Conductores eléctricos

UNIVERSIDAD NACIONAL DE CAJAMARCA FÍSICA- ELECTROSTATICA UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCU

Views 91 Downloads 19 File size 890KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

UNIVERSIDAD NACIONAL DE CAJAMARCA

FÍSICA- ELECTROSTATICA

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

CURSO: FÍSICA DOCENTE: TEJADA CAMPOS NORBIL

ALUMNO: RAMÍREZ CASTRO ALEXIS TOMAS

AÑO:

PRIMERO

CICLO:

II

Cajamarca, Diciembre del 2014

1

UNIVERSIDAD NACIONAL DE CAJAMARCA

FÍSICA- ELECTROSTATICA

Conductores eléctricos 1. ¿Qué es un conductor eléctrico? Un conductor eléctrico es un material por el que puede haber un flujo de cargas eléctricas: con cierta facilidad y sin descomponerse químicamente. Estas condiciones excluyen casos especiales en los que puede existir conducción eléctrica en medios que no suelen denominarse "materiales conductores", como el aire durante una tormenta y una sal en la electrólisis. Incluso a través del vacío de un acelerador de protones, hay una corriente eléctrica, pero el vacío no es un medio, por lo tanto, no puede ser un conductor. Aunque en la actualidad se estén desarrollando polímeros (plásticos, gomas) conductores, el término "material conductor" se refiere a cables y alambres metálicos, en redes y circuitos, compuestos por metales puros o por mezclas homogéneas de metales puros (aleaciones). Como ejemplo, en la fotografía siguiente se muestra a la izquierda un carrete de plástico negro (aislante) con bobinados de alambre de cobre (conductor), cubierto por un barniz aislador, y a la derecha, un cable bipolar con aislante blanco, donde cada cable individual está formado por alambres de cobre (cuyo extremo visible se encuentra estañado), con aislantes plásticos independientes de color celeste y marrón.

2. ¿Para qué sirve? Las principales aplicaciones de un conductor eléctrico son el transporte de energía eléctrica (cables de la red eléctrica domiciliaria, de alta tensión, aparatos eléctricos, actuadores, iluminación, automóviles, etc.), transporte de señales (transmisores/receptores, computadores, automóviles, etc.), y fabricación de componentes electrónicos (conectores, placas de circuito impreso, resistencias, condensadores, transistores, circuitos integrados, sensores, etc.).

2

UNIVERSIDAD NACIONAL DE CAJAMARCA

FÍSICA- ELECTROSTATICA

3. ¿De que esta hecho? A continuación se ordenan algunos metales y aleaciones comunes, comenzando por el mejor conductor, indicando entre paréntesis la conductividad eléctrica  aproximada a temperatura ambiente (20°C), en unidades de 10 millones de siemens (*) por metro, es decir 107 S/m:         

Plata (6.8) Cobre (6.0) Oro (4.3) Aluminio (3.8) Latón (cobre con 30% en peso de zinc) (1.6) Hierro (1.0) Platino (0.94) Acero al carbono (0.6) Acero inoxidable (0.2)

* El "siemens" (símbolo "S"), es la unidad de conductancia G en el Sistema Internacional de Unidades. La conductancia es la inversa de la resistencia (G = R-1), y como el siemens es equivalente a ohm-1, es a veces mal denominado "mho" (ohm escrito al revés!) o utilizando la letra griega W (omega mayúscula) dibujada al revés! (no comments...). Cuando se requiere transportar la electricidad con el mínimo de pérdidas, se utilizan metales que, además de ser buenos conductores, sean razonablemente económicos (no como la plata o el oro). Entonces, los primeros candidatos son el cobre (Cu) y el aluminio (Al). En efecto, en la industria se utilizan gruesos conductores de cobre y a veces también de aluminio. El cobre utilizado como conductor, en realidad es un material denominado "cobre electrolítico", con 99.92 a 99.96 % en peso de cobre. En esta aleación, un 0.03 % de oxígeno mejora su densidad y conductividad. Existen interruptores de posición, donde una cierta cantidad de mercurio líquido, une dos contactos cerrando un circuito eléctrico. En muchos tableros y dispositivos eléctricos también se encuentran conductores de "bronce al aluminio", una aleación de 88 a 96% de cobre con estaño, hierro, y un 2 a 10% de aluminio. Este material tiene mucha más resistencia mecánica y química que el cobre electrolítico, necesarias en interruptores donde los chispazos elevan la temperatura del material. La siguiente lista muestra valores aproximados de la resistividad eléctrica r (la inversa de la conductividad: r = s-1) a 20°C y en 10-8 ohm x m, de algunos metales utilizados en dispositivos eléctricos:

3

UNIVERSIDAD NACIONAL DE CAJAMARCA

         

FÍSICA- ELECTROSTATICA

Plata (1.6) Cobre (1.7) Oro (2.2) Aluminio (2.7) Tungsteno (wolframio) (5.51) Platino (10.6) Bronce al aluminio (11) Estaño (11.5) Plomo (20.7) Mercurio (96)

Aislantes eléctricos

A diferencia de los cuerpos metálicos buenos conductores de la corriente eléctrica, existen otros como el aire, la porcelana, el cristal, la mica, la ebonita, las resinas sintéticas, los plásticos, etc., que ofrecen una alta resistencia a su paso. Esos materiales se conocen como aislantes o dieléctricos.

Los cuerpos aislantes ofrecen una alta resistencia al paso de la corriente eléctrica. En la foto izquierda.se pueden observar diferentes materiales aislantes de plástico utilizados comúnmente en las cajas de. Conexión y en otros elementos propios de las instalaciones eléctricas domésticas de baja tensión, así. Como el PVC (PolyVinyl Chloride – Policloruro de Vinilo) empleado como revestimiento en los cables. Conductores. En la foto de la derecha aparece, señalado con una flecha roja, un aislante de vidrio. Utilizado en las torres externas de distribución eléctrica de alta tensión.

4

UNIVERSIDAD NACIONAL DE CAJAMARCA

FÍSICA- ELECTROSTATICA

Al contrario de lo que ocurre con los átomos de los metales, que ceden sus electrones con facilidad y conducen bien la corriente eléctrica, los de los elementos aislantes poseen entre cinco y siete electrones fuertemente ligados a su última órbita, lo que les impide cederlos. Esa característica los convierte en malos conductores de la electricidad, o no la conducen en absoluto.

En los materiales aislantes, la banda de conducción se encuentra prácticamente vacía de portadores de cargas eléctricas o electrones, mientras que la banda de valencia está completamente llena de estos.

Como ya conocemos, en medio de esas dos bandas se encuentra la “banda prohibida”, cuya misión es impedir que los electrones de valencia, situados en la última órbita del átomo, se exciten y salten a la banda de conducción.

La energía propia de los electrones de valencia equivale a unos 0,03 eV (electronvolt) aproximadamente, cifra muy por debajo de los 6 a 10 eV de energía de salto de banda (Eg) que requerirían poseer los electrones para atravesar el ancho de la banda prohibida en los materiales aislantes.

5

UNIVERSIDAD NACIONAL DE CAJAMARCA

FÍSICA- ELECTROSTATICA

Los semiconductores Los primeros semiconductores utilizados para fines técnicos fueron pequeños detectores diodos empleados a principios del siglo 20 en los primitivos radiorreceptores, que se conocían como “de galena”. Ese nombre lo tomó el radiorreceptor de la pequeña piedra de galena o sulfuro de plomo (PbS) que hacía la función de diodo y que tenían instalado para sintonizar las emisoras de radio. La sintonización se obtenía moviendo una aguja que tenía dispuesta sobre la superficie de la piedra. Aunque con la galena era posible seleccionar y escuchar estaciones de radio con poca calidad auditiva, en realidad nadie conocía que misterio encerraba esa piedra para que pudiera captarlas. En 1940 Russell Ohl, investigador de los Laboratorios Bell, descubrió que si a ciertos cristales se le añadía una pequeña cantidad de impurezas su conductividad eléctrica variaba cuando el material se exponía a una fuente de luz. Ese descubrimiento condujo al desarrollo de las celdas fotoeléctricas o solares. Posteriormente, en 1947 William Shockley, investigador también de los Laboratorios Bell, Walter Brattain y John Barden, desarrollaron el primer dispositivo semiconductor de germanio (Ge), al que denominaron “transistor” y que se convertiría en la base del desarrollo de la electrónica moderna. Los "semiconductores" como el silicio (Si), el germanio (Ge) y el selenio (Se), por ejemplo, constituyen elementos que poseen características intermedias entre los cuerpos conductores y los aislantes, por lo que no se consideran ni una cosa, ni la otra. Sin embargo, bajo determinadas condiciones esos mismos elementos permiten la circulación de la corriente eléctrica en un sentido, pero no en el sentido contrario. Esa propiedad se utiliza para rectificar corriente alterna, detectar señales de radio, amplificar señales de corriente eléctrica, funcionar como interruptores o compuertas utilizadas en electrónica digital, etc.

