CIRCUITOS ELECTRICOS

CIRCUITOS ELECTRICOS  Vamos a estudiar los circuitos eléctricos, que son, que elementos los componen, los tipos que hay,

Views 202 Downloads 3 File size 1MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

CIRCUITOS ELECTRICOS  Vamos a estudiar los circuitos eléctricos, que son, que elementos los componen, los tipos que hay, etc. No estudiamos los cálculos, aunque si veremos algunas fórmulas para resolver los circuitos. Para aprender hacer cálculos te dejamos en cada tipo de circuito un enlace para que aprendas a calcularlo.

¿Qué es un Circuito Eléctrico?  "Un Circuito Eléctrico es un conjunto de elementos conectados entre si por los que puede circular una corriente eléctrica".  La corriente eléctrica es un movimiento de electrones, por lo tanto, cualquier circuito debe permitir el paso de los electrones por los elementos que lo componen. Si quieres saber más sobre qué es, como se genera y los fundamentos de la corriente eléctrica, te recomendamos que visites el siguiente enlace: Electricidad Básica. Aquí nos centraremos en los circuitos eléctricos.

 Solo habrá paso de electrones por el circuito si el circuito es un circuito cerrado. Los circuitos eléctricos son circuitos cerrados, aunque podemos abrir el circuito en algún momento para interrumpir el paso de la corriente mediante un interruptor, Pulsador u otro

elemento

del

circuito.

 Ahora vamos a estudiar los elementos que forman los circuitos eléctricos y los tipos de circuitos que hay.

Partes de un Circuito Eléctrico  Los

elementos

que forman un circuito eléctrico básico son:

 Generador: producen y mantienen la corriente eléctrica por el circuito. Son la fuente de energía. Hay 2 tipos de corrientes: corriente continua y alterna (pincha en el enlace subrayado si quieres saber más sobre c.c. y c.a.)  Pilas y Baterías: son generadores de corriente continua (c.c.)  Alternadores:

son

generadores

de

corriente

alterna

(c.a.)

 Conductores : es por donde se mueve la corriente eléctrica de un elemento a otro del circuito. Son de cobre o aluminio, materiales buenos conductores de la electricidad, o lo que es lo mismo que ofrecen muy poca resistencia electrica a que pase la corriente por ellos. Hay muchos tipos de cables eléctricos diferentes, en el enlace puedes ver todos.  Receptores: son los elementos que transforman la energía eléctrica que les llega en otro tipo de energía. Por ejemplo las bombillas transforma la energía eléctrica en luminosa o luz, los radiadores en calor, los motores en movimiento, etc.  Elementos de mando o control: permiten dirigir o cortar a

voluntad el paso de la corriente eléctrica dentro del circuito. Tenemos interruptores, pulsadores, conmutadores, etc.  Elementos de protección : protegen los circuitos y a las personas cuando hay peligro o la corriente es muy elevada y puede haber riesgo de quemar los elementos del circuito. Tenemos fusibles, magneto térmicos, diferenciales, etc.  Para simplificar el dibujo de los circuitos eléctricos se utilizan esquemas con símbolos. Los símbolos representan los elementos del circuito de forma simplificada y fácil de dibujar.  Veamos los símbolos de los elementos más comunes que se usan en los circuitos eléctricos.

Tipos de Circuitos Eléctricos  Dependiendo de como se conecten los receptores tenemos varios tipos de circuitos eléctricos diferente, aunque como luego veremos, también depende si el tipo de corriente que se utiliza en el circuito es corriente continua o corriente alterna trifásica. Circuitos

de

1

Receptor

 Son aquellos en los que solo se conecta al circuito un solo receptor: lámpara, motor, timbre, etc. Veamos un ejemplo de un circuito con una lámpara:

Características

de

un

Circuito

con

un

Receptor

 El receptor quedará conectado a la misma tensión que el generador, por el receptor circulará una intensidad de corriente igual a la del circuito total y la única resistencia del circuito será la del receptor. Aquí tienes las fórmulas para este tipo de circuitos:   It

=

I1;

Vt

=

V1;

Rt

=

R1

 Si quieres aprender a calcular este tipo de circuito vete a este enlace: Calcular Circuitos de 1 Receptor. Circuitos

en

Serie

 En los circuitos en serie los receptores se conectan una a continuación del otro, el final del primero con el principio del segundo y así sucesivamente. Veamos un ejemplo de dos lámparas en serie:

Características

Circuitos

en

Serie

 Este tipo de circuitos tiene la característica de que la intensidad que atraviesa todos los receptores es la misma, y es igual a la total del circuito. It= I1 = I2.  La resistencia total del circuito es la suma de todas las resistencias de los receptores conectados en serie. Rt = R1 + R2.  La tensión total es igual a la suma de las tensiones en cada uno de los receptores conectados en serie. Vt = V1 + V2.  Podemos conectar 2, 3 o los receptores que queramos en serie.  Si desconectamos un receptor, todos los demás receptores en serie con el, dejaran de funcionar (no puede pasar la corriente).  Puedes ver como se calculan en este enlace: Circuitos en Serie Circuitos

en

Paralelo

 Son los circuitos en los que los receptores se conectan unidas todas las entradas de los receptores por un lado y por el otro todas las salidas. Veamos el ejemplo de 2 lámparas en paralelo.

Característica

de

los

Circuitos

en

Paralelo

 Las tensiones de todos los receptores son iguales a la tensión total del circuito. Vt = V1 = V2.  Las suma de cada intensidad que atraviesa cada receptor es la intensidad total del circuito. It = I1 + I2.  La resistencia total del circuito se calcula aplicando la siguiente fórmula: 1/Rt = 1/R1 + 1/R2; si despejamos la Rt quedaría:   Rt

=

1/(1/R1+1/R2)

 Todos los receptores conectados en paralelo quedarán trabajando a la misma tensión que tenga el generador.  Si quitamos un receptor del circuito los otros seguirán funcionando.  Puedes ver como se calculan en este enlace: Circuitos en Paralelo  Aquí te dejamos un ejemplo de conexión real en serie y en paralelo de 2 bombillas con cables. Fíjate sobre todo en el circuito paralelo que no hace falta hacer ningún empalme en los cables, se unen en los bornes (contactos) de las propias lámparas.

