Bridge Design v1 En

BRIDGE GENERAL DATA LONGITUDINAL DIRECTION PRECAST GIRDER BEAM a = 400 a = 400 Lcalc = 18710 Bi = 50 Lbeam = 19410

Views 147 Downloads 6 File size 578KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

BRIDGE GENERAL DATA LONGITUDINAL DIRECTION

PRECAST GIRDER BEAM a = 400

a = 400

Lcalc = 18710

Bi = 50

Lbeam = 19410 Ldeck =19510

GIRDER DIMENSIONS

Span Length Ltab =

19510

mm

Support Back length a =

400

mm

Between Pannel - Beam bi =

50

mm

Cover pp =

25

mm

y6 =

100 125 0 300 75 150

mm

750 750 200 0

mm

y5 = y4 = y3 = y2 = y1 = x1 = x2 = x3 =

15.11

x4 =

0.00

0.00

15.11

-14.42

-5.56

-14.42

MATERIAL DATA

Relative humidity RH =

60.0

%

Unit weight of concrete Gc =

24.0

kN/m3

mm mm mm mm mm

mm mm mm

Esteel =

DECK REINFORCEMENT DESIGN

h =

200

mm

b =

1100

mm

200000.0

Mpa

Cover =

25

mm

Bar radius =

12

mm

200

mm

Bar spacing =

ELASTOMERIC BEARING DESIGN

┏━━━━━━ 6 ┃━━━━━━ 5 ┃━━━━━━ 4 ┃━━━━━━ 3 ┃━━━━━━ 2 ┃━━━━━━ 1 ┃━━━━━━

┗━━━━━

━━━━━━ ━━━━┓ s. plate ━━━━┃ s. plate ━━━━┃ s. plate ━━━━┃ s. plate ━━━━┃ s. plate ━━━━┃ s. plate ━━━━┃ ━━━━━━━━━ ━━━━┛

63

0

300

Number of steel reinforcement layers Nst = Elastomer cover thickness hc =

6 2.5

# mm

Elastomer internal layer thickness hri =

8

mm

Steel reinforcement thickness hs =

3

mm

GIRDER DESIGN

TOP 1

2 1 BOTTOM

0

7 10 17

mm

120 60 mm

#N/A #N/A #N/A #N/A ●●●●●●● ●●●●●●●●●●

[ 0,6']; [Grade 270 KSI] ; [LOW RELAXATION] ; [SEVEN WIRE] -- PRESTRESSED STRANDS

PBEAM 64

TURAN BABACAN

PROJECT NAME………:

YAVUZ SELiM BULVARI ALTGECiT iNSAATI

LOCATION…..……....:

BEYLiKDUZU-ISTANBUL

REGULATION…….....:

AASHTO LRFD 2007

PRECAST SECTION

DECK SLAB

Unit weight of asphalt

TOP & BOTTOM :

BEARING CONTROLS

GIRDER CONTROLS

10.000 ≤ Kg ≤ 7.000.000

0.90 0.77 1.22 0.14

PROJECT NAME………:

YAVUZ SELiM BULVARI ALTGECiT iNSAATI

LOCATION…..……....:

BEYLiKDUZU-ISTANBUL

REGULATION…….....:

AASHTO LRFD 2007

UNITS DATA…….......:

US 1 in.

25,4 mm

25.4

1.00

1 in.2

645,2 mm2

645.2

1.00

1 ft.

0,305 m

0.305

1.00

1 ft.2

0,093 m2

0.093

1.00

1 psi

0,006895 MPa

0.007

1.00

1 ksi

6,895 MPa

1.00

1 kip

4,448 kN

1.00

1 k-ft

1,356 kN-m

1.00

1 lb

0,004448 kN

0.004

1.00

1 kip

1000 lb

1000.0

1.00

1 Kn

1000 N

1000.0

1.00

1 lb/ft

0,01459 kN/m

0.015

SI

PRECAST SECTION

SI

1.00

6.9 4.4 1.356

US

1.00

1 mm

0,0394 in.

