7239 1.88010369 1.58019447 2.03011936 1.65021400 2.210 6611 1.73010539

1140 1332 1418 1217 1090 1281 1049 1165 1486 1190 1334 1285 1358 1507 1351 1086 1280 1296 1024 1225 1148 1310 1486 1399 1465 1342 1055 1332 1081 1028 1343 1268 1310 1369 1145

1.400 5898 1.40011519 1.10015640 1.950 2766 1.600 5379 1.30014752 2.100 5380 1.800 9006 1.70014698 1.900 9997 1.65015002 1.80010289 1.70016792 1.50023528 2.350 4463 1.750 8904 1.80015825 1.40019545 2.500 4755 2.400 9360 2.10014152 2.10015218 1.80030919 1.60030376 1.20044495 2.600 5426 2.000 8152 1.60026712 2.800 8070 2.50012451 2.10024791 2.70014106 2.20027245 2.950 6950 2.30012844

1421 1677 1987 1470 1349 1806 1273 1736 2145 1471 1922 1600 1703 2123 1629 1355 1606 1826 1235 1501 1426 1628 2114 1974 2016 1620 1306 1877 1312 1265 1920 1556 1895 1652 1417

9

Dimensional Tables

∅ 80 –150 mm Article No.

018000 018100 018200 018300 018400 018500 018600 018750 018800 018900 019000 019150 019250 019300 019450 019500 019600 019700 019850 019900 020050 020100 020200 020300 020400 020550 020600 020700 020850 020900 021000 021100 021250 021350 021400

Ordering Dimensions De Di t t’ l0 h0 [mm] [mm] [mm] [mm] [mm] [mm] A C B A

C B

A C B A

C B A

C B A

80 80 90 90 90 100 100 100 100 100 100 100 112 112 112 125 125 125 125 125 125 125 125 125 125 125 125 125 140 140 140 150 150 150 150

41 41 46 46 46 41 41 51 51 51 51 51 57 57 57 41 51 51 51 61 61 61 64 64 64 71 71 71 72 72 72 61 61 71 71

4 5 2.5 3.5 5 4 5 2.7 3.5 4 5 6 3 4 6 4 4 5 6 5 6 8 3.5 5 8 6 8 10 3.8 5 8 5 6 6 8

7.5

7.5 7.4 9.2

7.5

7.5

6.2 6.7 5.7 6 7 7.2 7.75 6.2 6.3 7 7.8 8.2 6.9 7.2 8.5 8.2 8.5 8.9 9.4 9 9.6 10.9 8 8.5 10.6 9.3 10.4 11.8 8.7 9 11.2 10.3 10.8 10.8 12

2.20 1.70 3.20 2.50 2.00 3.20 2.75 3.50 2.80 3.00 2.80 2.20 3.90 3.20 2.50 4.20 4.50 3.90 3.40 4.00 3.60 2.90 4.50 3.50 2.60 3.30 2.40 1.80 4.90 4.00 3.20 5.30 4.80 4.80 4.00

h0/t

h0’/t’

0.55 0.34 1.28 0.71 0.40 0.80 0.55 1.30 0.80 0.75 0.56 0.37 1.30 0.80 0.42 1.05 1.13 0.78 0.57 0.80 0.60 0.45 1.29 0.70 0.41 0.55 0.41 0.28 1.29 0.80 0.49 1.06 0.80 0.80 0.60

Weight 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

112.6 139.5 89.74 125.3 177.6 200.0 248.9 120.1 155.4 177.6 221.1 262.8 168.0 222.7 332.1 338.1 315.6 391.5 465.8 357.6 425.4 547.3 242.3 346.2 529.9 377.9 479.6 596.3 329.7 433.2 663.0 565.0 676.8 628.9 803.6

–1738 –1679 –1246 –1363 –1558 –1465 –1574 –1191 –1235 –1512 –1764 –1663 –1174 –1284 –1505 –1177 –1317 –1426 –1492 –1573 –1698 –1850 –1273 –1415 –1708 –1730 –1709 –1615 –1203 –1293 –1675 –1345 –1462 –1548 –1733 94

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 0.550 8726 0.425 11821 0.800 4232 0.625 5836 0.500 11267 0.800 8714 0.688 12345 0.875 4779 0.700 5624 0.750 8673 0.700 13924 0.550 17061 0.975 5834 0.800 7639 0.625 15800 1.050 8501 1.125 10096 0.975 13063 0.850 17027 1.000 14615 0.900 19789 0.725 34434 1.125 8514 0.875 12238 0.650 31118 0.825 19538 0.600 30867 0.450 42963 1.225 9514 1.000 12014 0.800 31903 1.325 15292 1.200 19560 1.200 20721 1.000 35296 95

486 439 509 421 382 437 374 490 399 476 496 424 483 415 363 370 463 420 349 500 481 415 522 433 391 504 470 401 495 419 467 458 435 487 501

1.100 0.850 1.600 1.250 1.000 1.600 1.375 1.750 1.400 1.500 1.400 1.100 1.950 1.600 1.250 2.100 2.250 1.950 1.700 2.000 1.800 1.450 2.250 1.750 1.300 1.650 1.200 0.900 2.450 2.000 1.600 2.650 2.400 2.400 2.000

16213 22928 6585 10416 21617 15219 22937 7410 9823 15341 25810 32937 9038 13341 30215 13943 16265 22931 31514 25526 36336 65305 13231 21924 59520 36302 59149 84219 14773 20982 59967 25021 34161 36189 64684

924 924 938 792 814 818 823 902 749 894 942 897 889 778 777 685 856 787 770 938 911 893 961 816 833 959 908 829 911 787 895 848 814 913 954

1.650 22874 1.280 33682 2.400 7684 1.880 14189 1.500 31354 2.400 20251 2.060 32328 2.630 8613 2.100 13070 2.250 20674 2.100 36339 1.650 48022 2.930 10493 2.400 17752 1.880 43812 3.150 17346 3.380 19829 2.930 30705 2.550 44307 3.000 33965 2.700 50722 2.180 93765 3.380 15422 2.630 29950 1.950 85926 2.480 51304 1.800 85494 1.350 124124 3.680 17201 3.000 27920 2.400 85251 3.980 31059 3.600 45456 3.600 48155 3.000 89851

1314 1460 1286 1116 1295 1144 1344 1237 1049 1255 1337 1418 1220 1090 1243 945 1179 1103 1264 1312 1290 1436 1319 1151 1326 1366 1314 1284 1250 1101 1284 1172 1138 1277 1357

2.200 29122 1655 1.700 43952 2028 3.200 8157 1553 2.500 17487 1387 2.000 40786 1826 3.200 24547 1414 2.750 41201 1944 3.500 9091 1491 2.800 15843 1298 3.000 25338 1559 2.800 46189 1683 2.200 62711 1987 3.900 11064 1470 3.200 21518 1349 2.500 56737 1752 4.200 19729 1150 4.500 22060 1431 3.900 37342 1363 3.400 56254 1832 4.000 41170 1624 3.600 64028 1619 2.900 120218 2034 4.500 16335 1591 3.500 37041 1432 2.600 111056 1870 3.300 65207 1718 2.400 110547 1688 1.800 163035 1766 4.900 18199 1508 4.000 33843 1363 3.200 108813 1634 5.300 35207 1426 4.800 55098 1406 4.800 58370 1580 4.000 112487 1711

9

Dimensional Tables

∅ 150 – 250 mm Article No.

021500 021600 021650 021750 021800 021850 021950 022000 022100 022200 022300 022400 022500 022600 022650 022700 022800 022900 023000 023100 023200 023300 023350 023400 023500 023600 023700 023750 023800 023900 024000 024100

Ordering Dimensions De Di t t’ l0 h0 [mm] [mm] [mm] [mm] [mm] [mm]

C B A C B A

C B A

C B A

C B A

150 150 160 160 160 180 180 180 200 200 200 200 200 200 200 200 200 200 200 200 200 200 225 225 225 250 250 250 250 250 250 250

81 81 82 82 82 92 92 92 82 82 82 92 92 92 102 102 102 102 102 112 112 112 112 112 112 102 102 127 127 127 127 127

8 10 4.3 6 10 4.8 6 10 8 10 12 10 12 14 5.5 8 10 12 14 12 14 16 6.5 8 12 10 12 7 10 12 14 16

7.5 11.7 9.3 13 9.9 10.5 9.4 13.5 11 11.1 9.4 14 7.6 14.2 9.6 15.5 11.5 16.6 9.5 15.6 11.4 16.8 13.1 18.1 12.5 7.5 13.6 9.4 15.6 11.25 16.2 13.1 18.2 11.1 16.2 12.9 17.5 14.8 18.8 6.2 13.6 7.5 14.5 11.25 17 9.6 18 11.5 19 6.7 14.8 9.4 17 11.25 19.3 13.1 19.6 15 21.8

3.70 3.00 5.60 4.50 3.50 6.20 5.10 4.00 6.20 5.50 4.60 5.60 4.80 4.10 7.00 5.60 5.60 4.20 4.20 4.20 3.50 2.80 7.10 6.50 5.00 8.00 7.00 7.80 7.00 7.30 5.60 5.80

h0/t

h0’/t’ 0.56 0.40

1.30 0.75 0.44 1.29 0.85 0.49 0.87 0.61 0.44 0.64 0.47 0.38 1.27 0.81 0.66 0.44 0.39 0.46 0.36 0.27 1.19 0.93 0.51 0.88 0.65 1.21 0.81 0.72 0.50 0.45

Weight 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

732.9 908.8 492.2 679.8 1089 705.3 862.5 1381 1554 1962 2351 1840 2208 2537 999.3 1363 1708 2044 2380 1870 2173 2493 1450 1754 2631 3075 3683 1909 2678 3205 3732 4273

–1739 –1779 –1189 –1333 –1753 –1159 –1192 –1576 –1415 –1581 –1595 –1679 –1737 –1743 –1213 –1409 –1772 –1611 –1884 –1726 –1689 –1550 –1119 –1267 –1489 –1459 –1542 –1086 –1406 –1766 –1596 –1893

96

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 0.925 34518 0.750 50088 1.400 12162 1.125 17203 0.875 50547 1.550 14646 1.275 16558 1.000 46850 1.550 35029 1.375 51105 1.150 66924 1.400 55136 1.200 73913 1.025 95633 1.750 19817 1.400 33367 1.400 58757 1.050 66983 1.050 103781 1.050 72257 0.875 91033 0.700 105268 1.775 23582 1.625 32870 1.250 64497 2.000 56867 1.750 73563 1.950 26895 1.750 51871 1.825 87633 1.400 93239 1.450 140941

97

516 399 491 420 390 476 396 437 450 329 416 490 400 445 494 475 546 357 445 490 387 395 446 450 415 462 303 438 471 563 444 413

1.850 63876 985 1.500 96120 846 2.800 18832 904 2.250 30431 790 1.750 96216 836 3.100 22731 877 2.550 28552 742 2.000 88141 837 3.100 60013 842 2.750 93357 739 2.300 127191 890 2.800 100014 928 2.400 139548 864 2.050 184092 938 3.500 30882 910 2.800 57955 892 2.800 106099 1036 2.100 127401 766 2.100 199476 943 2.100 136873 943 1.750 176156 813 1.400 206697 815 3.550 37417 825 3.250 55412 842 2.500 120738 794 4.000 97282 865 3.500 133130 691 3.900 42527 810 3.500 90206 886 3.650 156021 1063 2.800 175145 851 2.900 267295 890

2.780 89663 2.250 139128 4.200 21843 3.380 41051 2.630 138564 4.650 26442 3.830 37533 3.000 125417 4.650 78034 4.130 129569 3.450 182737 4.200 137688 3.600199269 3.080267623 5.250 36111 4.200 76378 4.200 145357 3.150 183020 3.150 289181 3.150 195830 2.630 257208 2.100 305100 5.330 44594 4.880 70788 3.750 171016 6.000 126387 5.250 182962 5.850 50466 5.250 119053 5.480210942 4.200 248828 4.350 383017

1409 1342 1238 1110 1341 1201 1036 1201 1177 1233 1421 1315 1393 1484 1247 1254 1468 1227 1492 1358 1281 1260 1138 1177 1137 1207 1163 1116 1244 1503 1221 1429

3.700 112942 1781 3.000 180141 1887 5.600 23022 1494 4.500 50260 1377 3.500 178214 1896 6.200 27966 1450 5.100 44930 1278 4.000 160223 1528 6.200 92176 1455 5.500 162061 1804 4.600 235503 2011 5.600 171214 1651 4.800 255443 1985 4.100 346888 2072 7.000 38423 1507 5.600 91252 1559 5.600 179858 1844 4.200 235610 1739 4.200 374993 2094 4.200 251108 1736 3.500 334227 1782 2.800 401294 1730 7.100 48147 1383 6.500 82002 1451 5.000 217625 1444 8.000 149323 1490 7.000 227317 1720 7.800 54284 1356 7.000 142462 1547 7.300 257630 1879 5.600 317399 1554 5.800 492058 2031