Circuito

Mixtos

o

Serie-Paralelo

 Son aquellos circuitos eléctricos que combinan serie y paralelo. Lógicamente estos circuitos tendrán más de 2 receptores, ya que si tuvieran 2 estarían en serie o en paralelo. Veamos un ejemplo de un circuito mixto.

 En este tipo de circuitos hay que combinar los receptores en serie y en paralelo para calcularlos. Puedes ver como se calculan en este enlace: Circuitos Mixtos Eléctricos.  En cuanto a las potencias en los circuitos, si te interesa saber como se calculan, te dejamos este enlace: Potencia Eléctrica Conmutadas  Las conmutadadas son circuitos eléctricos cuya misión es poder encender una o varias lámparas, pero desde 2 o más puntos diferentes.  Un ejemplo claro es en los pasillos largos en los que podemos encender la lámpara desde 2 sitios o más diferentes (al principio y al final del pasillo, por ejemplo).  Ojo estos circuitos llevan conmutadores. Los conmutadores por fuera son igual que los interruptores, pero por dentro tienen 3 bornes (contactos) en lugar de 2 que tendría un interruptor normal. Veamos un conmutador de 3 bornes:

 Los conmutadores de 4 bornes se llaman conmutadores de cruzamiento, necesario para instalaciones donde podemos encender un punto de luz desde 3 o más sitios diferentes y tienen 4 bornes en lugar de 3 como los conmutadores simples..  Vemos

como

son

Conmutada

los desde

circuitos

de 2

conmutadas Puntos

 Podemos encender o activar un receptor desde 2 sitios diferentes.

Conmutada

desde

3

Sitios

diferentes

(cruzamiento)

 Podemos encender o activar un receptor desde 3 o más sitios diferentes. Veamos la conexión.

 Como has podido ver aquí ya necesitamos un conmutador de cruzamiento. Si queremos desde 4 sitios solo tendríamos que colocar otro conmutador de cruzamiento en el medio. Así, colocando más conmutadores de cruzamiento, podemos encender un receptor desde tantos puntos diferentes como queramos.  Para saber mucho visita: Circuitos

Circuitos Corriente

más

sobre

circuitos

con

Eléctricos

conmutadas Conmutados.

en Alterna

 Los circuitos con corriente alterna (c.a.) se calculan y analizan de diferente manera que los de c.c. aunque seguimos teniendo las conexiones de receptores en serie, paralelo o mixtos igualmente, además de alguna más que veremos.  Aquí solo veremos los tipos de circuitos en corriente alterna, pero si lo que quieres es conocer en detallle y aprender a calcular los circuitos en c.a. visita este enlace: Circuitos de Corriente Alterna.  En corriente alterna trifásica, al ser como mínimo 3 conductores (3 fases), en lugar de 2 conductores como en monofásica o corriente continua, los tipos de circuitos o conexiones pueden ampliarse. En estos casos tenemos, además de serie, paralelo y mixtos, las conexiones o circuitos en estrella, en triángulo, en zig-zag y en uve.  Si suponemos un receptor, lámpara, motor, etc., como si fuera una

resistencia podemos conexiones:

 Aquí

tienes

tener

algunos

los

siguientes

circuitos

tipos

con

de circuitos

o

lámparas:

 ¿Quieres el Curso Completo de Electricidad desde Cero? Vete ha esta página: Curso de Electricidad. Si

te

ha

gustado Circuitos haz

clic

en

Me

Compartir:

  © Se permite la total o parcial reproducción del contenido, siempre y cuando se reconozca y se enlace a este artículo como la fuente de información utilizada.

3.Circuitos Eléctricos del Automóvil, Tipos de Circuitos Eléctricos

Que Ruta toma la Electricidad para Llegar a cada Componente del Auto?

En la clase anterior vimos como es que funciona la electricidad y los elementos invisibles que se encuentran en los circuitos eléctricos, hoy veremos de que forma están trazadas las rutas que toma la electricidad para llegar a cada dispositivo eléctrico del automóvil, tales como focos ventiladores etc. Anteriormente vimos que la electricidad viaja en el auto a través de circuitos eléctricos, sin embargo dependiendo de la necesidad, las rutas de éstos circuitos pueden ser trazadas de diferentes maneras a fin de obtener el mayor rendimiento posible de la energía eléctrica. Estas diferentes rutas se denominan «tipos de circuitos» Existen varios tipos de circuitos entre los que se encuentran; circuitos en serie, circuitos en paralelo y circuitos combinados.

Circuitos en Serie Un circuito en serie es un circuito completo con dos o más resistencias conectadas, de modo que la corriente tiene que ir a través de una resistencia para ir a la siguiente. Un circuito en serie puede tener cualquier número de resistencias en el circuito, la resistencia puede ser alguna de las siguientes:        

Resistores Focos Cornetas Motores eléctricos Bobinas Relevadores Solenoides Elementos de calor (encendedor de cigarrillos)

 

Conectores o uniones Tramos de alambre o conductores En un circuito en serie, el voltaje varía a través de cada resistencia, pero el flujo de corriente en amperes es constante por todo el circuito.

Circuito en serie con dos resistencias

Circuito en Paralelo Un circuito en paralelo es un tipo de circuito completo en el cual la corriente fluye a través de él por más de una trayectoria. El concepto es similar al del tráfico de una ciudad. Un automovilista puede cruzar la ciudad, luchando con un tráfico pesado (alta resistencia), o ir por las orillas de la ciudad manejando en un largo periférico. Debido a que ambas trayectorias están disponibles para cualquier tráfico, cada ruta lleva menos vehículos. En forma pictórica, un circuito en paralelo se asemeja a como se muestra en la siguiente imagen

Circuito en paralelo con dos resistencias

En un circuito en paralelo el voltaje en cada derivación del circuito es el mismo, pero la corriente que fluye en amperes, varía de acuerdo con la resistencia de cada derivación.

