Concreto Endurecido

CONCRETO ENDURECIDO CONCEPTOS FUNDAMENTALES FRAGUADO DEL CONCRETO Una vez que el cemento y el agua entran en contacto, s

Views 148 Downloads 5 File size 610KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

CONCRETO ENDURECIDO CONCEPTOS FUNDAMENTALES FRAGUADO DEL CONCRETO Una vez que el cemento y el agua entran en contacto, se inicia una reacción química que determina el paulatino endurecimiento de la mezcla; mientras exista agua en contacto con el cemento, progresa el endurecimiento del concreto. Antes de su total endurecimiento, la mezcla experimenta dos etapas dentro de su proceso general que son: el fraguado inicial y el fraguado final. El primero corresponde cuando la mezcla pierde su plasticidad volviéndose difícilmente trabajable. Conforme la mezcla continua endureciendo, esta llegará a su segunda etapa alcanzando una dureza tan apreciable que la mezcla entra ya en su fraguado final. Concreto endurecido: es aquel que tras el proceso de hidratación ha pasado del estado plástico al estado rígido. Estado endurecido Después de que el concreto ha fraguado empieza a ganar resistencia y endurece. Las propiedades del concreto endurecido son resistencia y durabilidad el concreto endurecido no tendrá huellas de pisadas si se camina sobre él. RESISTENCIA Y DURABILIDAD El concreto bien hecho es un material naturalmente resistente y durable. Es denso, razonablemente impermeable al agua, capaz de resistir cambios de temperatura, así como también resistir desgaste por intemperismo. La resistencia y la durabilidad son afectadas por la densidad del concreto. El concreto más denso es más impermeable al agua. La durabilidad del concreto se incrementa con la resistencia. La resistencia del concreto en el estado endurecido generalmente se mide por la resistencia a la compresión usando la prueba de resistencia a la compresión. La resistencia y la durabilidad son afectadas por: La compactación. Significa remover el aire del concreto. La compactación apropiada da como resultado concreto con una densidad incrementada que es más resistente y más durable. Curado. Curar el concreto significa mantener húmedo el concreto por un periodo de tiempo, para permitir que alcance la resistencia máxima. Un mayor tiempo de curado dará un

concreto más durable. Clima. Un clima más caluroso hará que el concreto tenga una mayor resistencia temprana. CURADO El curado adecuado es uno de los factores individuales más importantes para poder lograr la máxima calidad del concreto. La permeabilidad, durabilidad, resistencia y apariencia superficial del concreto dependen en gran parte de si el concreto ha sido curado en forma adecuada. El curado adecuado cumple dos funciones muy importantes: 1). Conservar la humedad del concreto para asegurar que exista la cantidad suficiente de agua para permitir la completa hidratación del cemento. 2). Estabilizar la temperatura a un nivel adecuado. Las condiciones adecuadas de curado se logran cuando el concreto se mantiene a una temperatura cercana a los 20-25ºC y totalmente húmedo por un mínimo de 7 días. Los primeros tres días son los más críticos en la vida del concreto. En este periodo, cuando el agua y el concreto se combinan rápidamente, el concreto es más susceptible de sufrir algún daño. A la edad de siete días, el concreto ha obtenido aproximadamente 70% de la resistencia, a los catorce días aproximadamente el 85% y los 28 días, la resistencia de diseño. Existen varios métodos para curar el concreto, entre los más comunes tenemos: 1) Curado con agua 2) Materiales selladores 3) Curados a vapor 1). Curado con agua Cuando se elige una aplicación de agua debe estudiarse la economía del método particular que se usará en cada obra, puesto que la disponibilidad de agua, mano de obra y otros factores influirán en el costo. A continuación se describen varios métodos de curado con agua. a) Anegamiento o inmersión.- Se emplea rara vez, sin embargo es el método más completo de curado; todo depende de que el elemento a curar se preste. Algunas veces se emplea en losas planas, puentes, pavimentos, atarjeas, es decir en cualquier elemento donde sea posible crear un charco.