9

Dimensional Tables

9.3 Dimension Tables for Corrosion Resistant SCHNORR Disc Springs Article No.

024 650 025 250 025 400 025 700 026 300 026 700 027 100 027 400 028 910 029 101 029 301 029 602 029 701 030 290 030 800 031 000 032 040 032 500 032 704 033 400 033 500 034 200 034 550 035 040 035 103 035 400 035 601 038 353 038 600 039 040 039 500 039 800 039 971

Ordering Dimensions De [mm]

Di [mm]

6 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12.5 12.5 12.5 12.5 14 14 14 15 15 15

3.2 3.2 3.2 3.2 3.2 4.2 4.2 4.2 3.2 3.2 3.2 4.2 4.2 5.2 5.2 5.2 4.2 4.2 4.2 5.2 5.2 6.2 6.2 5.2 6.2 6.2 6.2 7.2 7.2 7.2 5.2 5.2 5.2

t [mm]

l0 [mm]

h0 [mm]

0.3 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.3 0.4 0.5 0.4 0.5 0.25 0.4 0.5 0.4 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.35 0.5 0.7 0.35 0.5 0.8 0.4 0.5 0.6

0.45 0.4 0.55 0.55 0.7 0.45 0.5 0.6 0.65 0.7 0.7 0.65 0.7 0.55 0.65 0.7 0.8 0.8 0.85 0.8 0.85 0.85 0.85 0.85 0.8 0.85 0.95 0.8 0.9 1.05 0.95 1 1.05

0.15 0.2 0.25 0.15 0.2 0.25 0.2 0.2 0.35 0.3 0.2 0.25 0.2 0.3 0.25 0.2 0.4 0.3 0.25 0.3 0.25 0.35 0.25 0.35 0.45 0.35 0.25 0.45 0.4 0.25 0.55 0.5 0.45

h0/t 0.50 1.00 0.83 0.38 0.40 1.25 0.67 0.50 1.17 0.75 0.40 0.63 0.40 1.20 0.63 0.40 1.00 0.60 0.42 0.60 0.42 0.70 0.42 0.70 1.29 0.70 0.36 1.29 0.80 0.31 1.38 1.00 0.75

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

0.047 0.066 0.098 0.131 0.166 0.057 0.085 0.113 0.165 0.220 0.274 0.202 0.252 0.112 0.179 0.223 0.309 0.386 0.463 0.357 0.429 0.323 0.387 0.395 0.253 0.361 0.504 0.310 0.442 0.706 0.486 0.607 0.728

-1497 -655 -1228 -983 -1638 -925 -1110 -1480 -1058 -1209 -1007 -1064 -1064 -883 -1177 -1177 -1132 -1061 -1061 -1120 -1120 -1424 -1221 -1188 -1152 -1281 -1281 -939 -1192 -1192 -995 -1131 -1221 98

∅ 6 – 15 mm Material: 1.4310 (X 10 CrNi 18-8) Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] 0.038 0.050 0.063 0.038 0.050 0.063 0.050 0.050 0.088 0.075 0.050 0.063 0.050 0.075 0.063 0.050 0.100 0.075 0.063 0.075 0.063 0.088 0.063 0.088 0.113 0.088 0.063 0.113 0.100 0.063 0.138 0.125 0.113 99

43 12 44 47 125 21 36 76 50 73 77 59 81 30 65 90 83 90 117 95 124 130 135 108 81 117 187 66 117 224 98 129 166

412 215 370 290 471 377 337 405 349 321 336 289 296 350 347 300 355 265 328 303 300 438 314 336 467 387 336 386 387 320 370 353 333

0.075 0.100 0.125 0.075 0.100 0.125 0.100 0.100 0.175 0.150 0.100 0.125 0.100 0.150 0.125 0.100 0.200 0.150 0.125 0.150 0.125 0.175 0.125 0.175 0.225 0.175 0.125 0.225 0.200 0.125 0.275 0.250 0.225

81 20 77 91 239 32 64 143 79 129 147 108 155 47 119 172 137 166 224 175 237 232 258 194 126 209 362 103 204 436 150 214 293

786 400 691 612 999 695 636 772 643 611 710 546 629 647 656 608 659 589 696 574 640 825 624 633 860 730 708 710 725 670 678 655 625

0.113 0.150 0.188 0.113 0.150 0.188 0.150 0.150 0.263 0.225 0.150 0.188 0.150 0.225 0.188 0.150 0.300 0.225 0.188 0.225 0.188 0.263 0.188 0.263 0.338 0.263 0.188 0.338 0.300 0.188 0.413 0.375 0.338

116 25 101 133 347 38 88 203 95 174 213 149 225 56 165 249 173 232 324 244 342 317 373 264 147 285 529 120 271 640 170 270 395

1125 553 965 966 1584 954 897 1124 883 1046 1122 845 998 890 928 968 911 971 1105 889 1018 1161 996 892 1178 1027 1117 973 1016 1049 924 906 998

0.150 0.200 0.250 0.150 0.200 0.250 0.200 0.200 0.350 0.300 0.200 0.250 0.200 0.300 0.250 0.200 0.400 0.300 0.250 0.300 0.250 0.350 0.250 0.350 0.450 0.350 0.250 0.450 0.400 0.250 0.550 0.500 0.450

148 29 122 173 451 41 110 261 105 213 278 188 293 61 208 324 200 293 421 309 444 392 484 327 156 353 692 127 329 841 175 312 485

1617 676 1299 1353 2226 1154 1120 1615 1068 1566 1573 1240 1403 1079 1198 1365 1174 1411 1554 1298 1437 1447 1408 1332 1423 1282 1563 1175 1258 1458 1109 1180 1499

9

Dimensional Tables

∅ 15 – 20 mm Material: 1.4310 (X 10 CrNi 18-8) Article No.

040 130 040 950 041 301 041 700 042 400 042 601 043 750 044 000 044 101 044 201 044 400 045 800 046 003 046 252 046 400 046 505 046 924 047 070 047 300 047 691 047 910 048 050 048 098 048 051 051 100 052 270 051 450 051 701 051 761 052 803 052 804 053 500 053 701 053 901 054 380

Ordering Dimensions De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

15 15 15 15 15 15 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20 20 20

5.2 6.2 6.2 6.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 6.2 6.2 6.2 6.2 6.2 8.2 8.2 8.2 8.2 9.2 9.2 9.2 8.2 8.2 8.2 8.2 8.2 8.2 10.2 10.2 10.2 10.2 10.2 10.2

0.7 0.5 0.6 0.7 0.7 0.8 0.4 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.5 0.7 0.8 1 0.45 0.7 1 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.8 0.9 1 1.1

1.05 1 1 1.05 1 1.1 0.9 1.05 1.05 1.1 1.2 1 1.1 1.2 1.25 1.3 1.1 1.2 1.25 1.35 1.05 1.2 1.35 1.15 1.3 1.35 1.35 1.45 1.45 1.15 1.2 1.35 1.4 1.4 1.5

0.35 0.50 0.40 0.35 0.30 0.30 0.50 0.45 0.35 0.30 0.30 0.60 0.60 0.60 0.55 0.50 0.60 0.50 0.45 0.35 0.60 0.50 0.35 0.65 0.70 0.65 0.55 0.55 0.45 0.65 0.60 0.55 0.50 0.40 0.40

0.50 1.00 0.67 0.50 0.43 0.38 1.25 0.75 0.50 0.38 0.33 1.50 1.20 1.00 0.79 0.63 1.20 0.71 0.56 0.35 1.33 0.71 0.35 1.30 1.17 0.93 0.69 0.61 0.45 1.30 1.00 0.69 0.56 0.40 0.36

Weight/ 1000 pcs. [kg] 0.849 0.572 0.687 0.801 0.677 0.773 0.464 0.695 0.811 0.926 1.042 0.702 0.878 1.053 1.228 1.403 0.789 1.104 1.262 1.576 0.662 1.029 1.469 1.029 1.226 1.430 1.634 1.838 2.042 0.910 1.098 1.454 1.635 1.817 1.998

Stress σ OM at s = h0 [N/mm2] -1108 -1176 -1129 -1152 -1138 -1301 -911 -1230 -1116 -1093 -1230 -753 -941 -1129 -1208 -1255 -1015 -1184 -1218 -1184 -970 -1257 -1257 -858 -1108 -1201 -1161 -1306 -1188 -944 -1046 -1279 -1308 -1162 -1279 100

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] 0.088 0.125 0.100 0.088 0.075 0.075 0.125 0.113 0.088 0.075 0.075 0.150 0.150 0.150 0.138 0.125 0.150 0.125 0.113 0.088 0.150 0.125 0.088 0.163 0.175 0.163 0.138 0.138 0.113 0.163 0.150 0.138 0.125 0.100 0.100 101

174 134 145 181 172 251 81 167 175 211 294 82 126 186 229 278 136 213 259 353 117 227 374 125 208 254 268 363 371 137 172 295 351 354 463

315 391 313 290 302 332 368 388 302 275 324 294 323 352 336 317 384 350 328 330 406 388 326 327 398 384 325 349 318 389 375 388 366 294 327

0.175 0.250 0.200 0.175 0.150 0.150 0.250 0.225 0.175 0.150 0.150 0.300 0.300 0.300 0.275 0.250 0.300 0.250 0.225 0.175 0.300 0.250 0.175 0.325 0.350 0.325 0.275 0.275 0.225 0.325 0.300 0.275 0.250 0.200 0.200

327 223 261 340 329 483 127 295 330 406 572 122 200 308 402 508 215 381 481 683 180 405 725 193 332 429 482 665 704 213 285 531 651 679 895

680 726 589 629 578 667 678 728 576 583 680 538 595 653 629 687 709 658 623 694 746 730 687 601 735 715 611 659 682 716 698 732 696 608 691

0.263 0.375 0.300 0.263 0.225 0.225 0.375 0.338 0.263 0.225 0.225 0.450 0.450 0.450 0.413 0.375 0.450 0.375 0.338 0.263 0.450 0.375 0.263 0.488 0.525 0.488 0.413 0.413 0.338 0.488 0.450 0.413 0.375 0.300 0.300

466 281 359 485 474 704 150 398 470 591 838 135 238 389 537 705 257 518 676 998 207 550 1059 224 400 552 660 926 1013 247 360 726 918 985 1305

1096 1005 876 1018 890 1057 930 1023 860 923 1069 730 817 903 962 1139 974 925 964 1093 1020 1028 1083 822 1010 993 890 1066 1093 981 968 1031 989 968 1092

0.350 0.500 0.400 0.350 0.300 0.300 0.500 0.450 0.350 0.300 0.300 0.600 0.600 0.600 0.550 0.500 0.600 0.500 0.450 0.350 0.600 0.500 0.350 0.650 0.700 0.650 0.550 0.550 0.450 0.650 0.600 0.550 0.500 0.400 0.400

598 324 448 622 615 918 161 488 603 771 1098 133 259 448 652 885 280 640 859 1306 217 679 1386 236 440 649 819 1166 1309 260 415 902 1168 1281 1705

1564 1228 1297 1456 1262 1485 1125 1270 1235 1296 1490 871 987 1184 1457 1663 1179 1241 1398 1526 1230 1279 1513 991 1224 1218 1324 1559 1549 1184 1184 1286 1405 1364 1530

9

Dimensional Tables

∅ 20 – 31.5 mm Material: 1.4310 (X 10 CrNi 18-8) Article No.