Cómo Determinar un Circuito en Paralelo. Para probar si un circuito es realmente paralelo, intenta cortar un alambre de focos de alumbrado. Si los otros focos están conectados a la misma fuente de energía y a una tierra, el circuito está completo aun y la corriente puede fluir todavía. El circuito es por tanto un circuito en paralelo.

Dónde se Utilizan los Circuitos en Paralelo en un Auto? Los circuitos en paralelo se utilizan en casi todos los componentes eléctricos automotrices. Las luces exteriores son todas controladas por el interruptor de los faros y están conectadas en paralelo. Si estuvieran conectadas en serie, y se fundiera un foco, ambos faros se apagarían debido al circuito abierto causado por el foco defectuoso. (similar a las antiguas series de luces de navidad) Esto no ocurre en un circuito en paralelo, si alguno de los focos está defectuoso la corriente fluye todavía a través de las otras resistencias (focos) como si nada hubiese pasado.

Circuitos en Serie-Paralelo (Combinados o Compuestos) Un circuito en serie-paralelo es cualquier tipo de circuito que contenga resistencias tanto en serie como en paralelo en un circuito. Los circuitos en serie-paralelo se conocen también como circuitos combinados o circuitos compuestos. Un circuito en serie-paralelo es el tipo que se utiliza más en los circuitos automotrices.

Los 4 Circuitos Automotrices Básicos Todos los componentes eléctricos automotrices fundamentales utilizan cuatro tipos de circuitos de operación, y todos ellos son circuitos en Serie-paralelo. Todos estos circuitos que usan batería, se clasifican según su función. Durante la localización de fallas, el técnico debe saber cuáles componentes están conectados juntos y sus funciones en cada circuito específico. Entonces, por medio de un procedimiento de prueba sistemático, puede localizarse el componente defectuoso. Estos cuatro tipos de circuitos son como sigue: 1. Circuito de encendido: Los componentes del circuito de encendido han sido diseñados para generar y proporcionar una chispa de alto voltaje

exactamente en el momento necesario para encender las bujías en el orden correcto. Los componentes incluyen: A. Batería B. Bobina de encendido C. Distribuidor (Sistema convencional) D. Bujías E. Cables de bujías 2, Circuito de Arranque. El circuito de arranque incluye todos los componentes necesarios para arrancar el motor. Los componentes incluyen: A. Batería B. Motor de arranque C. Solenoide o relevador de arranque D. Cables de conexión y conectores 3. Circuito de Carga. El circuito de carga incluye todos los componentes requeridos para mantener la batería totalmente cargada. Los componentes incluyen: A. Batería B. Alternador o generador C. Regulador de voltaje D. Cables de conexión y conectores 4. Circuitos de Alumbrado y Accesorios. Los circuitos de luces y accesorios incluyen todos los demás circuitos: A. Batería

B. Todas las luces C. Todos los instrumentos del tablero  D. Claxon E. Limpiaparabrisas F. Radio G. Todos los demás elementos de seguridad. Como podemos ver, la electricidad llega a cada componente del auto mediante los distintos tipos de circuitos, a su vez cada circuito contiene cables los cuales transportan la energía. Estos cables deberán soportar la cantidad de energía que fluirá a través de ellos, de lo contrario podrían sobrecalentarse (o hasta quemarse), no obstante esto puede resolverse y determinarse mediante un regla sencilla (usada por los fabricantes de autos) la cual permite calcular con suma precisión el amperaje que fluirá por dichos cables a fin de evitar sobrecalentamientos.

Preguntas relacionadas ¿Cuáles son los componentes del sistema eléctrico de un automóvil? Este sub-sistema del sistema eléctrico del automovil está constituido comúnmente por cuatro componentes; el generador , el regulador de voltaje, que puede estar como elemento independiente o incluido en el generador, la batería de acumuladores y el interruptor de la excitación del generador.

Funcionamiento y componentes del sistema eléctrico del vehículo

Sistema eléctrico del automovil   Es el encargado de repartir alimentación hacia todo el coche, sin el no se podría arrancar el coche o encender las luces.  Está formado por: · Sistema de generación y almacenamiento. · Sistema de encendido. · Sistema de arranque. · Sistema de inyección de gasolina. · Sistema de iluminación. · Instrumentos de control. 1. Sistema de Generación y Almacenamiento.   

Sistema eléctrico del automovil Este sub-sistema del sistema eléctrico del automovil está constituido comúnmente por cuatro componentes; el generador , el regulador de voltaje, que puede estar como elemento independiente o incluido en el generador, la batería de acumuladores y el interruptor de la excitación del generador.  El borne negativo de la batería de acumuladores está conectado a tierra para que todos los circuitos del sistemas se cierren por esa vía.  Del borne positivo sale un conductor grueso que se conecta a la salida del generador, por este conductor circulará la corriente de carga de la batería producida por el generador. Esta corriente en los generadores modernos puede estar en el orden de 100 amperios.  De este cable parte uno para el indicador de la carga de la batería en el tablero de instrumentos, generalmente un voltímetro en los vehículos actuales. Este indicador mostrará al conductor el estado de trabajo del sistema.  Desde el borne positivo de la batería también se alimenta, a través de un fusible, el interruptor del encendido.  Cuando se conecta este interruptor se establece la corriente de excitación del generador y se pone en marcha el motor, la corriente de excitación será regulada para garantizar un valor preestablecido y estable en el voltaje de salida del generador. Este valor preestablecido corresponde al máximo valor del voltaje nominal del acumulador durante la carga, de modo que cuando este, esté completamente cargado, no circule alta corriente por él y así protejerlo de sobrecarga.   

