DEBER1

Problemas 6.9 La corriente que circula por un capacitor de 0.5 F es 6(1  et) A. Determine la tensión y la potencia e

Views 271 Downloads 4 File size 125KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Problemas

6.9

La corriente que circula por un capacitor de 0.5 F es 6(1  et) A. Determine la tensión y la potencia en t = 2 s. Suponga v(0)  0.

6.10 La tensión a través de un capacitor de 2 mF se muestra en la figura 6.47. Determine la corriente que circula por el capacitor. v (t) (V)

243

6.15 Dos capacitores (de 20 y 30 F) se conectan a una fuente de 100 V. Halle la energía almacenada en cada capacitor si están conectados en: a) paralelo

b) serie

6.16 La capacitancia equivalente en las terminales a-b del circuito de la figura 6.50 es de 30 F. Calcule el valor de C. a

16

C 0

1

2

3

14 F

t (s)

4

Figura 6.47 Para el problema 6.10.

80 F b

6.11 Un capacitor de 4 mF tiene una corriente con la forma de onda que aparece en la figura 6.48. Suponiendo que v(0)  10 V, diagrame la forma de onda de tensión v(t).

Figura 6.50 Para el problema 6.16. 6.17 Determine la capacitancia equivalente de cada uno de los circuitos de la figura 6.51.

i(t) (mA) 15

12 F

4F

10 5

6F

3F

0

2

−5

6

4

8

t (s) 4F

−10

a) 6F

Figura 6.48 Para el problema 6.11. 5F

4F

2F

2 000t

6.12 Una tensión de 6e V aparece entre las terminales de una combinación de un capacitor de 100 mF y un resistor de 12 paralelo. Calcule la potencia absorbida por dicha combinación en paralelo.

b) 3F

6F

2F

6.13 Halle la tensión en las terminales de los capacitores en el circuito de la figura 6.49 en condiciones de cd. 4F

3F

50 Ω

10 Ω

c) 30 Ω

C1

+ v1 −

20 Ω + −

60 V

+ v2 −

C2

Figura 6.5 Para el problema 6.17. 6.18 Halle Ceq en el circuito de la figura 6.52 si todos los capacitores son de 4 F.

Figura 6.49 Para el problema 6.13.

Sección 6.3

Capacitores en serie y en paralelo

6.14 Capacitores de 20 y 60 pF conectados en serie se colocan en paralelo con capacitores de 30 y 70 pF conectados en serie. Determine la capacitancia equivalente.

Ceq

Figura 6.52 Para el problema 6.18.

Capítulo 6

244

Capacitores e inductores 40 F

6.19 Halle la capacitancia equivalente entre las terminales a y b en el circuito de la figura 6.53. Todas las capacitancias están en F.

10 F

10 F

35 F

80

5 F 20 F

12

40

15 F

a

15 F

20

50 12

10

30

a

b

Figura 6.56 Para el problema 6.22.

b 60

Figura 6.53 Para el problema 6.19.

6.23 En referencia al circuito de la figura 6.57, determine: a) la tensión en cada capacitor, b) la energía almacenada en cada capacitor.

6.20 Halle la capacitancia equivalente en las terminales a-b del circuito de la figura 6.54.

4 F

a

1 F

120 V

+ −

6 F

2 F

3 F

1 F

Figura 6.57 Para el problema 6.23. 2 F

2 F

6.24 Repita el problema 6.23 en relación con el circuito de la figura 6.58.

2 F

60 F 3 F

3 F

3 F

3 F

90 V

30 F

80 F

14 F

Figura 6.58 Para el problema 6.24.

b

Figura 6.54 Para el problema 6.20.

6.25 a) Demuestre que la regla de la división de tensión para dos capacitores en serie como en la figura 6.59a) es

6.21 Determine la capacitancia equivalente en las terminales a-b del circuito de la figura 6.55. 5 F

+ −

20 F

6 F

v1 

4 F

3 F

v2 

C1 vs C1  C2

suponiendo que las condiciones iniciales son de cero.

a 2 F

C2 vs, C1  C2

C1

12 F

b

Figura 6.55 Para el problema 6.21.

vs + −

+ v1 − + v2 − a)

6.22 Obtenga la capacitancia equivalente del circuito de la figura 6.56.

Figura 6.59 Para el problema 6.25.

C2

is

b)

i1

i2

C1

C2

Problemas

b) En relación con dos capacitores en paralelo como en la figura 6.59b), demuestre que la regla de la división de corriente es i1 

C1 is, C1  C2

i2 

C2 is C1  C2

245

6.30 Suponiendo que los capacitores están inicialmente descargados, halle vo(t) en el circuito de la figura 6.62.

is (mA)

6 F

60

suponiendo que las condiciones iniciales son de cero.

is 3 F

6.26 Tres capacitores, C1  5 F, C2  10 F y C3  20 F, se conectan en paralelo a través de una fuente de 150 V. Determine:

0

2 t (s)

1

+ vo (t) −

Figura 6.62 Para el problema 6.30.

a) la capacitancia total, b) la carga en cada capacitor, c) la energía total almacenada en la combinación en paralelo. 6.27 Dado que cuatro capacitores de 4 F pueden conectarse en serie y en paralelo, halle los valores mínimo y máximo que pueden obtenerse de tal combinación en serie/en paralelo.

