Caracteristicas Generales de Los Materiales Aislantes

CARACTERISTICAS GENERALES DE LOS MATERIALES AISLANTES Los materiales aislantes tienen la función de evitar el contacto e

Views 38 Downloads 0 File size 620KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

CARACTERISTICAS GENERALES DE LOS MATERIALES AISLANTES Los materiales aislantes tienen la función de evitar el contacto entre las diferentes partes conductoras (aislamiento de la instalación) y proteger a las personas frente a las tensiones eléctricas (aislamiento protector) La mayoría de los no metales son apropiados para esto pues tienen resistividades muy grandes. Esto se debe a la ausencia de electrones libres. Los materiales aislantes deben tener una resistencia muy elevada, requisito del que pueden deducirse las demás características necesarias. Para ello se han normalizado algunos conceptos y se han fijado los procedimientos de medidas. Propiedades eléctricas. -Resistividad de paso PD. Es la resistencia que presenta un cubo de 1 cm de arista. -Resistencia superficial y resistencia a las corrientes de fugas. En altas tensiones pueden aparecer corrientes eléctricas como consecuencia de depósitos sobre la superficie de los aislantes. Al cabo de un cierto tiempo la corriente podría atacar a estos materiales. Precisamente los plásticos son muy sensibles a ello, pues al ser sustancias orgánicas contienen carbono.

-Rigidez dieléctrica ED en kV / mm. Se mide la tensión ala que se produce una descarga disruptiva entre dos electrodos. La rigidez dieléctrica no es una magnitud lineal, sino que depende de una serie de factores -Permitividad relativa Er. Es importante que la permitividad relativa de los aislantes sea pequeña, pero por otro lado los aislantes empleados como dieléctricos en los condensadores deberán presentar una gran permitividad. Además para poder valorar las propiedades del material debe saberse en que forma depende Er de la frecuencia. -Comportamiento electroestático. La carga electrostática es posible debido a las altísimas resistencias de los plásticos. Junto a las propiedades eléctricas ya citadas los aislantes deben reunir también una serie de requisitos térmicos mecánicos químicos y tecnológicos que dependen de los fines para los que se destinen. TERMOFIJOS Los Aislamiento agrupados bajo el nombre de termofijos están constituidos por materiales que se caracterizan porque, mediante un proceso de vulcanización, se

hace desaparecer su plasticidad y se aumente su elasticidad y la consistencia mecánica. Estos aislamientos se aplican generalmente por extrusión y se someten a un proceso de vulcanización elevando la temperatura a los valores requeridos. Los aislantes termofijos más usados son el hule natural y los hules sintéticos, conocidos con el nombre genérico de elastómeros y más reciente algunos derivados del polietileno. El hule natural fue, con el papel, uno de los materiales usados para el aislamiento de cables. Se obtiene del látex de un árbol tropical originario de Brasil. Para utilizarlo como aislamiento se mezcla con otras substancias: plastificantes, agentes de vulcanización (1 a 2% de azufre) y modificadores y vulcanizado se emplea mucho en baja tensión y con menos frecuencia para tensiones mas elevadas hasta de 25 Kv.

Los hules sintéticos mas utilizados como aislamientos de cable son : estireno-butadieno (SBR) el butilo, el neopreno, y el etileno-propileno (EPR) El estireno-butadieno conocido comercialmente con las iniciales SBR sus cualidades eléctricas y mecánicas son ligeramente inferiores a las del hule natural. En cambio sus cualidades de resistencia a los agentes químicos y al envejecimiento son algo superiores, por sus características y su bajo precio se ha utilizado principalmente en el aislamiento de cables de baja tensión. El butilo es un hule sintético cuya propiedad principal es poder trabajar a temperaturas mas elevadas que el hule natural su temperatura de operación es de 85º C. También ofrece una mayor resistencia a la ionización lo que permite usarlo para tensiones mas altas, una gran flexibilidad y resistencia a la humedad

superior a la del hule natural. Aunque la materia prima para este tip o de aislamiento es barato su proceso de fabricación es elevado por lo que el precio final es costoso. Tiene aplicaciones para corta longitud, para aplicaciones especiales. MATERIALES CERAMICOS EMPLEADOS EN ELECTROTECNIA Los aislantes cerámicos se forman a partir de silicatos pulverizados y otros óxidos y otros óxidos metálicos, y se cuecen a continuación. Se trata de un proceso de sinterización. Luego se les suele proveer de un revestimiento vitrificado para evitar la entrada de agua al desgastarse los poros. Los materiales cerámicos se clasifican en distintos grupos subdivididos a su vez según sus materias primas. El rasgo característico que tienen en comun todos estos materiales es que son compuestos de metales y no metales. Los materiales cerámicos se caracterizan por ser: 