2. Sistema de Encendido. Es el sistema necesario e independiente capaz de producir el encendido de la mezcla de combustible y aire dentro del cilindro en los motores de gasolina o LPG, conocidos también como motores de encendido por chispa, ya que en el motor diesel la propia naturaleza de la formación de la mezcla produce su auto-encendido.   3. Motor de arranque. En la actualidad todos los automóviles llevan incorporado el motor eléctrico de arranque, que ofrece unas prestaciones extraordinarias. El circuito eléctrico de arranque consta de batería, interruptor de arranque, conmutador y motor.   4. Inyección de Gasolina Aunque el carburador nacido con el motor, se desarrolló constantemente hasta llegar a ser un complejo compendio de cientos de piezas, que lo convirtieron en un refinado y muy duradero preparador de la mezcla de aire-gasolina para el motor del automovil en todo el rango de trabajo, no pudo soportar finalmente la presión ejercida por las reglas de limitación de contaminantes emitidas por las entidades gubernamentales de los países mas desarrollados y fue dando paso a la inyección de gasolina, comenzada desde la décadas 60-70s principalmente en Alemania, pero que no fue tecnológicamente realizable hasta que no se desarrolló lo suficiente la electrónica miniaturizada.   5. Sistema de Iluminación. Cada vez es mas frecuente la utilización de circuitos electrónicos de control en el sistema de iluminación del automovil, de esta forma en un auto actual es frecuente que las luces de carretera se apaguen solas si el conductor se descuida y las deja encendidas cuando abandona el vehículo, o, las luces de cabina estén dotadas de temporizadores para mantenerlas encendidas un tiempo después de cerradas las puertas, y otras muchas, lo que hace muy difícil generalizar. Todos estos circuitos se alimentan a través de fusibles para evitar sobrecalentamiento de los cables en caso de posibles corto-circuitos.    6. Instrumentos de Control. En todos los automóviles resulta necesario la presencia de ciertos instrumentos o señales de control en el tablero, al alcance de la vista, que permitan al conductor mantener la vigilancia de su funcionamiento con seguridad y cumpliendo con los reglamentos de tránsito vigentes. Aunque es variable el modo de operar y la cantidad de estos indicadores de un vehículo a otro en general pueden clasificarse en cuatro grupos:   Instrumentos para el control de los índices de funcionamiento técnico del coche.  Instrumentos para indicar los índice de circulación vial.  Señales de alarma.  Señales de alerta. 1. Sistema eléctrico 2. Características de los Sistemas Eléctricos 3. Conceptos básicos de un Sistema Eléctrico 4. Elementos de un Sistema eléctrico 5. Componentes de un sistema eléctrico 6. Clases de Sistemas Eléctricos 7. Leyes de los Sistemas Eléctricos 8. Ejemplos 9. Conclusión 10. Bibliografía

Introducción Es tan común la aplicación del circuito eléctrico en nuestros días que tal vez no le damos la importancia que tiene. El automóvil, la televisión, la radio, el teléfono, la aspiradora, las computadoras, entre muchos y otros son aparatos que requieren para su funcionamiento, de circuitos eléctricos simples, combinados y complejos. Un sistema eléctrico es el recorrido de la electricidad a través de un conductor, desde  la fuente de energía hasta su lugar de consumo. Todo circuito eléctrico requiere, para su funcionamiento, de una fuente de energía, en este caso, de una corriente eléctrica. Se debe recordar que cada circuito presenta una serie de características particulares. Se deben observar y compararlas y así obtener las conclusiones sobre los circuitos eléctricos. Para analizar un circuito deben de conocerse los nombres de los elementos que lo forman, entre los cuales se encuentran el conductor, el generador, la resistencia, el nodo, la pila, entre otros. Los circuitos eléctricos pueden estar conectados en serie, en paralelo y de manera mixta, que es una combinación de estos dos últimos. Por la importancia de los sistemas eléctricos en la actualidad, se realiza la presente investigación, la cual consta de los siguientes puntos: Definición de sistemas eléctricos, Características y Conceptos básicos de un Sistema Eléctrico. También se detallan los Elementos, Componentes y Clases de Sistemas Eléctricos. Y por ultimo se da una breve explicación de las leyes que se aplican a los Sistemas Eléctricos, y se muestran tres ejemplos para culminar.

Sistema eléctrico Es una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas.

Un circuito eléctrico tiene que tener estas partes, o ser parte de ellas. 1. Por el tipo de señal: De corriente continua, de corriente alterna y mixtos. 2. Por el tipo de régimen: Periódico, Transitorio y Permanente. 3. Por el tipo de componentes: Eléctricos: Resistivos, inductivos, capacitivos y mixtos. Electrónicos: digitales, analógicos y mixtos. 4. Por su configuración: En Serie y Paralelo.

Características de los Sistemas Eléctricos 

1. Todo circuito eléctrico está formado por una fuente de energía (tomacorriente), conductores (cables), y un receptor que transforma la electricidad en luz (lámparas),en movimiento (motores), en calor (estufas).



2. Para que se produzca la transformación, es necesario que circule corriente por el circuito.

3. Este debe estar compuesto por elementos conductores, conectados a una fuente de tensión o voltaje y cerrado. 4. Los dispositivos que permiten abrir o cerrar circuitos se llaman interruptores o llaves.

Conceptos básicos de un Sistema Eléctrico 

Conductor eléctrico: Cualquier material que ofrezca poca resistencia al flujo de electricidad se denomina conductor eléctrico. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica. En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.

Los materiales en los que los electrones están fuertemente ligados a los átomos se conocen como aislantes, no conductores o dieléctricos. Algunos ejemplos son el vidrio, la goma o la madera seca. Un tercer tipo de material es un sólido en el que un número relativamente pequeño de electrones puede liberarse de sus átomos de forma que dejan un "hueco" en el lugar del electrón. El hueco, que representa la ausencia de un electrón negativo, se comporta como si fuera una unidad de carga positiva. Un campo eléctrico hace que tanto los electrones negativos como los huecos positivos se desplacen a través del material, con lo que se produce una corriente eléctrica. Generalmente, un sólido de este tipo, denominado semiconductor, tiene una resistencia mayor al paso de corriente que un conductor como el cobre, pero menor que un aislante como el vidrio. Si la mayoría de la corriente es transportada por los electrones negativos, se dice que es un semiconductor de tipo n. Si la mayoría de la corriente corresponde a los huecos positivos, se dice que es de tipo p. En 1 cm ³ de cobre hay aproximadamente 1023 electrones de valencia.