0.039

1.00

1 mm2

0,002 in.2

0.002

1.00

1m

3,279 ft.

3.3

1.00

1 m2

10,753 ft.2

10.8

1.00

1 MPa

145,035 psi

145.0

1.00

1 MPa

0,145 ksi

0.145

1.00

1 kN

0,225 kip

0.225

1.00

1 kN-m

0,737 k-ft

0.737

1.00

1 kN

224,82 lb

224.8

1.00

1 lb

0,001 kip

0.001

1.00

1N

0,001 kN

0.001

1.00

1 kN/m

68,54 lb/ft

68.5

Beam heigth hb =

750

Beam Area Abeam =

342500

mm mm2

Moment of inertia I = 23173044657.3

mm4

Distance from centroid top fiber Yt = 383.698296837

mm

Distance from centroid bottom fiber Yb = 366.301703163

mm

Section modulus top fiber St = 60393921.0791

mm3

Section modulus bottom fiber Sb = 63262181.0307

mm3

Description Beam

Area

yb

A.yb

A(ycb-yb)2

Istrong

Istr+ADy2

(in2)

(in)

(in3)

(in4)

(in4)

(in4)

530.88

14.42

7655.94

29449.31

55673.46

85122.77

Pavement and barrier weight Wbarr =

4.76

kN/m

Unit weight of asphalt wearing surface Gw =

22.0

kN/m3

Concrete Strength at 28-days f'c =

25.0

Mpa

Reinforcement Steel Yield Strength fy =

420.0

Mpa

hc > 17,5 cm

OK

Mu =1.25Mc + 1.5Ma + 1.75Mq'

Mu = Mr = ɸ.Mn

39.10

kN.m

Mr = 43.324585

Mr > Mu ; TOP & BOTTOM :

kN.m

OK 6 θ 12 / 20

BEARING CONTROLS Check Nst (14.7.6.1) :

hc ≤ 0.70 hri

OK

σs ≤ 1,66 G.S σs ≤ 11 σL ≤ 0,66 G.S

OK OK OK

σs ≤ 2 G.S σs ≤ 12 σL ≤ G.S

OK OK OK

δLi ≤ 0.07 hri

OK

2. Δco ≤ hrt

OK

Check Compressive Stress (14.7.5.3.2) :

Shear deformation? -NO- (14.7.5.3.2-4) :

Check Compressive Deflection (14.7.5.3.3) :

Check Shear Deformation (14.7.5.3.4) :

Check Rotation or Combined Compression and Rotation (14.7.5.3.5) :

Lch ≤ σs Wch ≤ σs

OK OK

ht ≤ minLW

OK

hsi ≤ hmax hsii ≤ hmax

OK OK

Check Stability (14.7.6.3.6) :

Check Reinforcement (14.7.6.3.7) :

GIRDER CONTROLS 3,5 ≤ S ≤ 16

OK

0.78

≤ 2,18

OK

4,5 ≤ ts ≤ 12

OK

0.21

≤ -0,42

OK

20 ≤ L ≤ 240

OK

0.23

≤ 0,93

OK

Nb ≥ 4

OK

> 135,1

OK

10.000 ≤ Kg ≤ 7.000.000

OK

≤ 7,87

OK

≤ 7,87

OK

159.7862692

≤ 1,82

< 195 OK

OK

> 1488,1

OK

2.480148823

> 1,82 OK

≤ 0.42

OK

> 1272

OK

> 1526

OK

ft-top

0.623√f'ci

(ksi)

-1.38

-0.693355261

OK

dv ≥ 0.72h

≥ 26

OK

-0.536785557

OK

dv ≥ 0.9dc

≥ 30

OK

0.228172358

OK

292.86

279.80

Mu>Vudv

OK

0.23681525

OK

325.13

276.87

Mu>Vudv

OK

fb-bot.