Duros



muy frágiles



resistentes a las roturas por cargas estáticas



resistente a las lejías



resistente a los ácidos



resistente a la tracción CARACTERÍSTICAS GENERALES DE LOS MATERIALES MAGNÉTICOS Y FERROMAGNETICOS

Las sustancias ferromagnéticas son las que, como el hierro, mantienen un momento magnético incluso cuando el campo magnético externo se hace nulo. Este efecto se debe a una fuerte interacción entre los momentos magnéticos de los átomos o electrones individuales de la sustancia magnética, que los hace alinearse de forma paralela entre sí. En circunstancias normales, los materiales ferromagnéticos están divididos en regiones llamadas `dominios'; en cada dominio, los momentos magnéticos atómicos están alineados en paralelo. Los momentos de dominios diferentes no apuntan necesariamente en la misma dirección. Aunque un trozo de hierro normal puede no tener un momento magnético total, puede inducirse su magnetización colocándolo en un campo magnético, que alinea los momentos de todos los dominios. La energía empleada en la reorientación de los dominios desde el estado magnetizado hasta el estado desmagnetizado se manifiesta en un desfase de la respuesta al campo magnético aplicado, conocido como `histéresis'. Un material ferromagnético acaba perdiendo sus propiedades magnéticas cuando se calienta. Esta pérdida

es completa por encima de una temperatura conocida como punto de Curie, llamada así en honor del físico francés Pierre Curie, que descubrió el fenómeno en 1895. (El punto de Curie del hierro metal Las propiedades magnéticas de los materiales se clasifican siguiendo distintos criterios. Una de las clasificaciones de los materiales magnéticos —que los divide en diamagnéticos, paramagnéticos y ferromagnéticos— se basa en la reacción del material ante un campo magnético. Cuando se coloca un material diamagnético en un campo magnético, se induce en él un momento magnético de sentido opuesto al campo. En la actualidad se sabe que esta propiedad se debe a las corrientes eléctricas inducidas en los átomos y moléculas individuales. Estas corrientes producen momentos magnéticos opuestos al campo aplicado. Muchos materiales son diamagnéticos; los que presentan un diamagnetismo más intenso son el bismuto metálico y las moléculas orgánicas que, como el benceno, tienen una estructura cíclica que permite que las corrientes eléctricas se establezcan con facilidad. El comportamiento paramagnético se produce cuando el campo magnético aplicado alinea todos los momentos magnéticos ya existentes en los átomos o Moléculas individuales que componen el material. Esto produce un momento magnético global que se suma al campo magnético. Los materiales paramagnéticos suelen

contener elementos de transición o lantánidos con electrones desapareados. El paramagnetismo en sustancias no metálicas suele caracterizarse por una dependencia de la temperatura: la intensidad del momento magnético inducido varía inversamente con la temperatura. Esto se debe a que al ir aumentando la temperatura, cada vez resulta más difícil alinear los momentos magnéticos de los átomos individuales en la dirección del campo magnético.ico es de unos 770 °C. Uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que aúna ambas fuerzas se denomina teoría electromagnética. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia. Historia de su estudio El fenómeno del magnetismo se conoce desde tiempos antiguos. La piedra imán o magnetita, un óxido de hierro que tiene la propiedad de atraer los objetos de hierro, ya era conocida por los griegos, los romanos y los chinos.

Cuando se pasa una piedra imán por un pedazo de hierro, éste adquiere a su vez la capacidad de atraer otros pedazos de hierro. Los imanes así producidos están `polarizados', es decir, cada uno de ellos tiene dos partes o extremos llamados polos norte y sur. Los polos iguales se repelen, y los polos opuestos se atraen.