055 280 055 650 057 710 057 903 058 050 058 950 059 210 059 400 059 504 060 460 060 600 060 901 001 922 061 600 061 951 063 872 064 400 064 900 065 104 065 129 065 400 071 600 071 752 072 001 072 105 072 750 072 860 073 300 075 260 075 700 075 925 076 160 082 253 081 505 082 303

Ordering Dimensions De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

20 20 22.5 22.5 22.5 23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 28 28 28 28 28 28 28 28 28 28 28 31.5 31.5 31.5

10.2 10.2 11.2 11.2 11.2 8.2 8.2 8.2 8.2 10.2 10.2 10.2 12.2 12.2 12.2 10.2 12.2 12.2 12.2 12.2 12.2 10.2 10.2 10.2 10.2 12.2 12.2 12.2 14.2 14.2 14.2 14.2 12.2 12.2 12.2

1.25 1.5 0.6 0.8 1.25 0.7 0.8 0.9 1 0.9 1 1.25 1 1.25 1.5 1 0.7 0.9 1 1.25 1.5 0.8 1 1.25 1.5 1 1.25 1.5 0.8 1 1.25 1.5 1 1.25 1.5

1.55 1.75 1.4 1.45 1.65 1.5 1.55 1.6 1.6 1.65 1.6 1.7 1.6 1.65 1.85 1.7 1.6 1.6 1.65 1.75 1.95 1.75 1.9 1.95 2.1 1.95 1.95 2.05 1.8 1.8 1.9 2.05 2.1 2.15 2.25

0.30 0.25 0.80 0.65 0.40 0.80 0.75 0.70 0.60 0.75 0.60 0.45 0.60 0.40 0.35 0.70 0.90 0.70 0.65 0.50 0.45 0.95 0.90 0.70 0.60 0.95 0.70 0.55 1.00 0.80 0.65 0.55 1.10 0.90 0.75

0.24 0.17 1.33 0.81 0.32 1.14 0.94 0.78 0.60 0.83 0.60 0.36 0.60 0.32 0.23 0.70 1.29 0.78 0.65 0.40 0.30 1.19 0.90 0.56 0.40 0.95 0.56 0.37 1.25 0.80 0.52 0.37 1.10 0.72 0.50

Weight/ 1000 pcs. [kg] 2.269 2.721 1.406 1.873 2.924 1.987 2.271 2.554 2.838 2.352 2.613 3.264 2.337 2.919 3.501 3.205 2.052 2.637 2.929 3.660 4.389 3.351 4.188 5.232 6.277 3.911 4.887 5.862 2.870 3.586 4.480 5.373 5.191 6.486 7.781

Stress σ OM at s = h0 [N/mm2] -1090 -1090 -1086 -1177 -1132 -1082 -1159 -1217 -1159 -1384 -1230 -1153 -1353 -1127 -1184 -1181 -1142 -1142 -1178 -1133 -1224 -995 -1178 -1145 -1178 -1305 -1202 -1133 -1182 -1182 -1200 -1219 -1153 -1179 -1179 102

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] 0.075 0.063 0.200 0.163 0.100 0.200 0.188 0.175 0.150 0.188 0.150 0.113 0.150 0.100 0.088 0.175 0.225 0.175 0.163 0.125 0.113 0.238 0.225 0.175 0.150 0.238 0.175 0.138 0.250 0.200 0.163 0.138 0.275 0.225 0.188 103

487 688 233 297 520 271 322 380 395 450 419 539 461 518 760 430 322 356 415 539 706 338 497 715 807 573 624 765 422 463 609 1003 570 680 851

316 338 450 380 308 366 354 341 292 433 336 324 396 295 338 332 460 359 344 286 344 346 356 292 360 431 318 319 475 382 328 312 393 329 310

0.150 0.125 0.400 0.325 0.200 0.400 0.375 0.350 0.300 0.375 0.300 0.225 0.300 0.200 0.175 0.350 0.450 0.350 0.325 0.250 0.225 0.475 0.450 0.350 0.300 0.475 0.350 0.275 0.500 0.400 0.325 0.275 0.550 0.450 0.375

959 1365 359 518 1012 435 544 667 725 779 769 1041 846 1008 1498 770 500 626 752 1034 1385 536 846 1300 1548 963 1157 1477 661 808 1139 1912 923 1212 1599

653 691 827 712 645 676 659 639 635 809 636 682 750 618 697 625 847 674 650 609 717 638 662 643 763 802 603 674 876 715 625 659 727 618 672

0.225 0.188 0.600 0.488 0.300 0.600 0.563 0.525 0.450 0.563 0.450 0.338 0.450 0.300 0.263 0.525 0.675 0.525 0.488 0.375 0.338 0.713 0.675 0.525 0.450 0.713 0.525 0.413 0.750 0.600 0.488 0.413 0.825 0.675 0.563

1420 2036 413 687 1485 528 698 892 1012 1027 1074 1520 1181 1480 2221 1051 582 837 1039 1500 2046 642 1097 1799 2246 1231 1629 2153 778 1075 1616 2758 1133 1646 2278

1011 1058 1132 995 1010 929 914 952 1047 1130 961 1075 1063 969 1078 899 1161 944 917 969 1120 876 921 1051 1208 1114 981 1063 1203 1001 917 1042 1002 914 1085

0.300 0.250 0.800 0.650 0.400 0.800 0.750 0.700 0.600 0.750 0.600 0.450 0.600 0.400 0.350 0.700 0.900 0.700 0.650 0.500 0.450 0.950 0.900 0.700 0.600 0.950 0.700 0.550 1.000 0.800 0.650 0.550 1.100 0.900 0.750

1877 2703 431 830 1949 584 818 1087 1278 1235 1356 1986 1491 1942 2936 1301 617 1020 1299 1952 2698 702 1298 2254 2922 1439 2071 2811 834 1303 2068 3573 1270 2030 2924

1389 1440 1364 1231 1405 1126 1238 1442 1523 1395 1405 1502 1382 1349 1480 1341 1401 1170 1230 1365 1553 1060 1271 1517 1696 1365 1421 1487 1454 1240 1322 1461 1218 1368 1551

9

Dimensional Tables

∅ 31.5 – 50 mm Material: 1.4310 (X 10 CrNi 18-8) Article No.

082 801 083 370 083 800 084 493 084 800 087 900 088 046 088 300 089 321 089 400 090 500 091 100 004 543 094 000 093 683 099 423 099 461 099 833 100 503 100 801 101 755 102 531 103 000 103 500 103 953 104 465 110 412 110 501 110 901 115 970 116 300 116 653 116 901 117 400 117 703

Ordering Dimensions De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

31.5 31.5 31.5 31.5 31.5 34 34 34 34 34 34 34 35.5 35.5 35.5 40 40 40 40 40 40 40 40 40 40 40 45 45 45 50 50 50 50 50 50

16.3 16.3 16.3 16.3 16.3 12.3 12.3 12.3 14.3 14.3 16.3 16.3 18.3 18.3 18.3 14.3 14.3 14.3 16.3 16.3 18.3 20.4 20.4 20.4 20.4 20.4 22.4 22.4 22.4 18.4 18.4 18.4 18.4 20.4 20.4

0.8 1.25 1.5 1.75 2 1 1.25 1.5 1.25 1.5 1.5 2 0.9 1.25 2 1.25 1.5 2 1.5 2 2 1 1.5 2 2.25 2.5 1.25 1.75 2.5 1.25 1.5 2 2.5 2 2.5

1.85 2 2.15 2.3 2.5 2.25 2.35 2.4 2.3 2.35 2.3 2.6 2.05 2.25 2.65 2.65 2.75 2.9 2.7 2.9 2.85 2.3 2.6 2.8 2.95 3.15 2.9 2.95 3.35 2.85 3.3 3.45 3.65 3.4 3.6

1.05 0.75 0.65 0.55 0.50 1.25 1.10 0.90 1.05 0.85 0.80 0.60 1.15 1.00 0.65 1.40 1.25 0.90 1.20 0.90 0.85 1.30 1.10 0.80 0.70 0.65 1.65 1.20 0.85 1.60 1.80 1.45 1.15 1.40 1.10

1.31 0.60 0.43 0.31 0.25 1.25 0.88 0.60 0.84 0.57 0.53 0.30 1.28 0.72 0.33 1.12 0.83 0.45 0.80 0.45 0.43 1.30 0.73 0.40 0.31 0.26 1.32 0.69 0.34 1.28 1.20 0.73 0.46 0.70 0.44

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

3.577 5.584 6.698 7.811 8.923 6.187 7.732 9.275 7.321 8.783 8.216 10.946 5.132 7.124 11.385 10.752 12.899 17.189 12.332 16.433 15.584 7.300 10.942 14.580 16.397 18.212 11.746 16.434 23.457 16.679 20.011 26.669 33.323 25.710 32.123

-993 -1108 -1153 -1138 -1182 -1108 -1219 -1197 -1208 -1174 -1165 -1165 -961 -1161 -1207 -1118 -1198 -1150 -1185 -1185 -1167 -944 -1199 -1162 -1144 -1180 -1167 -1188 -1202 -822 -1110 -1193 -1182 -1181 -1160 104

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] 0.263 0.188 0.163 0.138 0.125 0.313 0.275 0.225 0.263 0.213 0.200 0.150 0.288 0.250 0.163 0.350 0.313 0.225 0.300 0.225 0.213 0.325 0.275 0.200 0.175 0.163 0.413 0.300 0.213 0.400 0.450 0.363 0.288 0.350 0.275 105

373 590 803 1023 1357 619 792 917 761 881 858 1361 444 603 1423 878 1082 1437 1044 1480 1439 549 1006 1416 1698 2123 1011 1312 2228 735 1339 1768 2319 1720 2251

413 321 300 304 337 396 363 303 372 307 314 331 394 377 320 375 347 338 353 319 299 389 374 294 309 336 481 357 320 299 390 328 337 332 315

0.525 0.375 0.325 0.275 0.250 0.625 0.550 0.450 0.525 0.425 0.400 0.300 0.575 0.500 0.325 0.700 0.625 0.450 0.600 0.450 0.425 0.650 0.550 0.400 0.350 0.325 0.825 0.600 0.425 0.800 0.900 0.725 0.575 0.700 0.550

577 1083 1530 1992 2667 969 1355 1684 1316 1631 1599 2656 692 1074 2767 1416 1873 2729 1823 2812 2747 850 1786 2716 3308 4170 1573 2359 4321 1144 2121 3148 4396 3081 4284

761 608 580 636 697 728 677 649 695 593 598 691 725 707 670 692 648 723 661 684 639 716 703 608 647 696 884 673 673 550 719 616 723 625 674

0.788 0.563 0.488 0.413 0.375 0.938 0.825 0.675 0.788 0.638 0.600 0.450 0.863 0.750 0.488 1.050 0.938 0.675 0.900 0.675 0.638 0.975 0.825 0.600 0.525 0.488 1.238 0.900 0.638 1.200 1.350 1.088 0.863 1.050 0.825

667 1512 2207 2925 3948 1140 1765 2351 1733 2293 2264 3908 808 1459 4058 1728 2471 3925 2426 4044 3968 987 2417 3940 4861 6164 1836 3229 6324 1334 2530 4268 6311 4203 6173

1042 862 928 997 1080 997 942 1071 970 975 913 1078 994 990 1052 953 903 1155 924 1095 1020 981 987 968 1013 1081 1210 948 1059 753 986 954 1157 899 1078

1.050 0.750 0.650 0.550 0.500 1.250 1.100 0.900 1.050 0.850 0.800 0.600 1.150 1.000 0.650 1.400 1.250 0.900 1.200 0.900 0.850 1.300 1.100 0.800 0.700 0.650 1.650 1.200 0.850 1.600 1.800 1.450 1.150 1.400 1.100

701 1909 2859 3841 5213 1221 2099 2968 2081 2911 2891 5139 858 1799 5322 1926 2972 5073 2940 5227 5146 1041 2973 5125 6385 8133 1949 4011 8283 1417 2754 5259 8146 5206 7989

1257 1149 1317 1385 1487 1203 1339 1557 1230 1413 1318 1495 1201 1225 1464 1156 1368 1634 1265 1552 1442 1184 1228 1364 1407 1490 1458 1197 1477 907 1192 1428 1641 1341 1525

9

Dimensional Tables

∅ 50 – 90 mm Material: 1.4310 (X 10 CrNi 18-8) Article No.