Lugar que ocupan en la Tabla Periódica los trece elementos con. Características de semiconductores, identificados con su correspondiente. Número atómico y grupo al que pertenecen. Los que aparecen con fondo. Gris corresponden a “metales”, los de fondo verde a “metaloides” y los de. Fondo azul a “no metales”.

Esos elementos semiconductores que aparecen dispuestos en la Tabla Periódica constituyen la materia prima principal, en especial el silicio (Si), para fabricar diodos detectores y rectificadores de corriente, transistores, circuitos integrados y microprocesadores. Los átomos de los elementos semiconductores pueden poseer dos, tres, cuatro o cinco electrones en su última órbita, de acuerdo con el elemento específico al que pertenecen. No obstante, los elementos más utilizados por la industria electrónica, como el silicio (Si) y el germanio (Ge), poseen solamente cuatro electrones en su última órbita. En este caso, el equilibrio eléctrico que proporciona la estructura molecular cristalina característica de esos 6

UNIVERSIDAD NACIONAL DE CAJAMARCA

FÍSICA- ELECTROSTATICA

átomos en estado puro no les permite ceder, ni captar electrones. Normalmente los átomos de los elementos semiconductores se unen formando enlaces covalentes y no permiten que la corriente eléctrica fluya a través de sus cuerpos cuando se les aplica una diferencia de potencial o corriente eléctrica. En esas condiciones, al no presentar conductividad eléctrica alguna, se comportan de forma similar a un material aislante.

TABLA DE ELEMENTOS SEMICONDUCTORES Número Atómico

Nombre del Elemento

48

Cd (Cadmio)

5

B (Boro)

13

Al (Aluminio)

31

Ga (Galio)

49

In (Indio)

14

Si (Silicio)

32

Ge (Germanio)

15

P (Fósforo)

33

As (Arsénico)

51

Sb (Antimonio)

16

S (Azufre)

34

Se (Selenio)

52

Te (Telurio)

Grupo en la Electrones en Categoría Tabla Periódica la última órbita IIa

IIIa

IVa

Metal

2 e-

+2

Metaloide

3 e-

+3

4 e-

+4

5 e-

+3, -3, +5

6 e-

+2, -2 +4, +6

Metal

Metaloide No metal

Va

Números de valencia

Metaloide

No metal VIa Metaloide

Incremento de la conductividad en un elemento semiconductor La mayor o menor conductividad eléctrica que pueden presentar los materiales semiconductores depende en gran medida de su temperatura interna. En el caso de los metales, a medida que la temperatura aumenta, la resistencia al paso de la corriente también aumenta, disminuyendo la conductividad. Todo lo contrario ocurre con los elementos semiconductores, pues mientras su temperatura aumenta, la conductividad también aumenta. En resumen, la conductividad de un elemento semiconductor se puede variar aplicando uno de los siguientes métodos:   

Elevación de su temperatura. Introducción de impurezas (dopaje) dentro de su estructura cristalina. Incrementando la iluminación.

Con relación a este último punto, algunos tipos de semiconductores, como las resistencias dependientes de la luz (LDR – Light-dependant resistors), varían su conductividad de acuerdo con la cantidad de luz que reciben.