Propiedades de algunos conductores y aislantes ¿Qué son los metales? Grupo de elementos químicos que presentan todas o gran parte de las siguientes propiedades físicas: estado sólido a temperatura normal, excepto el mercurio que es líquido; opacidad, excepto en capas muy finas; buenos conductores eléctricos y térmicos; brillantes, una vez pulidos, y estructura cristalina en estado sólido. Metales y no metales se encuentran separados en el sistema periódico por una línea diagonal de elementos. Los elementos a la izquierda de esta diagonal son los metales, y los elementos a la derecha son los no metales. Los elementos que integran esta diagonal —boro, silicio, germanio, arsénico, antimonio, teluro, polonio y astato— tienen propiedades tanto metálicas como no metálicas. Los elementos metálicos más comunes son los siguientes: aluminio, bario, berilio, bismuto, cadmio, calcio, cerio, cromo, cobalto, cobre, oro, iridio, hierro, plomo, litio, magnesio, manganeso, mercurio, molibdeno, níquel, osmio, paladio, platino, potasio, radio, rodio, plata, sodio, tantalio, talio, torio, estaño, titanio, volframio, uranio, vanadio y cinc. Los elementos metálicos se pueden combinar unos con otros y también con otros elementos formando compuestos, disoluciones y mezclas. Una mezcla de dos o más metales o de un metal y ciertos no metales como el carbono se denomina aleación. Las aleaciones de mercurio con otros elementos metálicos son conocidas como amalgamas. Los metales muestran un amplio margen en sus propiedades físicas. La mayoría de ellos son de color grisáceo, pero algunos presentan colores distintos; el bismuto es rosáceo, el cobre rojizo y el oro amarillo. En otros metales aparece más de un color, y este fenómeno se denomina pleocroismo. El punto de fusión de los

metales varía entre los -39 °C del mercurio, a los 3.410 °C del tungsteno. El iridio, con unadensidad relativa de 22,4, es el más denso de los metales. Por el contrario, el litio es el menos denso, con una densidad relativa de 0,53. La mayoría de los metales cristalizan en el sistema cúbico, aunque algunos lo hacen en el hexagonal y en el tetragonal. La más baja conductividad eléctrica la tiene el bismuto, y la más alta a temperatura ordinaria la plata. La conductividad en los metales puede reducirse mediante aleaciones. Todos los metales se expanden con el calor y se contraen al enfriarse. Ciertas aleaciones, como las de platino e iridio, tienen un coeficiente de dilatación extremadamente bajo. Propiedades físicas Los metales suelen ser duros y resistentes. Aunque existen ciertas variaciones de uno a otro, en general los metales tienen las siguientes propiedades: dureza o resistencia a ser rayados; resistencia longitudinal o resistencia a la rotura; elasticidad o capacidad de volver a su forma original después de sufrir deformación; maleabilidad o posibilidad de cambiar de forma por la acción del martillo; resistencia a la fatiga o capacidad de soportar una fuerza o presión continuadas y ductilidad o posibilidad de deformarse sin sufrir roturas. Propiedades químicas Es característico de los metales tener valencias positivas en la mayoría de sus compuestos. Esto significa que tienden a ceder electrones a los átomos con los que se enlazan. También tienden a formar óxidos básicos. Por el contrario, elementos no metálicos como el nitrógeno, azufre y cloro tienen valencias negativas en la mayoría de sus compuestos, y tienden a adquirir electrones y a formar óxidos ácidos. Los metales tienen energía de ionización baja: reaccionan con facilidad perdiendo electrones para formar iones positivos o cationes. De este modo, los metales forman sales como cloruros,

sulfuros y carbonatos, actuando como agentes reductores (donantes de electrones). Estructura electrónica En sus primeros esfuerzos para explicar la estructura electrónica de los metales, los científicos esgrimieron las propiedades de su buena conductividad térmica y eléctrica para apoyar la teoría de que los metales se componen de átomos ionizados, cuyos electrones libres forman un 'mar' homogéneo de carga negativa. La atracción electrostática entre los iones positivos del metal y los electrones libres, se consideró la responsable del enlace entre los átomos del metal. Así, se pensaba que el libre movimiento de los electrones era la causa de su alta conductividad eléctrica y térmica. La principal objeción a esta teoría es que en tal caso los metales debían tener un calor específico superior al que realmente tienen. En 1928, el físico alemán Arnold Sommerfeld sugirió que los electrones en los metales se encuentran en una disposición cuántica en la que los niveles de baja energía disponibles para los electrones se hallan casi completamente ocupados. En el mismo año, el físico suizo estadounidense Felix Bloch, y más tarde el físico francés Louis Brillouin, aplicaron esta idea en la hoy aceptada 'teoría de la banda' para los enlaces en los sólidos metálicos. De acuerdo con dicha teoría, todo átomo de metal tiene únicamente un número limitado de electrones de valencia con los que unirse a los átomos vecinos. Por ello se requiere un amplio reparto de electrones entre los átomos individuales. El reparto de electrones se consigue por la superposición de orbitales atómicos de energía equivalente con los átomos adyacentes. Esta superposición va recorriendo toda lamuestra del metal, formando amplios orbitales que se extienden por todo el sólido, en vez de pertenecer a átomos concretos. Cada uno de estos orbitales tiene un nivel de energía distinto debido a que los orbitales atómicos de los que proceden, tenían a su vez diferentes niveles de energía. Los orbitales, cuyo número es el mismo que el de los orbitales atómicos, tienen dos