118 401 000 227 119 950 120 103 120 400 120 801 128 599 128 600 131 001 003 158 131 801 113 193 138 221 138 503 144 401 146 250 153 014 153 110 159 600 161 220 169 200

Ordering Dimensions De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

50 50 50 50 50 50 56 56 60 60 60 60 63 63 70 70 71 71 80 80 90

22.4 22.4 25.4 25.4 25.4 25.4 28.5 28.5 20.5 20.5 25.5 30.5 31 31 25.5 30.5 36 36 31 41 46

2 2.5 1.25 1.5 2 2.5 1.5 2 2 2.5 2.5 2.5 1.8 2.5 2 2.5 2 2.5 2.5 2.25 2.5

3.3 3.6 2.85 3.1 3.3 3.5 3.45 3.6 4.1 4.05 4.1 4 4.1 4.15 4.5 4.7 4.6 4.5 5.3 5.2 5.7

1.30 1.10 1.60 1.60 1.30 1.00 1.95 1.60 2.10 1.55 1.60 1.50 2.30 1.65 2.50 2.20 2.60 2.00 2.80 2.95 3.20

0.65 0.44 1.28 1.07 0.65 0.40 1.30 0.80 1.05 0.62 0.64 0.60 1.28 0.66 1.25 0.88 1.30 0.80 1.12 1.31 1.28

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

24.652 30.800 14.311 17.168 22.878 28.582 21.495 28.646 39.235 49.027 45.471 41.157 33.419 46.389 52.479 61.266 46.249 57.789 84.001 65.586 92.370

-1132 -1198 -928 -1113 -1206 -1160 -1083 -1185 -1185 -1093 -1186 -1208 -1187 -1183 -1047 -1209 -1195 -1149 -1137 -1209 -1150

106

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] 0.325 0.275 0.400 0.400 0.325 0.250 0.488 0.400 0.525 0.388 0.400 0.375 0.575 0.413 0.625 0.550 0.650 0.500 0.700 0.738 0.800

1594 2325 829 1206 1698 2207 1416 1854 2251 2357 2593 2573 2196 2620 2338 3141 2778 2810 3571 3590 4109

320 306 378 412 358 293 446 383 378 274 327 348 478 349 375 385 491 371 392 501 470

0.650 0.550 0.800 0.800 0.650 0.500 0.975 0.800 1.050 0.775 0.800 0.750 1.150 0.825 1.250 1.100 1.300 1.000 1.400 1.475 1.600

2892 4425 1290 1969 3080 4234 2194 3238 3691 4308 4715 4724 3418 4741 3661 5374 4303 4907 5760 5549 6393

604 656 697 764 675 608 820 718 699 605 617 659 880 658 690 719 904 695 724 922 865

0.975 0.825 1.200 1.200 0.975 0.750 1.463 1.200 1.575 1.163 1.200 1.125 1.725 1.238 1.875 1.650 1.950 1.500 2.100 2.213 2.400

3992 6376 1505 2439 4251 6141 2546 4309 4592 5986 6523 6595 3992 6529 4308 7003 4994 6529 7028 6420 7460

852 1049 955 1056 954 968 1124 1005 965 1001 923 933 1207 928 945 1001 1238 973 997 1263 1186

1.300 1.100 1.600 1.600 1.300 1.000 1.950 1.600 2.100 1.550 1.600 1.500 2.300 1.650 2.500 2.200 2.600 2.000 2.800 2.950 3.200

4993 8251 1598 2761 5317 7988 2685 5223 5223 7530 8174 8325 4241 8150 4617 8330 5268 7914 7835 6748 7920

1248 1487 1153 1288 1227 1364 1356 1244 1206 1460 1360 1267 1457 1220 1139 1232 1494 1205 1210 1524 1433

9

107

Dimensional Tables

9.4 Dimension Tables for Heat Resistant SCHNORR Disc Springs Article No.

024 670 025 600 025 800 027 000 027 300 028 900 029 100 029 300 029 600 029 700 030 700 030 900 032 200 032 400 032 702 033 300 033 450 034 100 034 500 035 041 035 300 035 600 038 500 039 000 039 475 039 700 039 970 040 100 040 949 041 300 041 600 042 300 042 600 043 749 043 900

Ordering Dimensions De [mm]

Di [mm]

t [mm]

l0 [mm]

h0 [mm]

h0/t

6 8 8 8 8 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12.5 12.5 12.5 14 14 15 15 15 15 15 15 15 15 15 16 16

3.2 3.2 3.2 4.2 4.2 3.2 3.2 3.2 4.2 4.2 5.2 5.2 4.2 4.2 4.2 5.2 5.2 6.2 6.2 5.2 6.2 6.2 7.2 7.2 5.2 5.2 5.2 5.2 6.2 6.2 6.2 8.2 8.2 8.2 8.2

0.3 0.3 0.4 0.3 0.4 0.3 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.7 0.5 0.8 0.4 0.5 0.6 0.7 0.5 0.6 0.7 0.7 0.8 0.4 0.6

0.4 0.55 0.55 0.5 0.55 0.65 0.7 0.7 0.65 0.7 0.65 0.7 0.8 0.8 0.85 0.8 0.85 0.8 0.85 0.85 0.8 0.95 0.9 1.05 0.95 1 1.05 1.05 1 1 1.05 1 1.05 0.95 1.05

0.10 0.25 0.15 0.20 0.15 0.35 0.30 0.20 0.25 0.20 0.25 0.20 0.40 0.30 0.25 0.30 0.25 0.30 0.25 0.35 0.30 0.25 0.40 0.25 0.55 0.50 0.45 0.35 0.50 0.40 0.35 0.30 0.25 0.55 0.45

0.33 0.83 0.38 0.67 0.38 1.17 0.75 0.40 0.63 0.40 0.63 0.40 1.00 0.60 0.42 0.60 0.42 0.60 0.42 0.70 0.60 0.36 0.80 0.31 1.38 1.00 0.75 0.50 1.00 0.67 0.50 0.43 0.31 1.38 0.75

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

0.046 0.096 0.128 0.083 0.110 0.161 0.214 0.268 0.196 0.245 0.174 0.217 0.301 0.376 0.452 0.348 0.418 0.315 0.378 0.385 0.351 0.492 0.431 0.688 0.473 0.592 0.710 0.828 0.558 0.669 0.781 0.660 0.754 0.452 0.678

-1098 -1351 -1081 -1221 -1221 -1164 -1330 -1108 -1170 -1170 -1295 -1295 -1245 -1168 -1168 -1232 -1232 -1343 -1343 -1306 -1207 -1409 -1312 -1312 -1094 -1244 -1343 -1219 -1293 -1242 -1268 -1252 -1193 -1102 -1353 108

Dimensional Tables

∅ 20 – 50 mm Material: 1.4923 (X 22 CrMoV 12 1) Article No.

055 660 061 952 065 500 072 104 073 250 076 300 083 900 084 400 084 801 088 400 089 500 090 600 091 200 094 600 099 464 099 860 100 700 100 734 101 800 103 100 103 600 104 300 104 800 110 600 111 000 116 400 116 654 116 903 117 204 117 450 117 700 118 405 118 600 120 104 120 500

Ordering Dimensions De Di t t’ l0 [mm] [mm] [mm] [mm] [mm] 20 23 25 28 28 28 31.5 31.5 31.5 34 34 34 34 35.5 40 40 40 40 40 40 40 40 40 45 45 50 50 50 50 50 50 50 50 50 50

10.2 12.2 12.2 10.2 12.2 14.2 16.3 16.3 16.3 12.3 14.3 16.3 16.3 18.3 14.3 14.3 16.3 16.3 18.3 20.4 20.4 20.4 20.4 22.4 22.4 18.4 18.4 18.4 18.4 20.4 20.4 22.4 22.4 25.4 25.4

1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.75 2 1.5 1.5 1.5 2 2 1.5 2 1.5 2 2 1.5 2 2.25 2.5 1.75 2.5 1.5 2 2.5 3 2 2.5 2 2.5 1.5 2

1.75 1.85 1.95 2.05 2.05 2.05 2.15 2.3 2.5 2.4 2.35 2.3 2.6 2.65 2.75 2.9 2.7 2.9 2.85 2.6 2.8 2.95 3.15 2.95 3.35 3.3 3.3 3.65 3.95 3.4 3.6 3.3 3.6 3.1 3.3

h0 [mm]

h0/t

0.25 0.35 0.45 0.55 0.55 0.55 0.65 0.55 0.50 0.90 0.85 0.80 0.60 0.65 1.25 0.90 1.20 0.90 0.85 1.10 0.80 0.70 0.65 1.20 0.85 1.80 1.30 1.15 0.95 1.40 1.10 1.30 1.10 1.60 1.30

0.17 0.23 0.30 0.37 0.37 0.37 0.43 0.31 0.25 0.60 0.57 0.53 0.30 0.33 0.83 0.45 0.80 0.45 0.43 0.73 0.40 0.31 0.26 0.69 0.34 1.20 0.65 0.46 0.32 0.70 0.44 0.65 0.44 1.07 0.65

Weight/ 1000 pcs. [kg] 2.652 3.412 4.278 6.118 5.714 5.237 6.529 7.614 8.697 9.040 8.560 8.008 10.669 11.097 12.572 16.754 12.019 16.017 15.190 10.665 14.211 15.981 17.751 16.018 22.863 19.504 25.994 32.479 38.958 25.059 31.310 24.028 30.020 16.733 22.299

Stress σ OM at s = h0 [N/mm2] -1199 -1302 -1346 -1188 -1247 -1341 -1268 -1252 -1300 -1316 -1291 -1282 -1282 -1328 -1318 -1265 -1304 -1304 -1284 -1319 -1279 -1259 -1299 -1307 -1322 -1221 -1176 -1301 -1289 -1299 -1276 -1246 -1317 -1224 -1326 120

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] 0.063 0.088 0.113 0.138 0.138 0.138 0.163 0.138 0.125 0.225 0.213 0.200 0.150 0.163 0.313 0.225 0.300 0.225 0.213 0.275 0.200 0.175 0.163 0.300 0.213 0.450 0.325 0.288 0.238 0.350 0.275 0.325 0.275 0.400 0.325 121

719 794 840 761 799 859 839 1069 1418 959 921 896 1422 1487 1130 1501 1091 1547 1504 1051 1479 1774 2219 1371 2328 1399 1573 2424 3238 1797 2352 1666 2429 1260 1774

372 371 378 376 351 343 330 334 370 333 338 346 364 352 381 372 388 351 329 411 323 340 370 393 352 429 309 371 425 365 347 352 337 453 393

0.125 0.175 0.225 0.275 0.275 0.275 0.325 0.275 0.250 0.450 0.425 0.400 0.300 0.325 0.625 0.450 0.600 0.450 0.425 0.550 0.400 0.350 0.325 0.600 0.425 0.900 0.650 0.575 0.475 0.700 0.550 0.650 0.550 0.800 0.650

1427 1565 1639 1470 1543 1659 1599 2081 2788 1760 1704 1671 2776 2891 1957 2852 1905 2939 2871 1867 2838 3457 4357 2465 4515 2216 2854 4594 6304 3220 4477 3022 4624 2058 3218

760 767 789 791 741 725 637 700 767 714 653 657 760 737 712 795 727 752 703 773 669 712 766 740 741 791 599 795 888 687 742 664 721 840 743

0.190 0.260 0.340 0.410 0.410 0.410 0.490 0.410 0.380 0.680 0.640 0.600 0.450 0.490 0.940 0.680 0.900 0.680 0.640 0.830 0.600 0.530 0.490 0.900 0.640 1.350 0.980 0.860 0.710 1.050 0.830 0.980 0.830 1.200 0.980

2155 2299 2429 2131 2237 2406 2317 3040 4178 2472 2404 2366 4084 4261 2587 4128 2535 4254 4161 2537 4117 5126 6473 3374 6633 2644 3955 6578 9225 4392 6485 4188 6699 2548 4460

1164 1186 1232 1245 1169 1147 1021 1096 1188 1178 1072 1004 1186 1157 993 1270 1016 1204 1122 1086 1064 1114 1189 1043 1165 1085 1001 1273 1386 988 1185 938 1154 1162 1049

0.250 0.350 0.450 0.550 0.550 0.550 0.650 0.550 0.500 0.900 0.850 0.800 0.600 0.650 1.250 0.900 1.200 0.900 0.850 1.100 0.800 0.700 0.650 1.200 0.850 1.800 1.300 1.150 0.950 1.400 1.100 1.300 1.100 1.600 1.300

2824 3068 3172 2799 2938 3159 2988 4014 5447 3102 3042 3021 5370 5562 3106 5301 3073 5462 5377 3107 5356 6672 8499 4191 8656 2878 4927 8512 12151 5440 8348 5217 8622 2885 5556

1584 1628 1708 1739 1636 1607 1448 1524 1636 1713 1555 1450 1644 1611 1505 1797 1392 1707 1586 1351 1500 1548 1639 1317 1625 1311 1472 1805 1922 1475 1677 1372 1636 1417 1349

9

Dimensional Tables

∅ 50 – 90 mm Material: 1.4923 (X 22 CrMoV 12 1) Article No.