0.6f'ci

419.18

268.13

Mu>Vudv

OK

542.93

256.03

(ksi)

2.93

2.932219167

OK

2.782748217

OK

2.052472921

OK

2.044221891

OK

0.137270125

OK

0.783200943

OK

0.900458393

OK

1.218936488

OK

0.205121893

OK

OK

exex1 stirrup stirrup stirrup stirrup body body body

Mu>Vudv

OK

0.10

-0.140

OK

Vu > 0.5 ø (Vc + Vp )

> 26

OK

s ≤ smax

OK

0,182> 0,064

OK

0,053< 0,182

OK

≤ 0.25 f'c bv dv

OK

1,75 > 0,15

OK

Avf ≥ 0.05 bv / fy

OK

Vn ≤ 0.2 f'c Acv

OK

≤ 2,2

OK

≤ 1,95

OK

≤ 2,93

OK

≤ 1,63

OK

body long.reinf. stirr.end L/800 > Σ∆

157.62 0.92

Vn ≤ 0.8 Acv

OK

276.641

OK

1,402 > 1,323

OK

0.246

OK

PROJECT NAME………:

YAVUZ SELiM BULVARI ALTGECiT iNSA

LOCATION…..……....:

BEYLiKDUZU-ISTANBUL

REGULATION…….....:

AASHTO LRFD 2007

TRANSVERSE DIRECTION Number of beam Nb =

300

14100 2000 80

1100

The average height of the pavement Hk = The average width of the pavement Bk = Between Beam - Beam S = Wearing surface heigth tw = Deck heigth ts = Haunch heigth th =

COMPOSITE SECTION

15.53 7.66

7.66

Haunch width thw =

Akomp =

5.63E+05

mm2

hc =

9.50E+02

mm

Ic =

5.52E+10

mm4

ybc =

5.55E+02

mm

ytg =

1.95E+02

mm

ytc =

3.95E+02

mm

Sbc =

9.93E+07

mm3

Stg =

2.84E+08

mm3

Stc =

1.58E+08

mm3

Description

Area

yb

(in2)

(in)

530.88

14.42

0.00

29.53

Deck

341.00

33.46

Total

871.88

0.00

Beam Haunch

PRECAST GIRDER

Precast beam Concrete Strength at 28 days f'c =

Concrete Strength at release(0.8f'c) f'ci =

DEBONDING

ROW

STRAND

SHEATH

2 1

7 10 17

1 3 4

BOTTOM

With regards to strand debonding, the AASHTO-LRFD specifications provide the following general guidelines. •Not more than 40% of the strands at any one horizontal row will be •Not more than 25% of the total strands can be debonded. •The exterior strands of each horizontal row shall be fully bonded. •Symmetric debonding about member centerline is required.

•Not more than 40% of the debonded strands, or four strands, which the debonding terminated at any section.

•Shear investigation shall be made in the regard to the reduced horiz

YAVUZ SELiM BULVARI ALTGECiT iNSAATI BEYLiKDUZU-ISTANBUL AASHTO LRFD 2007

11

#

250 0

1100

15.53 7.66

7.66

300 2000 1100 80 200 0 0

mm mm mm mm mm mm mm

871.88

in2

37.40

in

132527

in4

21.87

in

7.66

in

15.53

in

6059.95

in3

17305.25

in3

9653.32

in3

A.yb

A(ycb-yb)2

Istrong

Istr+ADy2

(in3)

(in4)

(in4)

(in4)

7655.94

29449.31

55673.46

85122.77

0.00

0.00

0.00

0.00

11411.44

45847.22

1557.26

47404.48

19067.38

0.00

0.00

132527.26

40.0

Mpa

32.0

Mpa

LENGTH

CHECK

1478 2956 mm

OK OK OK

debonding, the AASHTO-LRFD

he following general guidelines. the strands at any one horizontal row will be debonded. the total strands can be debonded.

f each horizontal row shall be fully bonded. about member centerline is required. the debonded strands, or four strands, whichever is greater, have

all be made in the regard to the reduced horizontal force.