electrones cada uno y se van llenando en orden de menor a mayor energía hasta agotar el número de electrones disponibles. En esta teoría se dice que los grupos de electrones residen en bandas, que constituyen conjuntos de orbitales. Cada banda tiene un margen de valores de energía, valores que deberían poseer los electrones para poder ser parte de esa banda. En algunos metales se dan interrupciones de energía entre las bandas, pues los electrones no poseen ciertas energías. La banda con mayor energía en un metal no está llena de electrones, dado que una característica de los metales es que no poseen suficientes electrones para llenarla. La elevada conductividad eléctrica y térmica de los metales se explica así por el paso de electrones a estas bandas con defecto de electrones, provocado por la absorción de energía térmica. Metales dúctiles: ¿Qué es la ductilidad? Bueno es una propiedad de un metal, una aleación o cualquier otro material que permite su deformación forzada, en hilos, sin que se rompa o astille. Cuanto más dúctil es un material, más fino es el alambre o hilo, que podrá ser estirado mediante un troquel para metales, sin riesgo de romperse. Decimos entonces que un metal dúctil es todo aquel que permite su deformación forzada, en hilos, sin que se rompa o astille. Metales Maleables: La maleabilidad es la posibilidad de cambiar de forma por la acción del martillo, ¿qué quiere decir entonces? Que puede batirse o extenderse en planchas o laminas. Conductor eléctrico: Cualquier material que ofrezca poca resistencia al flujo de electricidad. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica. El

fenómeno conocido como superconductividad se produce cuando al enfriar ciertas sustancias a una temperatura cercana al cero absoluto su conductividad se vuelve prácticamente infinita. En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones. Semiconductor: Material sólido o líquido capaz de conducir la electricidad mejor que un aislante, pero peor que un metal. La conductividad eléctrica, que es la capacidad de conducir la corriente eléctrica cuando se aplica una diferencia de potencial, es una de las propiedades físicas más importantes. Ciertos metales, como el cobre, la plata y el aluminio son excelentes conductores. Por otro lado, ciertos aislantes como el diamante o el vidrio son muy malos conductores. A temperaturas muy bajas, los semiconductores puros se comportan como aislantes. Sometidos a altas temperaturas, mezclados con impurezas o en presencia de luz, la conductividad de los semiconductores puede aumentar de forma espectacular y llegar a alcanzar niveles cercanos a los de los metales. Las propiedades de los semiconductores se estudian en la física del estado sólido. Electrones de conducción y huecos: Entre los semiconductores comunes se encuentran elementos químicos y compuestos, como el silicio, el germanio, el selenio, el arseniuro de galio, el seleniuro de cinc y el telururo de plomo. El incremento de la conductividad provocado por los cambios de temperatura, la luz o las impurezas se debe al aumento del número de electrones conductores que transportan la corriente eléctrica. En un semiconductor característico o puro como el silicio, los electrones de valencia (o electrones exteriores) de un átomo están emparejados y son compartidos por otros átomos para formar un enlace covalente que mantiene al cristal unido. Estos electrones de valencia no están libres para transportar corriente eléctrica. Para producir electrones de conducción, se utiliza la luz o la temperatura,