120 900 121 100 128 598 128 700 129 100 131 100 131 300 131 412 131 900 132 200 133 194 133 600 133 830 003 085 138 600 138 850 146 400 146 600 147 800 148 050 150 600 151 200 153 012 153 200 153 400 159 500 159 660 160 650 160 660 161 230 161 475 161 800 162 100 169 400 169 600

Ordering Dimensions De Di t t’ l0 [mm] [mm] [mm] [mm] [mm] 50 50 56 56 56 60 60 60 60 60 60 60 60 63 63 63 70 70 70 70 70 70 71 71 71 80 80 80 80 80 80 80 80 90 90

25.4 25.4 28.5 28.5 28.5 20.5 20.5 20.5 25.5 25.5 30.5 30.5 30.5 31 31 31 30.5 30.5 35.5 35.5 40.5 40.5 36 36 36 31 31 36 36 41 41 41 41 46 46

2.5 3 1.5 2 3 2 2.5 3 2.5 3 2.5 3 3.5 1.8 2.5 3.5 2.5 3 3 4 4 5 2 2.5 4 2.5 3 3 4 2.25 3 4 5 2.5 3.5

3.5 3.85 3.45 3.6 4.05 4.1 4.2 4.4 4.1 4.3 4 4.2 4.55 4.1 4.15 4.7 4.7 4.8 4.7 5.2 5.1 5.9 4.6 4.5 5.3 5.3 5.4 5.3 5.7 5 5.2 5.6 6.3 5.7 5.8

h0 [mm]

h0/t

1.00 0.85 1.95 1.60 1.05 2.10 1.70 1.40 1.60 1.30 1.50 1.20 1.05 2.30 1.65 1.20 2.20 1.80 1.70 1.20 1.10 0.90 2.60 2.00 1.30 2.80 2.40 2.30 1.70 2.75 2.20 1.60 1.30 3.20 2.30

0.40 0.28 1.30 0.80 0.35 1.05 0.68 0.47 0.64 0.43 0.60 0.40 0.30 1.28 0.66 0.34 0.88 0.60 0.57 0.30 0.28 0.18 1.30 0.80 0.33 1.12 0.80 0.77 0.43 1.22 0.73 0.40 0.26 1.28 0.66

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

27.859 33.412 20.951 27.921 41.840 38.242 47.786 57.324 44.320 53.163 40.115 48.117 56.110 32.573 45.214 63.247 59.715 71.633 65.661 87.480 78.305 97.792 45.078 56.326 90.018 81.874 98.222 92.159 122.804 63.925 85.190 113.508 141.787 90.032 125.968

-1275 -1301 -1191 -1303 -1283 -1303 -1319 -1303 -1305 -1272 -1329 -1276 -1303 -1306 -1301 -1325 -1330 -1306 -1326 -1248 -1265 -1293 -1314 -1264 -1314 -1251 -1287 -1294 -1275 -1240 -1323 -1282 -1303 -1264 -1272 122

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] 0.250 0.213 0.488 0.400 0.263 0.525 0.425 0.350 0.400 0.325 0.375 0.300 0.263 0.575 0.413 0.300 0.550 0.450 0.425 0.300 0.275 0.225 0.650 0.500 0.325 0.700 0.600 0.575 0.425 0.688 0.550 0.400 0.325 0.800 0.575 123

2306 3227 1480 1938 3265 2352 2812 3509 2709 3367 2689 3322 4424 2295 2738 4577 3282 3804 3783 5537 5560 8644 2903 2936 5886 3732 4305 4224 5973 3254 4216 5936 8903 4294 5237

322 363 490 421 333 415 343 388 359 339 382 322 357 526 383 354 424 354 373 343 329 369 540 408 352 431 376 392 330 495 413 325 370 517 380

0.500 0.425 0.975 0.800 0.525 1.050 0.850 0.700 0.800 0.650 0.750 0.600 0.525 1.150 0.825 0.600 1.100 0.900 0.850 0.600 0.550 0.450 1.300 1.000 0.650 1.400 1.200 1.150 0.850 1.375 1.100 0.800 0.650 1.600 1.150

4424 6315 2292 3384 6322 3857 5063 6642 4927 6418 4937 6374 8637 3572 4954 8873 5616 6984 7002 10809 10894 17134 4497 5128 11446 6020 7519 7439 11403 5128 7489 11389 17482 6680 9483

669 755 902 790 703 769 686 832 679 725 725 669 745 969 724 745 791 670 709 715 684 755 994 765 737 796 704 735 706 912 777 669 766 952 717

0.750 0.640 1.460 1.200 0.790 1.580 1.280 1.050 1.200 0.980 1.130 0.900 0.790 1.730 1.240 0.900 1.650 1.350 1.280 0.900 0.830 0.680 1.950 1.500 0.980 2.100 1.800 1.730 1.280 2.060 1.650 1.200 0.980 2.400 1.730

6418 9346 2659 4503 9267 4806 6961 9524 6816 9301 6916 9245 12747 4175 6833 12982 7318 9749 9876 15905 16172 25707 5219 6823 16868 7344 10005 10004 16530 6078 10134 16519 25972 7796 13097

1064 1176 1236 1105 1107 1061 1153 1332 1016 1158 1026 1064 1164 1328 1021 1173 1101 1033 1006 1117 1065 1159 1362 1070 1157 1097 984 1031 1126 1254 1092 1064 1189 1305 1012

1.000 0.850 1.950 1.600 1.050 2.100 1.700 1.400 1.600 1.300 1.500 1.200 1.050 2.300 1.650 1.200 2.200 1.800 1.700 1.200 1.100 0.900 2.600 2.000 1.300 2.800 2.400 2.300 1.700 2.750 2.200 1.600 1.300 3.200 2.300

8348 12261 2806 5458 12088 5458 8630 12281 8541 11992 8699 12026 16710 4431 8517 16997 8705 12307 12499 20913 21187 33858 5505 8271 22020 8188 12127 12192 21360 6573 12465 21488 34099 8276 16322

1500 1626 1492 1369 1547 1326 1703 1888 1496 1637 1394 1500 1614 1603 1342 1637 1355 1509 1421 1549 1473 1581 1644 1325 1610 1331 1421 1321 1591 1518 1357 1500 1639 1576 1284

9

Dimensional Tables

∅ 90 – 200 mm Material: 1.4923 (X 22 CrMoV 12 1) Article No.

169 800 174 704 174 752 175 591 176 002 176 300 176 600 177 000 183 310 183 320 183 800 188 970 189 052 189 200 190 253 190 510 001 490 190 701 001 526 004 718 192 600 192 904 193 194 199 160 199 444 202 700 203 075 002 858 001 242 208 310 213 744 213 937 000 212 003 095 218 909

Ordering Dimensions De Di t t’ l0 h0 h0/t [mm] [mm] [mm] [mm] [mm] [mm] 90 100 100 100 100 100 100 100 112 112 112 125 125 125 125 125 125 125 125 125 125 125 125 140 140 150 150 150 160 160 180 180 200 200 200

46 41 41 51 51 51 51 51 57 57 57 41 51 51 61 61 61 64 64 64 71 71 71 72 72 61 71 81 82 82 92 92 82 92 92

5 4 5 2.7 3.5 4 5 6 3 4 6 4 4 5 5 6 8 7.5 3.5 5 8 7.5 6 8 7.4 10 9.2 3.8 5 5 6 8 7.5 6 10 9.4 6 10 9.4 8 7.6 10 9.5 12 11.4

6.6 6.8 7.2 6.3 6.3 6.5 7 7.7 6.7 7.2 8.1 8.2 8.4 8.5 8.3 8.7 10 8 8.3 10 8.4 9.8 11.5 8.7 9 10.1 10 10.7 10.3 12.6 11.1 13.3 13.6 14.3 15.6

1.60 2.80 2.20 3.60 2.80 2.50 2.00 1.70 3.70 3.20 2.10 4.20 4.40 3.50 3.30 2.70 2.00 4.50 3.30 2.00 2.40 1.80 1.50 4.90 4.00 5.10 4.00 2.70 4.30 2.60 5.10 3.30 5.60 4.30 3.60

h0’/t’

0.32 0.70 0.44 1.33 0.80 0.63 0.40 0.28 1.23 0.80 0.35 1.05 1.10 0.70 0.66 0.45 0.33 1.29 0.66 0.33 0.40 0.32 0.25 1.29 0.80 1.02 0.67 0.43 0.72 0.34 0.85 0.41 0.79 0.51 0.37

Weight/ 1000 pcs. [kg] 179.789 200.275 250.230 120.314 155.895 178.116 222.523 266.881 167.989 223.876 335.486 335.918 313.759 392.056 358.240 429.708 536.796 243.002 346.916 519.800 381.861 470.633 584.586 330.005 434.011 565.721 630.814 719.402 682.231 1067.576 865.497 1354.537 1523.868 1804.099 2163.894

Stress σ OM at s = h0 [N/mm2] -1264 -1301 -1277 -1243 -1253 -1279 -1279 -1304 -1130 -1303 -1283 -1195 -1306 -1299 -1316 -1292 -1301 -1292 -1353 -1338 -1276 -1306 -1368 -1221 -1312 -1313 -1309 -1295 -1292 -1326 -1209 -1324 -1300 -1314 -1327 124

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 0.400 0.700 0.550 0.900 0.700 0.625 0.500 0.425 0.925 0.800 0.525 1.050 1.100 0.875 0.825 0.675 0.500 1.125 0.825 0.500 0.600 0.450 0.375 1.225 1.000 1.275 1.000 0.675 1.075 0.650 1.275 0.825 1.400 1.075 0.900 125

8832 7200 9422 5139 5706 6729 9247 12939 5320 7750 13060 8625 9815 11233 11078 13799 22799 8638 11391 23443 13292 22678 35942 9635 12189 14460 15936 23766 16287 36468 16799 37743 30338 39552 53428

338 366 346 519 405 374 323 363 452 421 333 376 454 365 387 332 339 530 405 338 337 338 353 502 426 438 381 352 400 333 402 348 396 351 348

0.800 17188 1.400 12898 1.100 17934 1.800 7906 1.400 9966 1.250 12280 1.000 17740 0.850 25322 1.850 8362 1.600 13535 1.050 25287 2.100 14146 2.200 15907 1.750 20124 1.650 20045 1.350 26210 1.000 44284 2.250 13423 1.650 20611 1.000 45535 1.200 25500 0.900 44138 0.750 70798 2.450 14988 2.000 21288 2.550 23891 2.000 28787 1.350 45331 2.150 29055 1.300 70741 2.550 28967 1.650 72166 2.800 53021 2.150 74144 1.800 103089

709 689 741 955 760 708 669 755 833 790 703 695 839 687 730 664 708 975 765 707 647 658 725 925 798 813 720 678 753 697 752 671 744 672 733

1.200 2.100 1.650 2.700 2.100 1.880 1.500 1.280 2.780 2.400 1.580 3.150 3.300 2.630 2.480 2.030 1.500 3.380 2.480 1.500 1.800 1.350 1.130 3.680 3.000 3.830 3.000 2.030 3.230 1.950 3.830 2.480 4.200 3.230 2.700

25225 17595 25839 9092 13261 17084 25732 37476 9891 18011 37068 17598 19516 27491 27647 37779 64785 15646 28428 66615 36988 64660 105229 17452 28327 29989 39583 65426 39522 103379 38079 104347 70379 105346 150010

1111 987 1183 1306 1064 1001 1064 1176 1144 1105 1107 959 1157 988 1030 1066 1108 1337 1079 1106 995 1009 1115 1267 1117 1125 1015 978 1059 1093 1050 1030 1044 1027 1154

1.600 33104 1546 2.800 21791 1472 2.200 33441 1675 3.600 9487 1574 2.800 16074 1317 2.500 21422 1318 2.000 33473 1500 1.700 49165 1627 3.700 10649 1385 3.200 21831 1369 2.100 48353 1547 4.200 20016 1253 4.400 21884 1407 3.500 34000 1475 3.300 34460 1365 2.700 48720 1515 2.000 84629 1538 4.500 16573 1614 3.300 35433 1362 2.000 87019 1536 2.400 48114 1405 1.800 84525 1399 1.500 1381021525 4.900 18464 1530 4.000 34335 1383 5.100 34372 1373 4.000 49350 1378 2.700 84211 1361 4.300 48726 1318 2.600 1349411520 5.100 45584 1297 3.300 1346121453 5.600 84741 1305 4.300 1341751473 3.600 1952201613

9

Dimensional Tables

∅ 200 – 250 mm Material: 1.4923 (X 22 CrMoV 12 1) Article No.