b) Rociado de niebla o aspersión.- El rociado de niebla o aspersión mediante boquillas o aspersores proporcionan un curado excelente. Una de las desventajas es el costo del agua a menos que se cuente con toda la necesaria. El uso de mangueras es útil, especialmente cuando se tienen superficies verticales. Sin embargo debe tenerse cuidado de no provocar la erosión de la superficie. c) Costales, carpetas de algodón y alfombras.- Estos elementos y otras cubiertas de material absorbente retendrán agua sobre la superficie del concreto, sea esta vertical u horizontal. Estos materiales deben estar libres de substancias dañinas tales como: Azúcar o fertilizantes, que si puedan dañar al concreto y decolorarlo. Los costales deben lavarse muy bien con agua para eliminar estas substancias y hacerlos más absorbentes. d) Arena y aserrín.- La arena y aserrín mojados proporcionan por mayor tiempo la humedad y pueden proteger la superficie del elemento en caso de lluvias para que no se despostille. Materiales selladores Los materiales selladores son hojas o membranas que se colocan sobre el concreto para reducir la pérdida del agua por evaporación. Estos, proporcionan varias ventajas; por ejemplo, cuando se impide la pérdida de humedad mediante el sellado, existe menos la posibilidad de que el concreto se seque antes de tiempo debido a un error en el mantenimiento de la cubierta húmeda. Asimismo, los materiales selladores son más fáciles de manejar y pueden aplicarse más temprano. a). Película plástica.- La película plástica es de peso ligero y está disponible en hojas transparentes, blancas y negras. La película blanca es la más costosa, pero refleja los rayos del sol considerablemente, mientras que la transparente tiene poco efecto sobre la absorción de calor. La película negra debe evitarse en clima cálido, excepto para interiores, sin embargo, tiene sus ventajas en clima frío por su absorción de calor. b) Papel impermeable.- El papel impermeable está compuesto de dos hojas de papel kraft unidas entre sí mediante un adhesivo bituminoso, e impermeabilizadas con fibras. El papel impermeable puede emplearse por segunda vez siempre y cuando conserve su capacidad para retardar eficazmente la pérdida de humedad. c) Compuestos líquidos para formar membranas de curado.- Estos compuestos consisten esencialmente en ceras, resinas naturales o

sintéticas, así como solventes de volatilidad elevada a la temperatura atmosférica. Los compuestos de curado no deben emplearse sobre superficies que vayan a recibir capas adicionales de concreto, pintura o mosaicos que requieran buena adherencia. Curados a vapor Estos curados se llevan a cabo cuando se pretende que el concreto obtenga su resistencia máxima antes de los 28 días. Las ventajas que se tienen son: descimbrado altos tres días, el elemento puede cargar más pronto, el tronado de cilindros nos darían resultados inmediatos, etc. a) Curado con vapor a baja presión.- Este se lleva a cabo a presión atmosférica, envolviendo el elemento con un plástico para que el vapor no se escape. b) Curado con vapor a alta presión.- Este curado, por lo general se lleva a cabo en una autoclave, este se hace necesario en productos que no tengan contracciones a la hora del secado. c) Tina de curado.- La tina de curado se utiliza especialmente para los cilindros de prueba, acelerando su resistencia a temprana edad; por medio del calentamiento del agua a cierta temperatura según el tiempo en el que se pretenda tronar los cilindros. VELOCIDAD DE SECADO DEL CONCRETO El concreto ni endurece ni se cura con el secado. El concreto (o de manera precisa, el cemento en el contenido) requiere de humedad para hidratarse y endurecer. El secado del concreto únicamente está relacionado con la hidratación y el endurecimiento de manera indirecta. Al secarse el concreto, deja de ganar resistencia; el hecho de que este seco, no es indicación de que haya experimentado la suficiente hidratación para lograr las propiedades físicas deseadas. El conocimiento de la velocidad de secado es útil para comprender las propiedades o la condición física del concreto. Por ejemplo, tal como se mencionó, el concreto debe seguir reteniendo suficiente humedad durante todo el periodo de curado para que el cemento pueda hidratarse. El concreto recién colado tiene agua abundante, pero a medida de que el secado progresa desde la superficie hacia el interior, el aumento de resistencia continuara a cada profundidad únicamente mientras la humedad relativa en ese punto se mantenga por encima del 80%.