que excita los electrones de valencia y provoca su liberación de los enlaces, de manera que pueden transmitir la corriente. Las deficiencias o huecos que quedan contribuyen al flujo de la electricidad (se dice que estos huecos transportan carga positiva). Éste es el origen físico del incremento de la conductividad eléctrica de los semiconductores a causa de la temperatura. Dopar: Otro método para obtener electrones para el transporte de electricidad consiste en añadir impurezas al semiconductor o doparlo. La diferencia del número de electrones de valencia entre el material dopante (tanto si acepta como si confiere electrones) y el material receptor hace que crezca el número de electrones de conducción negativos (tipo n) o positivos (tipo p). Este concepto se ilustra en el diagrama adjunto, que muestra un cristal de silicio dopado. Cada átomo de silicio tiene cuatro electrones de valencia (representados mediante puntos). Se requieren dos para formar el enlace covalente. En el silicio tipo n, un átomo como el del fósforo (P), con cinco electrones de valencia, reemplaza al silicio y proporciona electrones adicionales. En el silicio tipo p, los átomos de tres electrones de valencia como el aluminio (Al) provocan una deficiencia de electrones o huecos que se comportan como electrones positivos. Los electrones o los huecos pueden conducir la electricidad.

Cuando ciertas capas de semiconductores tipo p y tipo n son adyacentes, forman un diodo de semiconductor, y la región de contacto se llama unión pn. Un diodo es un dispositivo de dos terminales que tiene una gran resistencia al paso de la corriente eléctrica en una dirección y una baja resistencia en la otra. Las propiedades de conductividad de la unión pn dependen de la

dirección del voltaje, que puede a su vez utilizarse para controlar la naturaleza eléctrica del dispositivo. Algunas series de estas uniones se usan para hacer transistores y otros dispositivos semiconductores como células solares, láseres de unión pn y rectificadores. Los dispositivos semiconductores tienen muchas aplicaciones en la ingeniería eléctrica. Los últimos avances de la ingeniería han producido pequeños chips semiconductores que contienen cientos de miles de transistores. Estos chips han hecho posible un enorme grado de miniaturización en los dispositivos electrónicos. La aplicación más eficiente de este tipo de chips es la fabricación de circuitos de semiconductores de metal - óxido complementario o CMOS, que están formados por parejas de transistores de canal p y n controladas por un solo circuito. Además, se están fabricando dispositivos extremadamente pequeños utilizando la técnica epitaxial de haz molecular. Aislantes eléctricos: El aislante perfecto para las aplicaciones eléctricas sería un material absolutamente no conductor, pero ese material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Estos materiales conductores tienen un gran número de electrones libres (electrones no estrechamente ligados a los núcleos) que pueden transportar la corriente; los buenos aislantes apenas poseen estos electrones. Algunos materiales, como el silicio o el germanio, que tienen un número limitado de electrones libres, se comportan como semiconductores, y son la materia básica de los transistores. En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento

interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos ytransformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio, porcelana u otro material cerámico. La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay que seleccionar los aislantes según la temperatura máxima que deban resistir. El teflón se emplea para temperaturas altas, entre 175 y 230 ºC. Las condiciones mecánicas o químicas adversas pueden exigir otros materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los poliésteres de epoxy y los poliuretanos pueden proteger contra los productos químicos y la humedad. ¿Cuál es la diferencia existente entre conductor, semiconductor y aislante? Es sencillo, los conductores son todos aquellos que poseen menos de 4 electrones en la capa de valencia, el semiconductor es aquel que posee 4 electrones en la capa de valencia y el aislante es el que posee mas de 4 electrones en la capa de valencia.

Leer más: http://www.monografias.com/trabajos/conducyais/conducyais.s html#ixzz45dBVGpnC

Tecnología de materiales Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Este aviso fue puesto el 20 de marzo de 2010. Puedes añadirlas o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Tecnología de materiales}} ~~~~

La tecnología de materiales es el estudio y puesta en práctica de técnicas de análisis, estudios físicos y desarrollo de materiales. También es la disciplina de laingeniería que trata sobre los procesos industriales que nos proporcionan las piezas que componen las máquinas y objetos diversos, a partir de las materias primas.

Índice [ocultar] 



1Propiedades de los materiales o 1.1Propiedades mecánicas o 1.2Propiedades acústicas o 1.3Propiedades eléctricas o 1.4Propiedades térmicas o 1.5Propiedades magnéticas o 1.6Propiedades físico-químicas 2Véase también Propiedades de los materiales[editar] Estas propiedades se ponen de manifiesto ante estímulos como la electricidad, la luz, el calor o la aplicación de fuerzas a un material. Describen características como elasticidad, conductividad eléctrica o térmica, magnetismo o comportamiento óptico, que por lo general no se alteran por otras fuerzas que actúan sobre el mismo.