000 436 219 400 004 014 002 226 003 739 223 110 001 030 226 660 003 913 004 175 002 618

Ordering Dimensions De Di t t’ l0 h0 h0/t [mm] [mm] [mm] [mm] [mm] [mm] 200 200 200 200 200 225 250 250 250 250 250

102 102 102 102 112 112 127 127 127 127 127

5.5 8 12 14 14 8 7 10 12 14 16

12.38 13.1 11.3 15.4 13.1 16.9 12.9 15.6 7.5 14.5 6.7 14.8 16.4 11.25 17.3 13.1 18.55 20

6.88 5.10 3.40 2.90 1.60 6.50 7.80 6.40 5.30 4.55 4.00

h0’/t’

1.25 0.64 0.36 0.29 0.21 0.93 1.21 0.64 0.54 0.42 0.25

Weight/ 1000 pcs. [kg] 981.059 1426.016 2012.423 2331.832 2129.412 1721.243 1873.549 2794.326 3142.758 3658.086 4465.057

Stress σ OM at s = h0 [N/mm2] -1210 -1304 -1326 -1326 -790 -1285 -1101 -1306 -1311 -1321 -1306

126

Deflection s, Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 1.720 1.275 0.850 0.725 0.400 1.625 1.950 1.600 1.325 1.138 1.000

19415 27679 53088 69822 40143 33348 27287 43384 57731 73747 91125

488 384 335 353 215 457 444 385 375 348 376

3.440 30399 2.550 50362 1.700 102553 1.450 136621 0.800 79488 3.250 56219 3.900 43146 3.200 78891 2.650 107399 2.275 140980 2.000 179173

899 727 685 731 439 854 822 728 716 670 778

5.160 3.830 2.550 2.180 1.200 4.880 5.850 4.800 3.980 3.410 3.000

35762 69787 149344 201549 118174 71819 51201 109145 151423 203283 265169

1234 1027 1079 1134 670 1193 1132 1028 1023 1026 1206

6.880 38315 1492 5.100 87404 1334 3.400 1944071507 2.900 2640031563 1.600 156338 911 6.500 83197 1472 7.800 55075 1376 6.400 1367731337 5.300 1915911333 4.550 2627761447 4.000 3501391660

9

127

Dimensional Tables

9.5 Dimension Tables for SCHNORR “K” Disc Springs Non-slotted springs Article No.

241200 241400 241600 241700 241800 241900 242100 242200 242300 242500 242600 242800 242900 243000 243100 243200 243300 243400 243500 243600 243700 243800 243900 244000 244100 244200 244300 244400 244500 244600 244700 244800 244900 245000

Ordering Dimensions De [mm]

Di t l0 [mm] [mm] [mm]

h0 [mm]

h0/t

9.8 12.8 15.8 18.8 18.8 21.8 23.7 25.7 27.7 29.7 31.7 34.6 34.6 36.6 39.6 41.6 46.5 51.5 54.5 61.5 67.5 71.5 71.5 74.5 79.5 79.5 84.5 89.5 89.5 94.5 99.0 99.0 109.0 109.0

6.2 7.2 8.2 9.2 10.2 12.3 14.3 14.3 17.3 17.4 20.4 20.4 22.4 20.4 25.5 25.5 30.5 35.5 40.5 40.5 50.5 45.5 50.5 55.5 50.5 55.5 60.5 60.5 65.5 75.5 65.5 70.5 70.5 75.5

0.20 0.25 0.30 0.35 0.35 0.40 0.50 0.50 0.60 0.70 0.70 0.70 0.70 0.80 0.80 0.90 0.90 0.90 0.90 1.10 1.00 1.40 1.40 1.10 1.50 1.50 1.60 1.60 1.60 1.20 1.60 1.60 1.45 1.45

1.00 1.00 1.20 1.17 1.00 1.14 1.25 1.25 1.50 1.75 1.75 1.75 1.40 1.60 1.60 1.80 1.50 1.50 1.50 1.57 1.43 2.00 2.00 1.38 1.88 1.88 1.78 1.78 1.78 1.20 1.60 1.60 1.16 1.16

0.2 0.25 0.25 0.3 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1 1 1 1.25 1.25

0.4 0.5 0.55 0.65 0.7 0.75 0.9 0.90 1 1.1 1.1 1.1 1.2 1.3 1.3 1.4 1.5 1.5 1.5 1.8 1.7 2.1 2.1 1.9 2.3 2.3 2.5 2.5 2.5 2.2 2.6 2.6 2.7 2.7

Spring Load F and Deflection s at s ≈ 0.75 h0 F s [N] [mm] 23 29 23 31 51 46 81 63 80 83 81 61 118 110 110 113 153 135 141 176 161 185 218 211 228 263 359 288 335 325 292 332 357 398

0.15 0.19 0.23 0.26 0.26 0.30 0.38 0.38 0.45 0.53 0.53 0.53 0.53 0.60 0.60 0.68 0.68 0.68 0.68 0.83 0.75 1.05 1.05 0.83 1.13 1.13 1.20 1.20 1.20 0.90 1.20 1.20 1.09 1.09 128

∅ 9.8 – 109 mm Weight/ 1000 pcs.

Ball-Bearing Type

Ball-Bearing Dimension Outer dia.

Inner dia.

[kg] 0.068 0.167 0.275 0.487 0.526 0.684 0.862 1.105 1.132 1.406 1.422 1.894 2.103 2.805 2.783 3.282 4.486 5.059 4.822 9.121 8.505 12.99 10.90 11.99 18.40 15.78 19.05 23.86 20.36 19.57 33.64 29.44 52.80 47.17 129

623(EL3) 624(EL4) 625(EL5) 634(R4) 626(EL6)635(R5) 607(EL7) 608(EL8)627(R7) 609(EL9) 6000 629(R9) 6001 6200 6002 6201 6300 6003

6202 6301 6203

6004 6005 6006 6007 6008

6204 6205

6302 6303 6304

6206

6305 6306

6207 6009 6307 6010

6208 6209

6011 6012

6210

6013

6211

6014

6212

6308

6309 6310

10 13 16 16 19 22 24 26 28 30 32 35 35 37 40 42 47 52 55 62 68 72 72 75 80 80 85 90 90 95 100 100 110 110

3 4 5 6 7 8 9 10 12 – 15 – 17 – – 20 25 – 30 35 40 – – 45 – 50 – – 55 60 65 – 70

– – 4 5 – 7 – 9 – 10 12 – 15 – 17 – 20 25 – 30 – – 35 – – 40 45 – 50 – – 55 – 60

– – – – – – – – – – – 10 – 12 – 15 17 20 – 25 – 30 – – 35 – – 40 – – 45 – 50 –

9

Dimensional Tables

∅ 114 – 358 mm Non-slotted springs Article No.

245100 245200 245300 245400 245500 245600 245700 245800 245900 246000 246100 246200 246300 246400 246500 246600 246700 246800 246900 247000 247100 247200 247300 247400 247500 247600 247700 247800 247900 248000 248100 248200 248300 248400

Ordering Dimensions De [mm]

Di t l0 [mm] [mm] [mm]

114 119 119 124 129 129 139 139 149 149 159 159 169 169 179 179 189 189 198 198 213 223 228 238 248 258 268 278 288 298 308 318 338 358

90.5 75.5 85.5 90.5 85.5 95.5 90.5 101 95.5 106 101 111 111 121 121 126 121 131 131 141 151 161 161 161 171 171 181 181 191 191 202 212 232 242

1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2 2 2 2 2.25 2.25 2.25 2.25 2.5 2.5 2.5 2.5 2.75 2.75 3 3 3 3

2.45 2.8 2.8 3 3.2 3.2 3.25 3.25 3.2 3.2 3.5 3.5 3.8 3.8 4.2 4.2 4.3 4.3 4.5 4.5 4.5 4.6 4.95 5.25 5 5.5 5.7 6 5.75 6.35 6.1 6.2 6.6 7

h0 [mm]

h0/t

1.20 1.55 1.55 1.75 1.95 1.95 2.00 2.00 1.70 1.70 2.00 2.00 2.30 2.30 2.20 2.20 2.30 2.30 2.50 2.50 2.25 2.35 2.70 3.00 2.50 3.00 3.20 3.50 3.00 3.60 3.10 3.20 3.60 4.00

0.96 1.24 1.24 1.40 1.56 1.56 1.60 1.60 1.13 1.13 1.33 1.33 1.53 1.53 1.10 1.10 1.15 1.15 1.25 1.25 1.00 1.04 1.20 1.33 1.00 1.20 1.28 1.40 1.09 1.31 1.03 1.07 1.20 1.33

Spring Load F and Deflection s at s ≈ 0.75 h0 F s [N] [mm] 398 320 393 445 405 500 354 429 379 450 412 477 470 546 864 928 759 858 812 923 941 942 1036 1021 1005 1106 1155 1155 1145 1307 1300 1302 1415 1424

0.90 1.16 1.16 1.31 1.46 1.46 1.50 1.50 1.28 1.28 1.50 1.50 1.73 1.73 1.65 1.65 1.73 1.73 1.88 1.88 1.69 1.76 2.03 2.25 1.88 2.25 2.40 2.63 2.25 2.70 2.33 2.40 2.70 3.00 130

Weight/ 1000 pcs.

Ball-Bearing Type

Outer dia.

[kg] 36.49 64.71 52.28 54.75 71.28 57.31 85.11 69.58 120.1 100.5 138.5 118.9 149.2 127.7 213.1 197.8 258.3 227.1 270.0 236.4 310.9 328.0 359.2 423.8 494.5 572.2 598.7 682.7 783.7 883.0 995.2 1034 1112 1281 131

Ball-Bearing Dimension

6015 6311 6016

6213 6214

6017

6215

6018

6216

6020

6217

6021

6218

6022

6219

6312 6313 6314 6315 6316 6317 6024

6220 6318 6221 6319

6026

6222 6224

6030

6320 6321

6226 6032

6322 6228

6034

6324 6230

6036 6038

6326 6232 6328

6040 6044 6048

6234 6236 6238 6240

6330 6332 6334

115 120 120 125 130 130 140 140 150 150 160 160 170 170 180 180 190 190 200 200 215 225 230 240 250 260 270 280 290 300 310 320 340 360

Inner dia. 75 – – 80 – 85 – 90 – 100 – 105 – 110 – 120 – – – 130 – 150 – 160 – 170 – 180 190 – 200 – 220 240

– – 65 70 – 75 – 80 – 85 – 90 – 95 – 100 – 105 – 110 120 – 130 – 140 – 150 – 160 – 170 180 190 200

– 55 – – 60 – 65 – 70 – 75 – 80 – 85 – 90 – 95 – 100 105 – 110 – 120 – 130 – 140 – 150 160 170

9

Dimensional Tables

∅ 9.8 – 94.5 mm Slotted springs Article No.

241150 241350 241650 241675 241750 241850 242050 242150 242250 242450 242550 242750 242850 242950 243050 243150 243250 243350 243450 243550 243650 243750 243850 243950 244125 244150 244250 244350 244450 244550

Ordering Dimensions Di De [mm] [mm] 9.8 12.8 15.8 18.8 18.8 21.8 23.7 25.7 27.7 29.7 31.7 34.6 34.6 36.6 39.6 41.6 46.5 51.5 54.5 61.5 67.5 71.5 71.5 74.5 79.5 79.5 84.5 89.5 89.5 94.5

6.2 7.2 8.2 9.2 10.2 12.3 14.3 14.3 17.3 17.3 20.4 20.4 22.4 20.4 25.5 25.5 30.5 35.5 40.5 40.5 50.5 45.5 50.5 55.5 50.5 55.5 60.5 60.5 65.5 75.5

t l0 [mm] [mm] 0.15 0.2 0.25 0.25 0.25 0.25 0.3 0.3 0.35 0.35 0.35 0.4 0.35 0.4 0.4 0.45 0.45 0.45 0.45 0.55 0.5 0.6 0.6 0.6 0.7 0.7 0.75 0.8 0.8 0.8

0.6 0.65 0.75 1 1.05 1.25 1.3 1.4 1.45 1.55 1.55 1.65 1.55 1.9 1.9 2.05 2.05 2.1 2.15 2.55 2.6 2.9 2.9 2.9 3.1 2.9 3.15 3.3 3.4 3.45

h0 [mm] 0.45 0.45 0.50 0.75 0.80 1.00 1.00 1.10 1.10 1.20 1.20 1.30 1.20 1.50 1.50 1.60 1.60 1.65 1.70 2.00 2.10 2.30 2.30 2.30 2.40 2.20 2.40 2.50 2.60 2.65

h0W/t 1.00 0.92 0.74 0.97 1.15 1.47 1.21 1.19 1.03 1.30 1.30 1.10 1.18 1.44 1.22 1.13 1.11 1.26 1.75 1.21 1.36 1.47 1.83 1.31 1.36 1.51 0.87 1.08 1.35 1.39

Spring Load F and Deflection s at s ≈ 0.75 h0 F s [N] [mm] 13 18 20 20 24 24 25 28 31 32 33 32 32 35 37 39 44 47 53 54 78 74 127 91 83 127 78 104 189 206

0.35 0.35 0.40 0.55 0.60 0.75 0.75 0.80 0.80 0.90 0.90 1.00 0.90 1.10 1.10 1.20 1.20 1.25 1.30 1.50 1.60 1.70 1.70 1.70 1.80 1.65 1.80 1.90 1.95 2.00

132

Weight/ 1000 pcs.