6.31 Si v(0)  0, halle v(t), i1(t) e i2(t) en el circuito de la figura 6.63.

*6.28 Obtenga la capacitancia equivalente de la red que aparece en la figura 6.60. is (mA) 20 40 F

50 F

30 F

0

10 F

20 F

1

2

3

4

5

−20

Figura 6.60 Para el problema 6.28.

i1 6 F

is

i2 + v −

4 F

6.29 Determine Ceq en cada circuito de la figura 6.61. Figura 6.63 Para el problema 6.31.

C

C eq

t

C

C C

C a)

C

C

C

C

6.32 En el circuito de la figura 6.64, sea que is  30e2t mA y v1(0)  50 V, v2(0)  20 V. Determine: a) v1(t) y v2(t), b) la energía en cada capacitor en t  0.5 s.

C eq 12 F + b)

Figura 6.61 Para el problema 6.29.

*Un asterisco indica un problema difícil.

v1



is

Figura 6.64 Para el problema 6.32.

20 F

+ v2 –

40 F

Capítulo 6

246

Capacitores e inductores

6.33 Obtenga el equivalente de Thévenin en las terminales a-b del circuito que aparece en la figura 6.65. Tenga en cuenta que por lo general no existen circuitos equivalentes de Thévenin de circuitos que incluyen capacitores y resistores. Éste es un caso especial en el que sí existe el circuito equivalente de Thévenin.

6.41 La tensión en un inductor de 2 H es 20(1  e2t) V. Si la corriente inicial a través del inductor es de 0.3 A, halle la corriente y la energía almacenada en el inductor en t  1 s. 6.42 Si la forma de onda de la tensión de la figura 6.67 se aplica entre las terminales de un inductor de 5 H, calcule la corriente que circula por el inductor. Suponga i(0)  1 A.

5F v (t) (V)

+ −

15 V

a 10 3F

2F b

Figura 6.65 Para el problema 6.33.

Sección 6.4

0

1

3

2

t

5

4

Figura 6.67 Para el problema 6.42.

Inductores

6.34 La corriente que circula por un inductor de 10 mH es 6et/2 A. Halle la tensión y la potencia en t  3 s. 6.35 Un inductor tiene un cambio lineal de corriente de 50 mA a 100 mA en 2 ms e induce una tensión de 160 mV. Calcule el valor del inductor. 6.36 La corriente que circula por un inductor de 12 mH es i(t)  30te2t A, t  0. Determine: a) la tensión en el inductor, b) la potencia suministrada al inductor en t  1 s, c) la energía almacenada en el inductor en t  1 s.

6.43 La corriente en un inductor de 80 mH aumenta de 0 a 60 mA. ¿Cuánta energía se almacena en el inductor? *6.44 Un inductor de 100 mH se conecta en paralelo con un resistor de 2 k . La corriente por el inductor es i(t)  50e400t mA. a) Halle la tensión vL en el inductor. b) Halle la tensión vR en el resistor. c) ¿Es vR(t)  vL(t)  0? d) Calcule la energía en el inductor en t  0. 6.45 Si la forma de onda de la tensión de la figura 6.68 se aplica a un inductor de 10 mH, halle la corriente del inductor i(t). Suponga i(0) = 0.

6.37 La corriente que circula por un inductor de 12 mH es 4 sen 100t A. Halle la tensión en el inductor en 0  t   — / 200 s, y la energía almacenada en t  200 s.

v (t) 5

6.38 La corriente que circula por un inductor de 40 mH es i(t)  b

0, te2t A,

t 6 0 t 7 0

0

Halle la tensión v(t).

1

2

t

–5

6.39 La tensión en un inductor de 200 mH está dada por v(t)  3t2  2t  4 V

para t  0.

Determine la corriente i(t) que circula por el inductor. Suponga que i(0)  1 A. 6.40 La corriente que circula por un inductor de 5 mH se muestra en la figura 6.66. Determine la tensión en el inductor en t  1, 3 y 5 ms.

Figura 6.68 Para el problema 6.45. 6.46 Halle vC, iL y la energía almacenada en el capacitor e inductor del circuito de la figura 6.69 en condiciones de cd. 2Ω

i(t) (A) 10 3A 0

Figura 6.66 Para el problema 6.40.



+ vC −

2F

0.5 H 5Ω

2

4

6

t (ms)

Figura 6.69 Para el problema 6.46.

iL

Problemas

6.47 En referencia al circuito de la figura 6.70, calcule el valor de R que hará que la energía almacenada en el capacitor sea igual a la almacenada en el inductor en condiciones de cd.

6.52 Halle Leq en el circuito de la figura 6.74.

10 H

R

4H Leq

160 F 2Ω

5A

247

6H

5H

3H 7H

4 mH

Figura 6.74 Para el problema 6.52.

Figura 6.70 Para el problema 6.47. 6.48 En condiciones de cd en estado permanente, halle i y v en el circuito de la figura 6.71. i

2 mH

30 kΩ

5 mA

+ v −

6 F

20 kΩ

6.53 Halle Leq en las terminales del circuito de la figura 6.75.

Figura 6.71 Para el problema 6.48.

6 mH

8 mH

a

Sección 6.5

5 mH

Inductores en serie y en paralelo

12 mH

8 mH

6.49 Halle la inductancia equivalente del circuito de la figura 6.72. Suponga que todos los inductores son de 10 mH.

6 mH 4 mH b 8 mH

10 mH

Figura 6.75 Para el problema 6.53.

Figura 6.72 Para el problema 6.49. 6.50 Una red de almacenamiento de energía consta de inductores en serie de 16 y 14 mH conectados en paralelo con inductores en serie de 24 y 36 mH. Calcule la inductancia equivalente.

6.54 Halle la inductancia equivalente desde las terminales del circuito de la figura 6.76.

9H

6.51 Determine Leq en las terminales a-b del circuito de la figura 6.73. 10 H 10 mH

12 H 60 mH 4H 25 mH a

b 30 mH

Figura 6.73 Para el problema 6.51.

6H

20 mH

a

Figura 6.76 Para el problema 6.54.

b

3H