Propiedades mecánicas[editar] -Las propiedades mecánicas son aquellas propiedades de los sólidos que se manifiestan cuando aplicamos una fuerza. Las propiedades mecánicas de los materiales se refieren a la capacidad de los mismos de resistir acciones de cargas: las cargas o fuerzas actúan momentáneamente, tienen carácter de choque.



Cíclicas o de signo variable: las cargas varían por valor, por sentido o por ambos simultáneamente.

Las propiedades mecánicas principales son: dureza, resistencia, elasticidad, plasticidad y resiliencia, aunque también podrían considerarse entre estas a la fatiga y la fluencia (creep).  





  

  

Cohesión: Resistencia de los átomos a separarse unos de otros. Plasticidad: Capacidad de un material a deformarse ante la acción de una carga, permaneciendo la deformación al retirarse la misma. Es decir es una deformación permanente e irreversible. Dureza: es la resistencia de un cuerpo a ser rayado por otro. Opuesta a duro es blando. El diamante es duro porque es difícil de rayar. Es la capacidad de oponer resistencia a la deformación superficial por uno más duro. Resistencia: se refiere a la propiedad que presentan los materiales para soportar las diversas fuerzas. Es la oposición al cambio de forma y a la separación, es decir a la destrucción por acción de fuerzas o cargas. Ductilidad: se refiere a la propiedad que presentan los materiales de deformarse sin romperse obteniendo hilos. Maleabilidad: se refiere a la propiedad que presentan los materiales de deformarse sin romperse obteniendo láminas. Elasticidad: se refiere a la propiedad que presentan los materiales de volver a su estado inicial cuando se aplica una fuerza sobre él. La deformación recibida ante la acción de una fuerza o carga no es permanente, volviendo el material a su forma original al retirarse la carga. Higroscopicidad: se refiere a la propiedad de absorber o exhalar el agua. Hendibilidad: es la propiedad de partirse en el sentido de las fibras o láminas (si tiene). Resiliencia:es la capacidad de oponer resistencia a la destrucción por carga dinámica.

Tucker, A. (1989). Tecnología de los metales. Mir Moscú. {{cita libro |apellido=Appold |nombre=Hans |apellido=Feiler |nombre=Kurt |apellido=Reinhard |nombre=Alfred |apellido=Schmidt |nombre=Paul |enlaceautor=Appold, Hans; Feiler, Kurt; Reinard, Alfred; Schmidt, Paul |título=Tecnología de los metales |año=1989 |editorial=Reverté |ubicació Los materiales pueden ser:   

Opacos: no dejan pasar la luz. Transparentes: dejan pasar la luz. Traslúcidos: dejan pasar parte de la luz.

Propiedades acústicas[editar] Materiales transmisores o aislantes del sonido.

Propiedades eléctricas[editar] Materiales conductores o dieléctricos. Sus propiedades se dividen en: 



Resistencia (p) : Es la medida de oposición de un material al paso de corriente eléctrica. Se mide según la cantidad de ohmios (Ω) que posee una porción de 1 cm2 por unidad de longitud. Siendo: p: Ω . cm2 / cm = Ω .cm Conductividad eléctrica (σ) : Es la propiedad totalmente opuesta a la resistencia, ya que esta mide la capacidad del paso de corriente eléctrica sin ninguna oposición, su valor es 1/p = 1 / Ω . cm

Propiedades térmicas[editar] Materiales conductores o aislantes térmicos. Las propiedades térmicas determinan el comportamiento de los materiales frente al calor. 

 



Conductividad térmica: es la propiedad de los materiales de transmitir el calor, produciéndose, lógicamente una sensación de frío al tocarlos. Un material puede ser buen conductor térmico o malo. Fusibilidad: facilidad con que un material puede fundirse. Soldabilidad: facilidad de un material para poder soldarse consigo mismo o con otro material. Lógicamente los materiales con buena fusibilidad suelen tener buena soldabilidad. Punto de fusión

Propiedades magnéticas[editar] Materiales magnéticos. En física se denomina permeabilidad magnética a la capacidad de una sustancia o medio para atraer y hacer pasar a través de sí los campos magnéticos, la cual está dada por la relación entre la intensidad de campo magnético existente y la inducción magnética que aparece en el interior de dicho material.