Ball-Bearing Type

Outer dia.

[kg] 0.050 0.130 0.280 0.440 0.320 0.420 0.660 0.700 0.984 1.200 1.270 1.650 1.500 2.280 1.920 2.500 2.840 3.070 3.200 6.050 5.500 9.600 8.200 7.580 16.26 14.50 13.00 18.10 16.00 13.30

133

Ball-Bearing Dimension

623(EL3) 624(EL4) 625(EL5) 626(EL6) 607(EL7) 608(EL8) 609(EL9) 6000 6001

634(R4) 635(R5) 627(R7) 629(R9)

6002

6200 6201

6003

6202

6300 6301 6203 6004 6005 6006 6007 6008

6204 6205

6302 6303 6304

6206

6305 6306

6207 6009 6307 6010

6208 6209

6011 6012

6210

6308

10 13 16 16 19 22 24 26 28 30 32 35 35 37 40 42 47 52 55 62 68 72 72 75 80 80 85 90 90 95

Inner dia. 3 4 5 6 7 8 9 10 12 – 15 – 17 – – 20 25 – 30 35 40 – – 45 – 50 – – 55 60

– – 4 5 – 7 – 9 – 10 12 – 15 – 17 – 20 25 – 30 – – 35 – – 40 45 – 50 –

– – – – – – – – – – – 10 – 12 – 15 17 20 – 25 – 30 – – 35 – – 40 – –

9

Dimensional Tables

9.6 Dimension Tables for SCHNORR “Z” Disc Springs Article No.

248500 248600 248700 248800 248900 249000 249100 249200 249300 249400 249500 249600 249700 249800 249900 250000 250100 250200 250300 250400 250500 250600 250700 250800 250900 251000 251100

Designation

Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 Z 7 Z 8 Z 9 Z 10 Z 11 Z 12 Z 12a Z 12b Z 12c Z 13 Z 14 Z 15 Z 16 Z 17 Z 18 Z 19 Z 20 Z 21 Z 22 Z 23 Z 24

Ordering Dimensions De [mm]

Di t l0 [mm] [mm] [mm]

h0 [mm]

h0/t –

9.53 12.7 12.7 17.46 17.46 19.05 19.05 19.05 19.05 25.4 25.4 25.4 28 28 28 34.92 34.92 34.92 38.1 38.1 38.1 50.8 50.8 50.8 60.33 60.33 60.33

4.96 6.55 6.55 9.7 9.7 8.13 8.13 9.7 9.7 11.3 11.3 11.3 13 13 13 16.18 16.18 16.18 19.35 19.35 19.35 25.8 25.8 25.8 25.8 25.8 25.8

0.30 0.40 0.40 0.50 0.50 0.60 0.60 0.55 0.55 0.80 0.80 0.65 0.90 0.85 0.70 1.15 1.10 0.80 1.40 1.10 0.90 1.50 1.50 1.20 2.00 2.00 1.60

0.75 0.80 0.67 0.83 0.71 0.86 0.75 0.69 0.61 0.89 0.80 0.52 0.90 0.68 0.47 0.92 0.73 0.40 0.93 0.55 0.36 0.75 0.60 0.40 1.00 0.80 0.53

0.4 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1 1.25 1 1.25 1.5 1.25 1.5 2 1.5 2 2.5 2 2.5 3 2 2.5 3

0.7 0.9 1 1.1 1.2 1.3 1.4 1.35 1.45 1.7 1.8 1.9 1.9 2.1 2.2 2.4 2.6 2.8 2.9 3.1 3.4 3.5 4 4.2 4 4.5 4.6

Weight/ 1000 pcs. [kg]

Stress σ OM at s = h0 [N/mm2]

0.154 0.348 0.419 0.750 0.877 1.241 1.370 1.267 1.429 2.766 3.081 3.867 3.666 4.564 5.462 7.117 8.517 11.38 9.574 12.79 16.13 22.77 28.38 33.87 35.66 44.57 53.30

–1687 –1574 –1888 –1318 –1538 –1342 –1533 –1526 –1717 –1314 –1460 –1483 –1376 –1624 –1605 –1412 –1620 –1571 –1818 –1905 –1948 –1461 –1827 –1753 –1275 –1594 –1530

134

Deflection s , Load F and Stress σ at s = 0.25 h0 s = 0.50 h0 s ≈ 0.75 h0 s = 1.00 h0 s F σ s F σ s F σ s Fc σ [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N] [N/mm2] [mm] [N][N/mm2] 0.08 0.10 0.10 0.13 0.13 0.15 0.15 0.14 0.14 0.20 0.20 0.16 0.23 0.21 0.18 0.29 0.28 0.20 0.35 0.28 0.23 0.38 0.38 0.30 0.50 0.50 0.40

135

97 146 230 181 263 255 352 335 453 423 543 714 552 866 1081 898 1291 1818 1683 2391 3459 2095 3695 4565 2211 3703 4278

535 511 569 449 490 419 451 463 498 424 449 385 453 474 409 470 487 411 630 531 502 459 525 442 429 483 395

0.15 0.20 0.20 0.25 0.25 0.30 0.30 0.28 0.28 0.40 0.40 0.33 0.45 0.43 0.35 0.58 0.55 0.40 0.70 0.55 0.45 0.75 0.75 0.60 1.00 1.00 0.80

171 255 415 313 470 439 622 602 830 722 948 1336 939 1559 2046 1522 2294 3489 2842 4442 6686 3706 6784 8759 3672 6467 7979

1005 959 1074 840 923 783 847 873 943 790 840 756 846 893 838 875 916 873 1175 1009 1059 863 995 920 797 904 791

0.23 0.30 0.30 0.38 0.38 0.45 0.45 0.41 0.41 0.60 0.60 0.49 0.68 0.64 0.53 0.86 0.83 0.60 1.05 0.83 0.68 1.13 1.13 0.90 1.50 1.50 1.20

231 340 571 413 639 576 839 824 1156 939 1261 1896 1218 2138 2933 1962 3104 5060 3651 6268 9757 4994 9470 12705 4631 8605 11295

1412 1342 1515 1175 1299 1091 1188 1230 1334 1101 1176 1043 1177 1258 1117 1217 1286 1054 1633 1435 1327 1211 1410 1221 1103 1264 1067

0.30 283 0.40 412 0.40 712 0.50 497 0.50 789 0.60 688 0.60 1028 0.55 1023 0.55 1457 0.80 1114 0.80 1529 0.65 2426 0.90 1441 0.85 2658 0.70 3783 1.15 2310 1.10 3818 0.80 6582 1.40 4285 1.10 7980 0.90 12752 1.50 6121 1.50 11955 1.20 16526 2.00 5341 2.00 10431 1.60 14419

1753 1662 1892 1453 1619 1345 1639 1534 1787 1354 1469 1769 1448 1718 1922 1495 1659 1953 2006 2059 2341 1504 1916 2062 1349 1647 1858

9

136

Security Elements for Bolted Connections

Chapter 10

137

Security Elements for Bolted Connections 10.1 Original SCHNORR Serrated Safety Washers (Rib Washers) .................................. 139 Dimension Table for “S” Series Serrated Safety Washers (Rib Washers)................. 140 Dimension Table for “VS” Series Serrated Safety Washers (Rib Washers) .............. 142 10.2 Load Washers ......................................................................................................... 143 Heavy Duty Safety Washers-HDS as per DIN 6796 .................................................. 143 Dimension Table for HDS Washers as per DIN 6796................................................ 144 10.3 SCHNORR High Load Safety Washers “HS” ............................................................ 146 Dimension Table for “HS” Washers.......................................................................... 146

138

10.1 Original SCHNORR Serrated Safety Washers (Rib washers) Very often our disc springs are considered for use as serrated safety washers for bolted connections to maintain a preload and prevent loosening. High quality disc springs are too expensive for this application and the sizes of normal disc springs do not match screw and bolt sizes. We have therefore developed special safety elements for this application. These serrated safety washers are in the form of a disc spring which is serrated on both sides and of trapezoidal cross section. Their diameters are matched to screw dimensions. The outer diameter of the washer is matched to the head diameter of pan-head and hexagon socket head cap screws. As a result, the serrated safety washer can be used with practically any screw and bolt type, including those with rescessed heads. The only exception are countersunk screws. The ingenious form of the Original Schnorr Serrated Safety Washer combines the advantages of security through friction and mechanical locking. They offer the following advantages to the designer: 1. The shape of the cross section ensures the locking effect is at the outside diameter which ensures the greatest resistance to loosening. 2. High resistance to vibration due to positive locking of the serrations. 3. The closed ring form results in a high degree of pretensioning, i.e. an excellent frictional connection. 4. Concentric application of force eliminates bending in the bolts. 5. Sliding surfaces allow tightening without damaging the surfaces.

139

Figure 42 Bolt with SCHNORR Serrated Safety Washer loose and tightened

6. No splitting during tightening with proper transitional radius between bolt shaft and bolt head. 7. Suitable for captive fitting on a wide range of bolts (combi bolts for which a range with special dimensions is available). 8. Universal application minimises stocks. 9. Schnorr Serrated Safety Washers can be supplied in a variety of materials and different finishes. The Original Schnorr Serrated Safety Washer is available in two series: The “S” series is suitable for normal duty and available for screws of size M1.6 to M36. The reinforced serrated safety washer of the “VS” series is thicker, and therefore achieves higher pretensioning loads. The inner and outer diameters are the same as for the “S” series. These washers are available for screws M 5 to M 30. The Original SCHNORR Serrated Safety Washer is protected by patents at home and abroad.

10

Security Elements for Bolted Connections Dimension Table for “S” Series Serrated Safety Washers (Rib Washers)

Designation for an Original SCHNORR Serrated Safety Washer type “S” size 8 in spring steel: Serrated Safety Washer S 8 FSt. Figure 43 Original SCHNORR Serrated Safety Washer type “S”

Article Size d1 d2 s h h Weight Packaging No. (Nominal) H14 h14 max. min. (7.85 kg/dm3) [pcs. per [mm] [mm][mm][mm][mm][mm][kg/1000 pcs.] box] 402300 404400 406800 409400 411200 412700 414500 416300 418100 419200 420400 423000 425100 426200 427900 429100 430700 432400

1.6 2 2.5 3 3.5 4 5 6 6.35 7 8 10 11.1 12 12.7 14 16 18

1.7 3.2 2.2 4 2.7 4.8 3.2 5.5 3.7 6 4.3 7 5.3 9 6.4 10 6.7 9.5 7.4 12 8.4 13 10.5 16 11.6 15.9 13 18 13.7 19 15 22 17 24 19 27

0.35 0.35 0.45 0.45 0.45 0.5 0.6 0.7 0.7 0.7 0.8 1 1 1.1 1.1 1.2 1.3 1.5

0.6 0.6 0.9 0.9 0.9 1.0 1.1 1.2 1.2 1.3 1.4 1.6 1.6 1.7 1.8 2.0 2.1 2.3

0.38 0.39 0.49 0.51 0.52 0.59 0.73 0.82 0.79 0.89 0.98 1.21 1.18 1.31 1.33 1.52 1.63 1.85

0.013 0.021 0.039 0.049 0.055 0.085 0.167 0.200 0.150 0.355 0.392 0.750 0.595 0.879 0.976 1.641 1.984 2.970

2000 2000 2000 2000 2000 1000 1000 1000 1000 1000 1000 1000 500 500 500 500 500 250

for bolts metric imperial [mm] [inch.] 1.6 2 2.5 3 3.5 4 5 6

1

5 3

/32" /16"

1

7 8 10

/8"

/4"

/16" /8" 7 /16" 5

3

12 /2" /16" 5 /8" 1

14 16 18

9

140

Article Size d1 d2 s h h Weight Packaging No. (Nominal) H14 h14 max. min. (7.85 kg/dm3) [pcs. per [mm] [mm][mm][mm][mm][mm][kg/1000 pcs.] box] 433800 435100 436600 437900 439200 440300 441500 442730

19 20 22 24 25.4 27 30 36

20 21 23 25.6 27 28.6 31.6 38

30 30 33 36 38 39 45 54

1.5 1.5 1.5 1.8 2 2 2 2.5

2.5 2.5 2.7 2.9 3.1 3.1 3.6 4.2

1.98 1.94 2.08 2.32 2.52 2.52 2.78 3.38

Article No.:Valid for normal execution (spring steel, hardened, blackened) h max.: Maximum dimension as delivered h min.: Minimum height after loading test

4.100 3.742 4.507 5.910 7.449 7.369 10.78 21.28 Available materials: Available finishes:

250 250 100 100 100 100 100 50

for bolts metric imperial [mm] [inch.] /4"