La carga eléctrica es: Q = n.q n: número de electrones que circulan. q: carga eléctrica de un electrón [C]. 

Intensidad: El flujo de carga que recorre un cable se denomina intensidad de corriente(i) o corriente eléctrica, y es la cantidad de coulombs que pasan en un segundo por una sección determinada del cable. Un coulomb por segundo equivale a 1 amper, unidad de intensidad de corriente eléctrica. La corriente es dinámica.

i = q/t i: intensidad [A] t: tiempo [s]



Campo eléctrico: Fuerza aplicada por unidad de carga.

E = F/q E: campo eléctrico [N/C] F: fuerza [N] La diferencia de potencial genera un campo eléctrico. 

Diferencia de potencial: La diferencia de potencial es constante. Al circular partículas cargadas entre dos puntos de un conductor se realiza trabajo. La cantidad de energía necesaria para efectuar ese trabajo sobre una partícula de carga unidad se conoce como diferencia de potencial (V). Esta magnitud se mide en volts. Cuando una carga de 1 coulomb se desplaza a través de una diferencia de potencial de 1 volt, el trabajo realizado equivale a 1 joule. Esta definición facilita la conversión de cantidades mecánicas en eléctricas.

L = V.q L: trabajo [J] V: diferencia de potencial o tensión [V] La Tierra, un conductor de gran tamaño que puede suponerse sustancialmente uniforme a efectos eléctricos, suele emplearse como nivel de referencia cero para la energía potencial. Así, se dice que el potencial de un cuerpo cargado positivamente es de tantos volts por encima del potencial de tierra, y el potencial de un cuerpo cargado negativamente es de tantos volts por debajo del potencial de tierra. Corriente eléctrica Si dos cuerpos de carga igual y opuesta se conectan por medio de un conductor metálico, por ejemplo un cable, las cargas se neutralizan mutuamente. Esta neutralización se lleva a cabo mediante un flujo de electrones a través del conductor, desde el cuerpo cargado negativamente al cargado positivamente (en ingeniería eléctrica, se considera por convención que la corriente fluye en sentido opuesto, es decir, de la carga positiva a la negativa). En cualquier sistema continuo de conductores, los electrones fluyen desde el punto de menor potencial hasta el punto de mayor potencial. Un sistema de esa clase se denomina circuito eléctrico. La corriente que circula por un circuito se denomina corriente continua (CC) si fluye siempre en el mismo sentido y corriente alterna (CA) si fluye alternativamente en uno u otro sentido. El flujo de una corriente continua está determinado por tres magnitudes relacionadas entre sí: 1- La diferencia de potencial en el circuito, que en ocasiones se denomina fuerza electromotriz (fem) o voltaje. 2- La intensidad de corriente. 3- La resistencia del circuito.

Elementos de un Sistema eléctrico Los elementos de un circuito pueden ser activos y pasivos. Elementos activos: son los que transforman una energía cualquiera en energía eléctrica, mediante un proceso que puede ser reversible o no. Nos referimos a los generadores de tensión y de corriente. Elementos pasivos: son cuando almacenan, ceden o disipan la energía que reciben. Se refiere a las resistencias, bobinas y condensadores. Estos elementos también se pueden tomar como: - Elementos activos: la tensión y la corriente tienen igual signo.

- Elementos pasivos: la tensión y la corriente tienen distinto signo. Elementos activos: 1. Generadores de tensión: son parte integrante indispensable en todo equipo electrónico o sistema de medición. Como parte de un instrumento, es de estas fuentes que los diferentes circuitos electrónicos obtienen la energía para operar, por lo que, internamente, todo equipo está provisto de una de ellas más o menos compleja, dependiendo de los requisitos impuestos por el circuito que debe alimentar. Estos generadores, mantienen las características de la tensión entre sus bornes, independientemente de los elementos que componen el resto del circuito. Cuando esto no ocurre así se dice que se comporta como un generador real de tensión. 2. Generadores de corriente: es una corriente constante por el circuito externo con independencia de la resistencia de la carga que pueda estar conectada entre ellos. Estos mantienen las características de la corriente entre sus bornes, independientemente de los elementos que componen el resto del circuito. Cuando esto no ocurre así se dice que se comporta como un generador real de corriente. 3. Fuente eléctrica: Es un circuito o dispositivo eléctrico activo que provee una diferencia de potencial o una corriente de manera confiable para que otros circuitos puedan funcionar. A continuación se indica una posible clasificación de las fuentes eléctricas:

Fuentes reales: A diferencia de las fuentes ideales, la diferencia de potencial que producen o la corriente que proporcionan fuentes reales, depende de la carga a la que estén conectadas. 3.2 Fuente de tensión ideal: Es aquella que genera tensión entre sus terminales constante e independiente de la carga que alimente. Si la resistencia de carga es infinita se dirá que la fuente está en circuito abierto, y si fuese cero se estaría en un caso absurdo, ya que según su definición una fuente de tensión ideal no puede estar en cortocircuito. 3.3 Fuente de intensidad ideal: Aquella que proporciona una intensidad constante e independiente de la carga que alimente. Si la resistencia de carga es cero se dirá que la fuente está en cortocircuito, y si fuese infinita estaríamos en un caso absurdo, ya que según su definición una fuente de intensidad ideal no puede estar en circuito abierto.

Fuentes ideales: Las fuentes ideales son elementos utilizados en la teoría de circuitos para el análisis y la creación de modelos que permitan analizar el comportamiento de componentes electrónicos o circuitos reales. Pueden ser independientes, si sus magnitudes son siempre constantes, o dependientes en el caso de que dependan de otra magnitud.