La superficie de un piso de concreto que no ha tenido suficiente curado húmedo es una muestra común. Debido a que se seca rápidamente, el concreto de la superficie es débil y se produce descascara miento en partículas finas provocado por el tránsito. Asimismo, el concreto se contrae al, secarse, del mismo modo que lo hacen la madera, papel y la arcilla (aunque no tanto). La contracción por secado es una causa fundamental de agrietamiento, y le ancho de las grietas es función del grado del secado. En tanto que la superficie del concreto se seca rápidamente, al concreto en el interior le lleva mucho más tiempo secarse. Propiedades físicas y químicas Densidad La densidad del concreto se define como el peso por unidad de volumen. Depende dela densidad real y de la proporción en que participan cada uno de los diferentes materiales constituyentes del concreto. Para los concretos convencionales, formados por materiales granulares provenientes de rocas no mineralizadas de la corteza terrestre su valor oscila entre 2.35 y 2.55 kg. /dm3. RESISTENCIA La resistencia es una de las propiedades más importantes del concreto, principalmente cuando se le utiliza con fines estructurales. El concreto, en su calidad de constituyente de un elemento estructural, queda sometido a las tensiones derivadas de las solicitaciones que actúan sobre éste. La resistencia a la compresión se puede definir como la máxima resistencia medida de un espécimen de concreto o de mortero a carga axial. Generalmente se expresa en kilogramos por centímetro cuadrado (Kg/cm 2) a una edad de 28 días se le designe con el símbolo f’ c. Para determinar la resistencia a la compresión, se realizan pruebas especímenes de mortero o de concreto; en los Estados Unidos, a menos de que se especifique de otra manera, los ensayes a compresión de mortero se realizan sobre cubos de 5 cm. en tanto que los ensayes a compresión del concreto se efectúan sobre cilindros que miden 15 cm de diámetro y 30 cm de altura. La resistencia del concreto a la compresiones una propiedad física fundamental, y es frecuentemente empleada en los cálculos para diseño de puente, de edificios y otras estructuras. El concreto de uso generalizado tiene una resistencia a la compresión entre 210 y 350 kg/cm cuadrado. Un concreto de alta resistencia tiene una resistencia a la compresión de

cuando menos 420 kg/cm cuadrado. La resistencia de 1,400 kg/cm cuadrado se ha llegado a utilizar en aplicaciones de construcción. La resistencia a la flexión del concreto se utiliza generalmente al diseñar pavimentos y otras losas sobre el terreno. La resistencia a la compresión se puede utilizar como índice de la resistencia a la flexión, una vez que entre ellas se ha establecido la relación empírica para los materiales y el tamaño del elemento en cuestión. La resistencia a la flexión, también llamada módulo de ruptura, para un concreto de peso normal se aproxima a menudo de1.99 a 2.65 veces el valor de la raíz cuadrada de la resistencia a la compresión. El valor de la resistencia a la tensión del concreto es aproximadamente de 8% a 12% de su resistencia a compresión y a menudo se estima como 1.33 a 1.99 veces la raíz cuadrada de la resistencia a compresión. La resistencia a la torsión para el concreto está relacionada con el módulo de ruptura y con las dimensiones del elemento de concreto. La resistencia al cortante del concreto puede variar desde el 35% al 80% de la resistencia a compresión. La correlación existe entre la resistencia a la compresión y resistencia a flexión, tensión, torsión, y cortante, de acuerdo a los componentes del concreto y al medio ambiente en que se encuentre. El módulo de elasticidad, denotando por medio del símbolo E, se puedes definir como la relación del esfuerzo normal la deformación correspondiente para esfuerzos de tensión o de compresión por debajo del límite de proporcionalidad de un material. Para concretos de peso normal, E fluctúa entre 140,600 y 422,000 kg/cm cuadrado, y se puede aproximar como 15,100 veces el valor de la raíz cuadrada de la resistencia a compresión. Los principales factores que afectan a la resistencia son la relación Agua – Cemento y la edad, o el grado a que haya progresado la hidratación. Estos factores también afectan a la resistencia a flexión y a tensión, así como a la adherencia del concreto con el acero. Las relaciones Edad – Resistencia a compresión. Cuando se requiera de valores más precisos para el concreto se deberán desarrollar curvas para los materiales específicos y para las proporciones de mezclado que se utilicen en el trabajo.