Propiedades físico-químicas[editar] 

Resistencia a la Corrosión: La corrosión es definida como el deterioro de un material a consecuencia de un ataque electroquímico por su entorno. Siempre que la corrosión esté originada por una reacción electroquímica (oxidación), la velocidad a la que tiene lugar dependerá en alguna medida de la temperatura, la salinidad del fluido en contacto con el metal y las propiedades de los metales en cuestión. Otros materiales no metálicos también sufren corrosión mediante otros mecanismos. La corrosión puede ser mediante una reacción química (oxidorreducción) en la que intervienen dos factores: la pieza manufacturada y/o el ambiente, o por medio de una reacción electroquímica.

Los más conocidos son las alteraciones químicas de los metales a causa del aire, como la herrumbre del hierro y el acero o la formación de pátina verde en el cobre y sus aleaciones (bronce, latón). Sin embargo, la corrosión es un fenómeno mucho más amplio que afecta a todos los materiales (metales, cerámicas, polímeros, etc.) y todos los ambientes (medios acuosos, atmósfera, alta temperatura, etc.). Es un problema industrial importante, pues puede causar accidentes (ruptura de una pieza) y, además, representa un costo importante, ya que se calcula que cada pocos segundos se disuelve 5 toneladas de acero en el mundo, procedentes de unos cuantos nanómetros o picómetros, invisibles en cada pieza pero que, multiplicados por la cantidad de acero que existe en el mundo, constituyen una cantidad importante. La corrosión es un campo de las ciencias de materiales que invoca a la vez nociones de química y de física (físico-química). 

Maleabilidad: La maleabilidad es la propiedad de un material blando de adquirir una deformación acuosa mediante una descompresión sin romperse. A diferencia de la ductilidad, que permite la obtención de hilos, la maleabilidad favorece la obtención de delgadas láminas de material.1

El elemento conocido más maleable es el oro, que se puede malear hasta láminas de una diezmilésima de milímetro de espesor. También presentan esta característica otros metales como el platino, la plata, el cobre, el hierro y el aluminio.



Reducción: Se denomina reacción de reducción-oxidación, de óxido-reducción o, simplemente, reacción redox, a toda reacción química en la que uno o más electrones se transfieren entre los reactivos, provocando un cambio en sus estados de oxidación.1

Para que exista una reacción de reducción-oxidación, en el sistema debe haber un elemento que ceda electrones, y otro que los acepte: El agente oxidante es el elemento químico que tiende a captar esos electrones, quedando con un estado de oxidación inferior al que tenía, es decir, siendo reducido.2 El agente reductor es aquel elemento químico que suministra electrones de su estructura química al medio, aumentando su estado de oxidación, es decir, siendo oxidado. Cuando un elemento químico reductor cede electrones al medio, se convierte en un elemento oxidado, y la relación que guarda con su precursor queda establecida mediante lo que se llama un «par redox». Análogamente, se dice que, cuando un elemento químico capta electrones del medio, este se convierte en un elemento reducido, e igualmente forma un par redox con su precursor oxidado. 







Reutilización: Reutilizar es la acción de volver a utilizar los bienes o productos. Así, el aceite puede reutilizarse convertido en biodiésel, para ser utilizado por cualquier vehículo con motor diésel. Cuantos más objetos volvamos a utilizar menos basura produciremos y menos recurso tendremos que gastar. Reciclar se trata de volver a utilizar materiales – como el papel o el vidrio – para fabricar de nuevo productos parecidos – folios, botellas, etc. Reciclabilidad: El reciclaje es un proceso fisicoquímico o mecánico o trabajo que consiste en someter a una materia o un producto ya utilizado (basura), a un ciclo de tratamiento total o parcial para obtener una materia prima o un nuevo producto. También se podría definir como la obtención de materias primas a partir de desechos, introduciéndolos de nuevo en el ciclo de vida y se produce ante la perspectiva del agotamiento de recursos naturales, macro económico y para eliminar de forma eficaz los desechos de los humanos que no necesitamos. Colabilidad: La colabilidad de un metal fundido depende de su fluidez la cual le permite penetrar todas las cavidades de un molde y llenarlo en su totalidad; produciendo de esta forma una pieza completa y sana. Conformabilidad: Facilidad relativa por la que diversas aleaciones pueden deformarse por laminación, extrusión, estirado, embutición, forja, etc.