4.1 Fuente independiente: Es un generador de voltaje o corriente que no depende de otras variables del circuito. 4.2 Fuente dependiente: Es un generador de voltaje o corriente cuyos valores dependen de otra variable del circuito. Elementos pasivos: 1. Resistores: Es un elemento pasivo. Se denomina resistor a la oposición que encuentra la corriente eléctrica para recorrerla. Su valor se mide en ohmios y se designa con la letra griega omega mayúscula (O). La materia presenta 4 estados en relación al flujo de electrones. Éstos son conductores, semiconductores, resistores y dieléctricos. Todos ellos se definen por el grado de oposición a la corriente eléctrica. Y disipa la energía en forma irreversible. 2. Capacitores o condensadores: Es un dispositivo formado por dos conductores o armaduras, generalmente en forma de placas o láminas separados por un material dieléctrico, que, sometidos a una diferencia de potencial adquieren una determinada carga eléctrica. A esta propiedad de almacenamiento de carga se le denomina capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una diferencia de potencial de 1 voltio, éstas adquieren una carga eléctrica de 1 culombio. 3. Inductor o bobina: Es un componente pasivo que, debido al fenómeno de la autoinducción, almacena energía en forma de campo magnético. Un inductor está constituido usualmente por una bobina de material conductor, típicamente cable de cobre. Existen inductores con núcleo de aire o con núcleo de un material ferroso, para incrementar su inductancia. La inductancia es la capacidad de un dispositivo para almacenar energía en forma de un campo magnético. Los capacitores e inductores suelen estar dentro de estas dos categorías ya que adsorben energía cuando se carga y asi mismo suministran energía cuando se descargan. Símbolos de algunos elementos de un circuito eléctrico. Es un conjunto de cables generalmente recubierto de un material aislante o protector.

Es una medida de la oposición que un material presenta a ser atravesado por un flujo de energía calórica o térmica

Es un elemento que causa oposición al paso de la corriente, causando que en sus terminales aparezca una diferencia de tensión (un voltaje).

Es un dispositivo eléctrico que produce luz mediante el calentamiento de un filamento metálico.

Es un dispositivo para cambiar el curso de un circuito.

Es un componente electrónico cuya resistencia disminuye con el aumento de intensidad de luz incidente.

Es un instrumento que sirve para medir la potencia de amperios eléctricos que está circulando por un Circuito eléctrico.

Es un dispositivo que convierte energía química en energía eléctrica por un proceso químico transitorio. La pila contiene un polo positivo o ánodo y el otro es el polo negativo o cátodo.

Es un instrumento que sirve para medir la diferencia de potencial entre dos puntos de un circuito eléctrico cerrado pero a la vez abiertos en los polos.

Es un dispositivo que tiene un contacto móvil que se mueve a lo largo de la superficie de una resistencia de valor total constante.

Es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con características similares a un interruptor.

Almacena energía eléctrica, usando procedimientos electroquímicos y que posteriormente la devuelve casi en su totalidad.

Es un dispositivo que almacena energía eléctrica, es un componente pasivo.

Es la relación entre el flujo magnético y la intensidad de corriente eléctrica.

Regulador de Tensión

Esta diseñado con el objetivo de proteger aparatos eléctricos y electrónicos delicados de variaciones de diferencia de potencial (tensión/voltaje), descargas eléctricas y "ruido" existente en la corriente alterna de la distribución eléctrica.

Componentes de un sistema eléctrico El sistema eléctrico consta básicamente de los siguientes componentes: 1. Batería: La batería o acumulador, como su propio nombre indica, transforma y almacena la energía eléctrica en forma química. Esta energía almacenada se utiliza para arrancar el motor, y como fuente de reserva limitada para uso en caso de fallo del alternador o generador. Por muy potente que sea una batería, su capacidad es notoriamente insuficiente para satisfacer la demanda de energía de los sistemas e instrumentos del avión, los cuales la

descargarían rápidamente. Para paliar esta insuficiencia, los aviones están equipados con generadores o alternadores.

Componentes y secuencia para construir una batería

2. Generador/Alternador: Movidos por el giro del motor, proporcionan corriente eléctrica al sistema y mantienen la carga de la batería. Hay diferencias básicas entre generadores y alternadores. Con el motor a bajo régimen, muchos generadores no producen la suficiente energía para mantener el sistema eléctrico; por esta razón, con el motor poco revolucionado el sistema se nutre de la batería, que en poco tiempo puede quedar descargada. Un alternador en cambio, produce suficiente corriente y muy constante a distintos regímenes de revoluciones. Otras ventajas de los alternadores: son más ligeros de peso, menos caros de mantener y menos propensos a sufrir sobrecargas. El sistema eléctrico del avión se nutre pues de dos fuentes de energía: la batería y el generador/alternador. La batería se utiliza en exclusiva (salvo emergencias) para el arranque del motor; una vez puesto en marcha, es el alternador el que pasa a alimentar el sistema eléctrico. El voltaje de salida del generador/alternador es ligeramente superior al de la batería. Por ejemplo, una batería de 12 volts. suele estar alimentada por un generador/alternador de 14 volts. o una batería de 24 volts. se alimenta con un generador/alternador de 28 volts. Esta diferencia de voltaje mantiene la batería cargada, encargándose un regulador de controlar y estabilizar la salida del generador/alternador hacia la batería.

Despiece de un alternador.

Regulador de tensión que forma conjunto con las escobillas

Esquema eléctrico de un alternador con su regulador electrónico mas el circuito de carga que lo rodea formado por la batería, la lámpara de control, el interruptor de la llave y los circuitos de los elementos receptores (luces, encendido, elevalunas etc.). 3. Amperímetro: Es el instrumento utilizado para monitorizar el rendimiento del sistema eléctrico. En algunos aviones el amperímetro es analógico, en otros es digital, otros no poseen amperímetro sino que en su lugar tienen un avisador luminoso que indica un funcionamiento anómalo del alternador o generador, y en otros este avisador complementa al amperímetro. El amperímetro muestra si el alternador/generador está proporcionando una cantidad de energía adecuada al sistema eléctrico, midiendo amperios. Este instrumento también indica si la batería está recibiendo suficiente carga eléctrica.