Para una trabajabilidad y una cantidad de cementos dados, el concreto con aire incluido necesita menos agua de mezclado que el concreto sin aire incluido. La menor relación Agua – Cemento que es posible lograr en un concreto con aire incluido tiende a compensar las resistencias mínimas inferiores del concreto con aire incluido, particularmente en mezclas con contenidos de cemento pobres e intermedios.

VARIACIONES DE VOLUMEN Y FIGURACIÓN El concreto experimenta variaciones de volumen, dilataciones o contracciones, durante toda su vida útil por causas físico - químicas. El tipo y magnitud de estas variaciones están afectados en forma importante por las condiciones ambientales existentes de humedad y temperatura y también por los componentes presentes en la atmósfera. Durabilidad Como ya se ha indicado, un concreto será bueno si es durable. La durabilidad expresala resistencia al medioambiente. La impermeabilidad, la cual está directamente relacionada con la durabilidad, se consigue con la consolidación, relación agua- cemento adecuada y curado conveniente, según el lugar donde se encuentre la obra. El ensayo de resistencia, es el más común de los aplicados al concreto y constituye un índice de su calidad. La resistencia final del concreto, es función de la relación aguacemento, del proceso de hidratación del cemento, del curado, de las condiciones ambientales y de la edad del concreto. La durabilidad expresa el comportamiento del material para oponerse a la acción agresiva del medio ambiente u otros factores como el desgaste, asegurando su integridad y la de las armaduras de refuerzo durante el período de construcción y después, a lo largo de toda la vida en servicio de la estructura. Impermeabilidades una característica estrechamente ligada a la durabilidad y la que más colabora con ésta. La impermeabilidad es el resultado de disponer de un concreto compacto y uniforme, con la suficiente cantidad de cemento, agregados de buena calidad y granulometría continua, dosificación racional, relación agua/cemento lo más baja posible dentro de las condiciones de obra para permitir un excelente llenado de encofrados y recubrimiento de armadura, eliminando toda posibilidad de que queden en la masa bolsones de aire o nidos de