7

UNIVERSIDAD NACIONAL DE CAJAMARCA

FÍSICA- ELECTROSTATICA

Resistencia dependiente de la luz (LDR), conocida también como fotorresistor o célula fotoeléctrica. Posee la característica de disminuir el valor de su resistencia interna cuando la intensidad de luz que incide sobre la superficie de la celda aumenta. Como material o elemento semiconductor utiliza el sulfuro de cadmio (CdS) y su principal aplicación es en el encendido y apagado automático del alumbrado público en las calles de las ciudades, cuando disminuye la luz solar. En dependencia de cómo varíen los factores de los puntos más arriba expuestos, los materiales semiconductores se comportarán como conductores o como aislantes.

Los superconductores Los superconductores son un tipo especial de materiales que pueden conducir la corriente eléctrica casi sin ofrecer resistencia, y, por tanto, sin que se produzca una “pérdida” energética. Es decir, los metales son buenos conductores, tanto térmicos como eléctricos, pero estos se calientan al conducir un flujo de electrones, porque los átomos del metal vibran y chocan contra estos. Ofrecen resistencia y se pierde energía en forma de calor. Esto no es rentable en algunas ocasiones. Hay varias teorías, modelos que ayudan a comprender mejor este fenómeno, pero son de gran complejidad. Al disminuirla temperatura, también lo hace la resistencia del metal a la corriente eléctrica, por lo que, a temperaturas en torno al 0 K, algunos materiales se convierten en superconductores. Pueden ser diversos metales, si se enfrían lo suficiente (algunas aleaciones, o, incluso, compuestos de carbono). Los materiales se suelen enfriar con helio líquido, lo que es bastante costoso. Por tanto, se está investigando con superconductores de “alta temperatura”, que superconducen a temperaturas tan “elevadas” como 77 K, pudiendo ser enfriados con nitrógeno líquido, mucho más barato. CLASIFICACIÓN Los superconductores, se pueden clasificar atendiendo a varios aspectos, como los materiales que los componen (puros o aleaciones, estructuras de carbono); la temperatura a la que son superconductores (temperatura crítica), en superconductores de alta o baja temperatura. La clasificación más utilizada es según su comportamiento físico. Se distinguen dos tipos de superconductores: 

Superconductores de tipo I, que impiden que los campos magnéticos penetren en ellos, es decir, los apantallan (efecto Meissner). Son elementos puros con una temperatura crítica muy baja.



Superconductores de tipo II, son superconductores "imperfectos" que permiten que que los campos magnéticos penetren en su interior, pasando gradualmente del estado superconductor al normal. Entre ellos se encuentran aleaciones, sustancias cerámicas.

8

UNIVERSIDAD NACIONAL DE CAJAMARCA

FÍSICA- ELECTROSTATICA

APLICACIONES: Las aplicaciones de los superconductores son muy diversas, y, como estos materiales aún están siendo investigados, cada vez se van ampliando sus utilidades. Las líneas de investigación se centran en cómo conseguir disminuir la resistencia de los metales al paso de la corriente eléctrica, a la temperatura más elevada posible, para rentabilizar su obtención Por tanto, se está tratando de encontrar nuevos materiales. Las principales aplicaciones se encuentran relacionadas con sus propiedades magnéticas, siendo utilizados en campos tan dispares como el transporte o la medicina. Al ser enfriados y sometidos a un campo magnético, pueden llegar a levitar. Así, se trata de emplear en trenes de alta velocidad, en países como Japón, pues esta levitación evita el roce con las vías y permite un aumento de velocidad (¡¡¡hasta 550km/h!!!). Este es el caso del tren Maglev de Shangai. Se utilizan en medicina, para las resonancias magnéticas nucleares. También, en Sistemas de Transporte de energía. Al ser casi nula la resistencia que ejercen, permitirían transportar electricidad a grandes distancias sin que ésta se disipe en el entorno en forma de calor. Incluso se está tratando de trabajar con ellos para el almacenamiento de energía. Además pueden ser utilizados en medicina, para resonancias magnéticas nucleares, o en el estudio de moléculas (espectroscopia de resonancia magnética nuclear). Como ocurre casi con todo en la ciencia actual, se trata de un mundo prometedor que está en expansión y que casi acaba de comenzar, por lo que sus aplicaciones podrían llegar hasta límites casi insospechados, si la investigación es la adecuada. Además, llegan a ser utilizados en aceleradores de partículas.

9