Cables Rojo y Negro

Un valor positivo en el amperímetro indica que el generador/alternador esta aportando carga eléctrica al sistema y a la batería. Un valor negativo indica que el alternador/generador no aporta nada y el sistema se está nutriendo de la batería. Si el indicador fluctua rápidamente indica un mal funcionamiento del alternador. 4. Interruptor principal o "master": Con este interruptor, el piloto enciende (on) o apaga (off) el sistema eléctrico del avión, a excepción del encendido del motor (magnetos) que es independiente. Si el interruptor es simple, un mecanismo eléctrico activado por la carga/descarga del alternador, cambia de forma automática el origen de la alimentación del sistema eléctrico, de la batería al alternador o viceversa. En la mayoría de los aviones ligeros este interruptor es doble: el interruptor izquierdo, marcado con las iniciales BAT corresponde a la batería y opera de forma similar al "master"; al encenderlo el sistema eléctrico comienza a nutrirse de la batería. El interruptor derecho, marcado con ALT corresponde al alternador/generador; al encenderlo, el sistema eléctrico pasa a alimentarse de la energía generada por este dispositivo, cargandose la batería con el excedente generado. Este desdoblamiento del interruptor posibilita que el piloto excluya del sistema eléctrico al alternador/generador en caso de mal funcionamiento de este.

Este interruptor tiene un mecanismo interno de bloqueo de manera que normalmente, el interruptor ALT solo puede activarse con el interruptor BAT también activado.

Materiales: De la calidad de los materiales empleados para hacer los contactos dependerá la vida útil del interruptor. Para la mayoría de los interruptores domésticos se emplea una aleación de latón (60% cobre, 40% zinc). Esta aleación es muy resistente a la corrosión y es un conductor eléctrico apropiado. El aluminio es también buen conductor y es muy resistente a la corrosión. En los casos donde se requiera una pérdida mínima se utiliza cobre puro por su excelente conductividad eléctrica. El cobre bajo condiciones de condensación puede formar óxido de cobre en la superficie interrumpiendo el contacto. Para interruptores donde se requiera la máxima confiabilidad se utilizan contactos de cobre pero se aplica un baño con un metal más resistente al óxido como lo son el estaño, aleaciones de estaño/plomo, níquel, oro o plata. La plata es de hecho mejor conductor que el cobre y además el óxido de plata conduce electricidad. El oro aunque no conduce mejor que la plata también es usado por su inmejorable resistencia al óxido.

5. Fusibles y circuit breakers: Los equipos eléctricos están protegidos de sobrecargas eléctricas por medio de fusibles o breakers. Los breakers hacen la misma función que los fusibles, con la ventaja que pueden ser restaurados manualmente en lugar de tener que ser reemplazados. Los breakers tienen forma de botón, que salta hacia afuera cuando se ve sometido a una sobrecarga; el piloto solo tiene que pulsar sobre el breaker ("botón") para volver a restaurarlo.

Circuit breakers Fusible Diagrama de un Circuit breakers

Partes de un Fusible

6. Otros elementos: Además de los elementos anteriores, el sistema eléctrico consta de otros componentes como: motor de arranque, reguladores, inversores de polaridad, contactores, transformadores/rectificadores, etc... Para facilitar la conexión de los equipos al sistema eléctrico, los aviones disponen de una barra de corriente ("electrical bus") que distribuye la corriente a todos ellos, simplificando sobremanera el cableado. Puesto que los generadores producen corriente continua y los alternadores corriente alterna, el sistema está provisto de los correspondientes conversores, de corriente contínua a alterna y viceversa. Partes del Motor de Arranque

Partes del Contactor

7. Fallos eléctricos: La pérdida de corriente de salida del alternador se detecta porque el amperímetro dá una lectura cero o negativa, y en los aviones que dispongan de ella, porque se enciende la luz de aviso correspondiente. Antes de nada debemos asegurarnos de que la lectura es cero y no anormalmente baja, encendiendo un dispositivo eléctrico, por ejemplo la luz de aterrizaje. Si no se nota un incremento en la lectura del amperímetro, podemos asumir que existe un fallo en al alternador. Si el problema subsiste, chequear el breaker del alternador y restaurarlo si fuera necesario. El siguiente paso consiste en apagar el alternador durante un segundo y volverlo a encender (switch ALT). Si el problema era producido por sobrevoltaje, este procedimiento debe retornar el amperímetro a una lectura normal.Por último, si nada de lo anterior soluciona el fallo, apagar el alternador. Cuando se apaga el alternador, el sistema eléctrico se nutre de la batería, por lo que todo el

equipamiento eléctrico no esencial debería ser cortado para conservar el máximo tiempo posible la energía de la batería. En caso de fallo eléctrico en cualquier equipo, chequear el breaker correspondiente y restaurarlo. Si el fallo persiste no queda más remedio que apagar ese equipo. Es importante desconectar el interruptor principal después de apagar el motor, ya que si se deja activado puede descargar la batería.

Clases de Sistemas Eléctricos 1. Circuito conectado en serie: Los aparatos de un circuito eléctrico están conectados en serie cuando dichos aparatos se colocan unos a continuación de otros de forma que los electrones que pasan por el primer aparato del circuito pasan también posteriormente por todos los demás aparatos. La intensidad de la corriente es la misma en todos los puntos del circuito. La diferencia diferencial de potencial entre los puntos 1 y 2 del circuito es tanto menor cuanto mayor es la resistencia R1 que hay entre estos dos puntos. Igual ocurre los puntos 2 y 3 y 3 y 4. ( R, es la resistencia entre los puntos 1y 2, etc.) Por otra parte, la diferencia de potencia entre los puntos A y B dependen de la suma total de las resistencias que hay en el circuito, es decir, R1 + R2 +R3.