abeja a fin de impedir que ingresen a la masa del concreto los elementos agresivos. PRUEBAS DE CALIDAD DEL CONCRETO ENDURECIDO CLASIFICACIÓN SEGÚN SU NATURALEZA: Destructivas: Determinan la resistencia mediante la rotura de probetas o piezas de concreto. Las pruebas destructivas que comúnmente se utilizan son: Prueba a la compresión simple, prueba de flexión, prueba de tensión. No destructivas: Determinan la calidad sin destruir la estructura. Las pruebas no destructivas más comunes tenemos; prueba del martillo de rebote (esclerómetro), prueba de resistencia a la penetración (pistola de Windsor), prueba de pulso ultrasónico, pruebas dinámicas o de vibración y prueba de extracción de corazones, esta última algunos autores la consideran como prueba semi destructiva. Las mezclas endurecidas corresponden a la tercer etapa en la vida del hormigón, la que comienza en el momento en que este ha alcanzado un grado de hidratación tal de la pasta de cemento que contiene, como para que la misma sea ya capaz de mantener unidos entre si los granos de los agregados en forma permanente. Esto se pone en evidencia por la resistencia que ofrece una pieza de hormigón, por ejemplo, al cambio de forma por acción de una solicitación mecánica (caso del ensayo de compresión). La resistencia mecánica es la más conocida de las propiedades de la mezcla endurecida. El hormigón luego del periodo de fraguado, comienza a dar resistencia hasta endurecerse por completo a los 28 días. Ensayo de resistencia a la rotura por compresión: Por lo general se realiza el ensayo en probetas de forma cilíndrica de esbeltez igual a 2 (altura de la probeta/diámetro de la base). Se moldean las probetas de acuerdo a las Normas IRAM 1524 y 1534, el moldeo se efectúa colocando y compactando el hormigón en forma similar a la empleada para el ensayo de asentamiento que se realiza con el tronco de cono de Abrams. Este procedimiento es válido solo para hormigones de 3 cm o más de asentamiento; para mezclas más secas la compactación deberá efectuarse por vibración , ya sea mediante vibrador de inmersión (diámetro máximo

del elemento vibrante : 25mm para probetas de 15 x 30). Curado: Las probetas se mantienen en sus moldes durante un periodo mínimo de 24 hs. En ese lapso no deberán sufrir vibraciones, sacudidas, ni golpes, se protegerá la cara superior con arpillera húmeda, lamina de polietileno o tapa mecánica y se mantendrá en ambiente protegido de inclemencias climáticas (calor, frio, lluvia, viento). Una vez transcurridas las primeras 24 horas se procede a desmoldar e inmediatamente se acondiciona la probeta para su mantenimiento hasta el momento de ensayo. Durante este periodo (7,14 o 28 días) deben mantenerse condiciones de temperatura y humedad, según norma IRAM 1524 y 1534, la probeta debe mantenerse en un medio ambiente con no menos del 95% de humedad relativa.

PROBETAS PARA ENSAYOS

EJECUCIÓN DE ENSAYO DE ROTURA POR COMPRESIÓN Se utilizan prensas con capacidad de 100 a 150 toneladas. Se mide la deformación de la probeta al aplicársele cargas cada vez mayores. En algunas prensas hidráulicas debe disponerse una tabla de conversión, que permita calcular la carga aplicada. La velocidad de aplicación de la carga sobre la probeta tiene influencia importante en el resultado del ensayo; en efecto las cargas excesivamente rápidas, al no dar tiempo a la deformación

de todas las partículas de la probeta, dan como consecuencia una carga de rotura artificialmente elevada; en cambio la carga excesivamente lenta provoca el efecto contrario. El ritmo de la velocidad debe mantenerse entre 250 y 600 kg por segundo para probetas de 15 cm de diámetro, a partir del 50 % de la carga de rotura. En cuanto a la 103 exactitud de las lecturas de la prensa, debe verificarse con una periodicidad de entre 6 meses y 1 año según el uso, debiendo mantenerse el error de lectura por debajo del 1% ENSAYOS A COMPRESIÓN A TESTIGOS (EXTRACCIÓN EN OBRA) Generalidades: Cuando sea necesario determinar la resistencia del hormigón correspondiente a una obra ya ejecutada, pueden obtenerse probetas talladas directamente de la obra. Las probetas se extraen mediante perforadoras tubulares, con las que se obtienen testigos cilíndricos cuyas caras extremas se cortan posteriormente con disco. Cuando se trata de pilares, conviene muestrear en el tercio superior de los mismos. El pacómetro es el detector magnético de armaduras, aplicado a la superficie del hormigón permite localizar la presencia y el trazado de las armaduras hasta profundidades del orden de los 10 cm. Dimensiones de las probetas: Las probetas cilíndricas destinadas al ensayo de compresión tendrán un diámetro " 10 cm y su altura como mínimo el doble del diámetro. El diámetro no debe ser inferior al triple del tamaño máximo del árido. Es conveniente que las probetas no se extraigan antes de los 28 días. Sus bases de ensayo no deben tener irregularidades grandes y deben ser perpendiculares al eje de la probeta. Preparación y conservación de las probetas: En el caso en que la obra o estructura de la que se han extraído las probetas vaya a estar sometido a humedad continuamente, o a saturación de agua, las probetas talladas y refrentadas deben mantenerse antes del ensayo durante 40 a 48 horas en agua. Evaluación de la resistencia: La influencia de la edad, está ligada fundamentalmente al tipo de cemento y al grado de maduración del hormigón. Si se desease estimar la resistencia a otra TESTIGO edad distinta de la ensayada, habría que utilizar correlaciones específicas para cada cemento.