3

20 22 24

/8"

7

1" 27 30 36

11/8" 13/8"

Spring steel as per DIN EN 10132-4; corrosion resistant steel 1.4301; spring bronze CuSn8. blackened, (Standard), browned, phosphated, zinc-plated, cadmium-plated

10

141

Security Elements for Bolted Connections Dimension Table for “VS” Series Serrated Safety Washers (Rib Washers)

Designation for an Original SCHNORR Serrated Safety Washer type “VS” size 16 of spring steel with a mechanically zinc-plated, yellow-chromated surface: Serrated Safety Washer VS 16 FSt mech Zn8 cC. Figure 44 Original SCHNORR Serrated Safety Washer type „VS“

Article Size d1 d2 s h h Weight Packaging 3 [pcs. No. (Nominal) H14 h14 max. min. (7.85 kg/dm ) [mm] [mm][mm][mm][mm][mm][kg/1000 pcs.] per box] 414600 416400 420500 423100 426300 429200 430800 432500 435300 436700 438000 440400 441600

5 6 8 10 12 14 16 18 20 22 24 27 30

5.3 6.4 8.4 10.5 13 15 17 19 21 23 25.6 28.6 31.6

9 10 13 16 18 22 24 27 30 33 36 39 45

1 1 1.2 1.5 1.5 1.5 2 2 2 2 2.5 2.5 2.5

1.3 1.4 1.7 2 2.1 2.2 2.6 2.7 2.8 3.0 3.4 3.5 3.8

1.07 1.08 1.32 1.64 1.65 1.76 2.21 2.27 2.34 2.42 2.87 2.91 3.12

Article No.:Valid for normal execution (spring steel, hardened, blackened) h max.: Maximum dimension as delivered h min.: Minimum height after loading test

0.273 0.300 0.615 1.167 1.223 2.089 3.142 4.041 5.066 6.117 8.865 9.731 14.380 Available materials: Available finishes:

1000 1000 1000 1000 500 500 250 250 250 100 100 100 100

for bolts metric imperial [mm] [inch.] 5 6 8 10 12 14 16 18 20 22 24 27 30

3

/16"

5

/16" /8"

3

9

/16" /8"

5

7

/8"

11/8"

Spring steel as per DIN 10132-4; corrosion resistant steel 1.4301; spring bronze CuSn8. blackened, (Standard), browned, phosphated, zinc-plated, cadmium-plated

142

10.2 Load Washers The term “load washer” is used to describe a spring element in the form of a disc spring which achieves its locking effect solely by means of the frictional connection. These are intended to compensate for loosening of the screwed connection, e.g. due to setting, by maintaining a sufficiently high pretension in the connection with spring force. They are therefore especially suitable for primarily axially loaded, short bolts. They provide no effective security against unscrewing due to alternating lateral loading. Schnorr Load Washers offer the following advantages: Heavy Duty Safety Washers (HDS) as per DIN 6796 These HDS washers have been specifically developed for high-strength bolts in the strength classes 8.8 – 10.9 as per DIN ISO 898 Part 1 (SAE Grade 5). The loads of the washers have been matched to these bolts and are 70 to 90% of the bolt load in the flat state. These high loads naturally require large cross-sections, which is why the outside diameter of the load washer is considerably larger than that of our Original SCHNORR Serrated Safety Washers. As a result, the area required for a design with load washers cannot be ignored.

1. High axial load 2. Optimum compensation for setting in the joint 3. Reduction of the dynamic loading of the screw due to higher elasticity of the joint 4. Uniform concentric loading eliminates bending in the bolt 5. Greater safety with high degree of spring action 6. Suitable for captive fitting on a wide range of bolts (combi bolts)

As a highly progressive load increase occurs at the end of the spring deflection when the washer is flattened, the load has been indicated as double the calculated value in the following table. Tests have shown that these values are comparable with the measured values. The HDS washers contained in the table conform to DIN 6796, Edition October 1987 “Conical spring washers for bolted connections.” The test specifications are laid down in DIN 267 Part 26 “Fasteners; technical specifications for elements made of spring steel for bolted connections.”

10

143

Security Elements for Bolted Connections Dimension Table for HDS Washers as per DIN 6796

Designation of a load washer size 8 of spring steel: HDS Washer DIN 6796-8 FSt.

Figure 45 HDS Washer

Article No.

Size (Nominal) [mm]

d1 H 14 [mm]

d2 h14 [mm]

700000 700100 700200 700300 700400 700500 700600 700700 700800 700900 701000 701100 701200 701300 701400 701500 701600 701700 701800

2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 18 20 22 24 27 30

2.2 2.7 3.2 3.7 4.3 5.3 6.4 7.4 8.4 10.5 13 15 17 19 21 23 25 28 31

5 6 7 8 9 11 14 17 18 23 29 35 39 42 45 49 56 60 70

Article No.:Valid for the normal execution in spring steel, hardened, blank and oiled h max.: Maximum height as delivered h min.: Minimum height after the setting test as per DIN 267 part 26

s [mm]

h max. [mm]

h min. [mm]

0.4 0.5 0.6 0.8 1 1.2 1.5 1.75 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0.6 0.72 0.85 1.06 1.3 1.55 2 2.3 2.6 3.2 3.95 4.65 5.25 5.8 6.4 7.05 7.75 8.35 9.2

0.5 0.61 0.72 0.92 1.12 1.35 1.7 2 2.24 2.8 3.43 4.04 4.58 5.08 5.6 6.15 6.77 7.3 8

Spring Load: Double the calculated spring force in the flat condition for a deflection hmin– s Test Load: Proof load for setting test as per DIN 267 part 26

144

Spring Load

Test Load

[N]

[N]

Weight (7.85 kg/dm3) [kg/1000 pcs.]

628 946 1320 2410 3770 5480 8590 11300 14900 22100 34100 46000 59700 74400 93200 113700 131000 154000 172000

920 1540 2350 3160 4050 6700 9400 13700 17200 27500 40000 55000 75000 95000 122000 152000 175000 230000 280000

0.050 0.089 0.143 0.248 0.385 0.687 1.434 2.527 2.993 6.201 12.05 21.58 29.61 37.93 47.63 62.04 90.88 110.5 166.9

Technical specifications: Material: Surface finish:

for bolts imperial [inch]

2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 18 20 22 24 27 30

as per DIN 267 part 26 Spring steel to DIN EN 10132-4 or DIN 17221 Blank and oiled

Other materials and surface finishes available on request.

145

metric [mm]

1

/8"

/32" /16" (1/4")

5 3

/16" /8" (1/2") 9 /16" 5 /8" 5 3

(3/4") /8"

7

(1") 11/8" 10

Security Elements for Bolted Connections

10.3 SCHNORR High Load Safety Washers „HS“ This safety washer is in principle a HDS washer with a smaller outer diameter than those in DIN 6796. A notable feature of these washers is the slightly curved form, which provides a progressively increasing characteristic curve. Despite the smaller outside dimensions, this

makes it possible to achieve the same load as the HDS washers as per DIN 6796. These washers are primarily used when the space available is insufficient for standardized load washers.

Dimension Table for “HS” Washers

Designation of a SCHNORR High Load Safety Washer size12 of spring steel: Safety Washer HS 12 - FSt. Figure 46 Original SCHNORR High Load Safety Washer “HS”

Article No.

Size (Nominal) [mm]

d1 H 14 [mm]

d2 h14 [mm]

416320 416520 423220 426400 429320 430900 433750 435320 436620 439150 440100 442650

6 8 10 12 14 16 18 20 22 24 27 30

6.4 8.4 10.5 13 15 17 19 21 23 25 28 31

12 17 21 24 28 30 33 36 40 45 50 58

Article No.:Valid for the normal execution in spring steel, hardened, phosphated and oiled h max.: Maximum height as delivered h min.: Minimum height after the setting test as per DIN 267 part 26

s [mm]

h max. [mm]

h min. [mm]

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

1.9 2.55 3.15 3.75 4.35 4.95 5.5 5.95 6.7 7.3 8 8.9

1.64 2.21 2.75 3.27 3.8 4.31 4.8 5.3 5.9 6.45 7 7.65

Spring Load: Double the calculated spring force in the flat condition for a deflection hmin– s Test Load: Proof load for setting test as per DIN 267 part 26 146

Spring Load

Test Load [N]

Weight (7.85 kg/dm3) [kg/1000 pcs.]

Packaging [pcs. per box]

[N] 8920 15100 23200 34800 44800 62800 72600 92200 120000 135000 155000 180000

9400 17200 27500 40000 55000 75000 95000 122000 152000 175000 230000 280000

0.943 2.438 4.915 7.194 11.61 14.50 19.36 25.33 35.07 50.28 66.94 101.0

2500 1000 500 250 100 100 100 100 100 50 50 50

Technical specifications: Material: Surface finish:

as per DIN 267 part 26 Spring steel to DIN EN 10132-4 or DIN 17221 Phosphated and oiled

Other materials and surface finishes available on request. 147

for bolts metric imperial [mm] [inch] 6 8 10 12 14 16 18 20 22 24 27 30

(1/4") 5 /16" 3 /8" 1 ( /2") 9 /16" 5 /8" (3/4") 7 /8" (1") 11/8"

10

148

Supplement Standards DIN EN

10048

Hot-rolled narrow steel strip – Tolerances on dimensions and shape

DIN EN

10140

Colled rolled steel

DIN

2092

Disc springs; calculation

DIN

2093

Disc springs; dimensions and quality specifications

DIN

7521

Steel forgings; technical terms of delivery

DIN

17221

DIN EN 10132-4

Cold-rolled narrow steel strip for heat-treatment Part 4: Spring steels and other applications

DIN EN

10151

Wire and strip of stainless steels for springs

DIN EN

10269

Steel and nickel alloys for fasteners with specified elevated and/or low temperature properties

DIN EN

1652

Copper and copper alloys– Plate, sheet, strip and circles for general purposes

1654

Copper and copper alloys – Strip for springs and connectors

DIN EN DIN

50938

Alkaline blackening (black finishing) of iron materials

DIN

50942

Phosphating of metals

DIN

50960

Electroplated and chemical coatings; designation and specification in technical documents

DIN EN

10258

Cold-rolled stainless steel narrow strip and cut lengths – Tolerances on dimensions and shape

DIN EN

10029

Hot rolled steel plates 3 mm thick or above; Tolerances on dimensions, shape and mass

DIN EN 10088-2

149

Hot rolled steels for quenched and tempered springs

Stainless steels

Supplement

Further Sources [1]

Dubois, Fr.:

Über die Festigkeit der Kegelschale Dissertation, Zürich 1917

[2]

Almen, J.O.; László, A.:The Uniform-Section Disk Spring Trans. ASME 58 (1936), S. 305 – 314

[3]

Hertzer, K. H.:

Über die Dauerfestigkeit und das Setzen von Tellerfedern Dissertation TH Braunschweig 1959

[4]

Lutz, O.:

Zur Berechnung der Tellerfeder Konstruktion 12 (1960) 2, S. 57 – 59

[5]

Schremmer, G.:

Über die dynamische Festigkeit von Tellerfedern Dissertation TH Braunschweig 1965

[6]

Bühl, P.:

Zur Spannungsberechnung von Tellerfedern DRAHT 22 (1971) 11, S. 760 – 763

[7]

Schremmer, G.:

Die geschlitzte Tellerfeder Konstruktion 24 (1972) 6, S. 226 – 229

[8]

Bühl, P.:

Maximale Höhen bei Tellerfedern aus Sonderwerkstoffen DRAHT 25 (1974) 2, S. 63 – 65

[9]

Bühl, P.:

Mechanische Schwingungen bei Tellerfedersäulen DRAHT 28 (1977) 2, S. 48 – 53

[10] Curti, G.; Orlando, M.: Ein neues Berechnungsverfahren für Tellerfedern DRAHT 30 (1979) 1, S. 17 – 22 [11] Bühl, P.:

Tellerfedern – gedreht oder feingeschnitten DRAHT 31 (1980) 5, S. 295 – 299

[12] Curti, G.; Orlando, M.; Vereinfachtes Verfahren zur Berechnung von Tellerfedern Podda, G.: DRAHT 31 (1980) 11, S. 789 – 792 [13] Niepage, P.:

Vergleich verschiedener Verfahren zur Berechnung von Tellerfedern DRAHT 34 (1983) 3, S. 105 – 108 und 5, S. 251 – 255

Please send your Enquiry Sheet to: Schnorr Corporation 4355 Varsity Drive Suite A Ann Arbor, MI 48108 Fax 734-975-0408 Phone 734-677-2683 eMail [email protected] Internet http://www.schnorr.com 150

151