2. Circuito conectado en paralelo: Los aparatos de un circuito están conectados en paralelo cuando dichos aparatos se colocan en distintas trayectorias de forma que, si un electrón pasa por uno de los aparatos, no pasa por ninguno de los otros. La intensidad de la corriente en cada trayectoria depende de la resistencia del aparato conectado en ella. Por eso, cuanto más resistencia tenga un aparato, menos electrones pasarán por él y, por tanto, la intensidad de la corriente en esa trayectoria será menor. La diferencia de potencial entre dos puntos situados antes y después de cada resistencia es exactamente igual para cualquiera de las trayectorias, es decir, la diferencia de potencial entre los puntos 1 y 2 es la misma que hay entre los puntos 3 y 4, que a su vez  es igual a la que hay entre los puntos 5 y 6.

Leyes de los Sistemas Eléctricos Ley de Ohm. La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente es la ley de Ohm, así llamada en honor a su descubridor, el físico alemán Georg Ohm. Según la ley de Ohm, la cantidad de corriente que fluye por un circuito formado por resistencias puras es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito. Esta ley suele expresarse mediante la fórmula I = V/R, siendo I la intensidad de corriente en amperios, V la fuerza electromotriz en voltios y R la resistencia en ohmios. La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearse principios adicionales que incluyen inductancias y capacitancias. V=IxR Donde: V: diferencia de potencial o voltaje aplicado a la resistencia, Voltios I: corriente que atraviesa la resistencia, Amperios R: resistencia, Ohmios Leyes de Kirchhoff. Si un circuito tiene un número de derivaciones interconectadas, es necesario aplicar otras dos leyes para obtener el flujo de corriente que recorre las distintas derivaciones. Estas leyes, descubiertas por el físico alemán Gustav Robert Kirchhoff, son conocidas como las leyes de Kirchhoff. La primera, la ley de los nudos, enuncia que en cualquier unión en un circuito a través del cual fluye una corriente constante, la suma de las intensidades que llegan a un nudo es igual a la suma de las intensidades que salen del mismo. La segunda ley, la ley de las mallas afirma que, comenzando por cualquier punto de una red y siguiendo cualquier trayecto cerrado de vuelta al punto inicial, la suma neta de las fuerzas electromotrices halladas será igual a la suma neta de los productos de las resistencias halladas y de las intensidades que fluyen a través de ellas. Esta segunda ley es sencillamente una ampliación de la ley de Ohm. a). Reglas de los nodos: En todo nodo se cumple:

Las corrientes que entran a un nodo son iguales a las corrientes que salen. b). Regla de las mallas: En toda malla se cumple:

La sumatoria de las fuerzas electromotrices en una malla menos la sumatoria de las caídas de potencial en los resistores presentes es igual a cero. c). Regla de signos: 1. Al pasar a través de una pila del terminal positivo al negativo se considera positivo la f.e.m. 2. Al pasar a través de una pila del terminal negativo al positivo se considera negativa la f.e.m . 3. Al pasar a través de un resistor de mayor a menor potencial se considerará la existencia de una caída. 4. Al pasar a través de un resistor de menor a mayor potencial se considerará la existencia de una ganancia.

Ejemplos 

1. Ejemplo de Sistema eléctrico



2. Ejemplo de Sistema eléctrico



3. Ejemplo de Sistema eléctrico

Conclusión El descubrimiento del desarrollo del circuito eléctrico está íntimamente ligado al propio desarrollo de los conocimientos sobre el fenómeno de la electricidad. Mientras la electricidad en su forma estática era todavía considerada poco más que un espectáculo de salón, las primeras aproximaciones científicas al fenómeno y a su capacidad para ser conducida por algún medio físico fueron hechas sistemáticamente por acuciosos investigadores durante los siglos XVII y XVIII. Un circuito eléctrico es una serie de elementos o componentes eléctricos, tales como resistencias, inductancias, condensadores y fuentes, o electrónicos, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales eléctricas. La interrelación correcta implica que los distintos elementos tienen que estar conectados electrónicamente, de modo que sus partes metálicas situadas en los terminales de conexión se mantengan en contacto para permitir el paso de la corriente. Generalmente, un circuito eléctrico esta sujeto a una entrada o excitación y se producirá una respuesta o salida a dicha entrada. Todos los componentes de un circuito eléctrico exhiben en mayor o menor medida una cierta resistencia, capacidad e inductancia. La unidad de resistencia comúnmente usada es el ohmio, que es la resistencia de un conductor en el que una diferencia de potencial de 1 voltio produce una corriente de 1 amperio. La capacidad de un condensador se mide en faradios: un condensador de 1 faradio tiene una diferencia de potencial entre sus placas de 1

voltio cuando éstas presentan una carga de 1 culombio. La unidad de inductancia es el henrio. El análisis de circuitos es el proceso de determinación de la salida de un circuito conocida la entrada y el circuito en si. En cambio, el diseño de circuitos, es obtener un circuito conocida la entrada y la respuesta que debe tener el circuito. Por consiguiente, La importancia de los instrumentos eléctricos de medición es incalculable, ya que mediante el uso de ellos se miden e indican magnitudes eléctricas, como corriente, carga, potencial y energía, o las características eléctricas de los circuitos, como la resistencia, la capacidad, la capacitancia y la inductancia. Además que permiten localizar las causas de una operación defectuosa en aparatos eléctricos en los cuales, como es bien sabido, no es posible apreciar su funcionamiento en una forma visual, como en el caso de un aparato mecánico. Las mediciones eléctricas se realizan con aparatos especialmente diseñados según la naturaleza de la corriente; es decir, si es alterna, continua o pulsante. Los instrumentos se clasifican por los parámetros de voltaje, tensión e intensidad. En la práctica es difícil diferenciar nítidamente entre circuitos eléctricos y circuitos electrónicos. Las instalaciones eléctricas domiciliarias se denominan usualmente circuitos eléctricos, mientras que los circuitos impresos de los aparatos electrónicos se denominan por lo general circuitos electrónicos. El comportamiento de los circuitos eléctricos que contienen solamente resistencias y fuentes electromotrices de corriente continua está gobernado por las Leyes de Kirchoff. Para estudiarlo, el circuito se descompone en mallas eléctricas, estableciendo un sistema de ecuaciones lineales cuya resolución brinda los valores de los voltajes y corrientes que circulan entre sus diferentes partes.