ENSAYO DE RESISTENCIA A LA COMPRESIÓN Se efectúa habitualmente sobre vigas de forma prismática de sección transversal cuadrada, confeccionadas con hormigón simple, de 15 cm de lado y 53 cm de largo. La colocación del hormigón se efectúa en 2 capas de igual altura y para la compactación se emplea la misma varilla que para las probetas de compresión. La cantidad de golpes por capa es de 1 por cada 15cm2 de sección horizontal. El ensayo se efectúa colocando la viga sobre dos apoyos distanciados 45cm entre si y 4 cm de los extremos.

Las cargas se aplican en los tercios de la distancia entre apoyos (o sea que quedan 15 cm entre si y a la misma distancia de los apoyos). El dispositivo indicado en el croquis puede materializarse en lugares donde no se disponga de prensa, ya que consiste en una simple palanca (para una relación: a + b / a = 10, la fuerza a aplicar F, en los hormigones comunes oscila entre 200 y 400 kg. Ensayo de tracción por compresión Fue propuesto por el ingeniero brasileño Lobo Carneiro (por eso se lo llama también ensayo brasileño).Consiste en aplicar una carga de compresión a una probeta cilíndrica, colocada en la prensa con su eje longitudinal en dirección horizontal. En esta posición, el contacto entre los cabezales de la prensa y la probeta se produce a lo largo de dos generatrices, que corresponden a la intersección de un plano diametral vertical, con la superficie lateral de la probeta. A fin de distribuir uniformemente la carga, se interponen entre los cabezales y las generatrices de la probeta,

pequeños listones de madera de 4 mm de espesor, 25 mm de ancho y la longitud de la probeta. Como consecuencia de la solicitación a que es sometida la probeta, se demuestra que en coincidencia con el plano diametral ya mencionado, se produce un esfuerzo de tracción pura, lo que se pone en evidencia al producirse la rotura, a lo largo de dicho plano. El cálculo de la carga unitaria de rotura por tracción, se efectúa aplicando la expresión siguiente: t(Kg/cm2) = 2P = dl

P. 706 cm2

Donde el valor indicado para el denominador (706 cm2) es aplicable exclusivamente, para el caso de la probeta de 15 cm de diámetro y 30 cm altura.

de

PRUEBAS NO DESTRUCTIVAS Método del esclerómetro El esclerómetro o martillo de Schmidt, es en esencia, un medidor de la dureza de la superficie que constituye un medio rápido y simple para revisar la uniformidad del concreto. Mide el rebote de un émbolo cargado con un resorte después de haber golpeado una superficie plana de concreto. La lectura del número de rebote da una indicación de la resistencia a compresión del concreto. Los resultados de la prueba con esclerómetro (ASTM C-805) se ven afectados por la lisura de la superficie, el tamaño, forma y rigidez del espécimen; la edad y condición de humedad del concreto; el tipo de agregado grueso; y la carbonatación de la superficie del concreto. Cuando se reconocen estas limitaciones y el esclerómetro se calibra paralos materiales particulares que se utilicen en el concreto, entonces este instrumento puede ser útil para determinar la resistencia a la compresión relativa y la uniformidad del concreto en la estructura.

Método de penetración. El sondeo Windsor (ASTM C803), como el esclerómetro, es básicamente un probador de dureza que brinda un medio rápido para determinar la resistencia relativa del concreto. El equipo consiste de una pistola accionada con pólvora que clava una sonda de aleación acerada (aguja) dentro del concreto. Se mide la longitud expuesta de la sonda y se relaciona con la resistencia a compresión del concreto por medio de una tabla de calibración. Tanto el esclerómetro como el sondeo de penetración dañan la superficie del concreto en cierto grado. El esclerómetro produce una pequeña muesca sobre la superficie; y el sondeo de penetración deja un agujero pequeño y puede causar agrietamientos leves.

Pruebas dinámicas o de vibración. Una prueba dinámica o de vibración (velocidad de pulso) (ASTM C-597) se basa en el principio de que la velocidad del sonido en un sólido se puede medir: 1) determinando la frecuencia resonante de un espécimen o

2) registrando el tiempo de recorrido de pulsos cortos de vibración a través de una muestra. Las velocidades elevadas indican que el concreto es de buena calidad, y las velocidades bajas indican lo contrario.

Pruebas de corazones (ASTM C-42). Los corazones de concreto son núcleos cilíndricos que se extraen haciendo una perforación en la masa de concreto con una broca cilíndrica de pared delgada; por medio de un equipo rotatorio como especie de un taladro al cual se le adapta la broca con corona de diamante, carburo de silicio u otro material similar; debe tener un sistema de enfriamiento para la broca, impidiendo así la alteración del concreto y el calentamiento de la broca. El diámetro de los corazones que se utilicen para determinar la resistencia a la compresión debe ser cuando menos de 3 veces el tamaño del máximo del agregado grueso, y puede aceptarse de común acuerdo por lo menos 2 veces el tamaño máximo del mismo agregado, debiendo anotarse en el reporte. INTERPRETACIÓN DE RESULTADOS Los requisitos del reglamento de construcción para concreto reforzado ACI 318señalan que la resistencia a compresión del concreto puede

considerarse satisfactoria sí los promedios de todos los conjuntos de tres pruebas de resistencia consecutivas igualan o exceden la resistencia especificada a los 28 días y si ninguna prueba de resistencia individual (el promedio de dos cilindros) se encuentra más allá de 35kg/cm2 Debajo de la resistencia especificada. Si la resistencia de cualquier cilindro curado en el laboratorio es inferior a la resistencia especificada menos de 35 kg/cm2, se deberá evaluar la resistencia del concreto en el lugar. Cuando sea necesario evaluar la resistencia del concreto en el lugar, deberá determinarse ensayando tres corazones por cada prueba de resistencia en que los cilindros curados en el laboratorio hayan estado por debajo del f’c en más de 35 kg/cm2. Si la estructura permanece seca durante su servicio, antes de la prueba deberán secarse los corazones 7 días a una temperatura de 16 a 27ºC y a una humedad relativa de menos de 60%. Los corazones deberán sumergirse en agua por lo menos 40 horas antes de la prueba si la estructura va estar en servicio en un ambiente húmedo. Los métodos de prueba no destructivos no sustituyen a las pruebas de corazones (ASTM C- 42). Si la resistencia promedio de tres corazones es de por lo menos 85% del f’c y si ningún es menor que 75% del f’c, se considerará estructuralmente adecuado al concreto de la zona representada por el corazón. Si los resultados de las pruebas de corazones correctamente realizadas son tan bajos como para poner en duda la integridad estructural del concreto, deberá optarse por demoler el elemento o probar físicamente con la carga a la cual estará trabajando dicho elemento.