PROJECT NAME………:

YAVUZ SELiM BULVARI ALTGECiT iNSAATI

LOCATION…..……....:

BEYLiKDUZU-ISTANBUL

REGULATION…….....:

AASHTO LRFD 2007

IMPACT FACTOR IMPACT ( IM) =

0.27

TRUCK LOAD PARAMETRE

HS20

H30-S24

H20

H30

UNIT

P1

35.6

30.0

35.6

30.0

kN

P2

142.3

120.0

142.3

120.0

kN

P3

142.3

120.0

0.0

0.0

kN

X1

4250.0

4250.0

4250.0

4250.0

mm

X2

4250.0

4250.0

0.0

0.0

mm

TRUCK [H30-S24] P+%50 X-%50 P1 = P2 = P3 = X1 = X2 =

30.00 120.00 120.00 4250 4250

kN

110.00 4250

kN

kN kN mm mm

TANDEM LOAD Pta = Xta =

110,00

110,00 4250

mm

LANES LOAD 10,00 Qlanes =

Note :

ELASTOMERIC BEARING

10.00

kN/m

[*] Kiriş ringde çalışıyor.dingil araları %50 azaltıldı. Dingil yükleri %50 arttırıldı.

Pad length (bridge longitudinal direction) Lm =

300

mm

Pad width (bridge transverse direction) Wm =

300

mm

STRANDS in

mm

0.5

12.7

0.6

15.24

0.7

17.78

Strand diameter Cap =

14.2

mm

Ultimate Stress fpu =

1863

Mpa

Modulus of Elasticity Estr =

195000

Mpa

[ 0,6']; [Grade 270 KSI] ; [LOW RELAXATION] ; [SEVEN WIRE] -- PRESTRESSED STRANDS

Top face of the beam(compression) As'



6

Ø16

Bottom face of the beam(tension) As



7

Ø16

Shear reinforcement in the body Asg



2x5

Ø12

Stirrups in the middle of the beam Ase

④③②①

Ø8

/150

Stirrups at the beam Ase'

④③②①

Ø12

/70

110,00

10,00

Dingil yükleri %50 arttırıldı.

IRE] -- PRESTRESSED STRANDS

PROJECT NAME………:

YAVUZ SELiM BULVARI ALTGECiT iNSAATI

LOCATION…..……....:

BEYLiKDUZU-ISTANBUL

REGULATION…….....:

AASHTO LRFD 2007

DFt =

165.0

Elastomer hardness Hshore =

50.0

Constant amplitude fatigue threshold for Category A

Mpa

{ (0,68 - 0,93) SELECT } G =

0.7

Mpa

Steel reinforcement yield strength fy =

240.0

Mpa

Shear modulus of elastomer

PROJECT NAME………:

YAVUZ SELiM BULVARI ALTGECiT iNSAATI

LOCATION…...……....:

BEYLiKDUZU-ISTANBUL

REGULATION……......:

CONCRETE DECK DESIGN

AASHTO LRFD 2007

INPUT DATA: Effective span length Deck Thickness

hc > 17,5 cm

Asphalt Thickness Girder spacing ( S.9.7.2.3.) Truck type

OK

L =

18.71

hc =

20.0

cm

ha =

8.0

cm

S =

110.0

cm

m

TT = [H30-S24] P+%50 X-%50

Lanes numbers

SS =

3.0

Reinforcement strength

fy =

420

Mpa

Concrete 28-day compressive strength:

f'c =

25

Mpa

Beton elastisite modülü

Eci =

19400

Mpa

Concrete density:

γc =

24

kN/m3

Wearing surface density:

γa =

21.99

kN/m3

All edges are the same;

pp =

2.5

cm

Top + Bottom;

D =

12

mm

Cover Bar Radius

Bar spacing

Top + Bottom;

si =

20

cm

CALCULATIONS AND CHECKS Dead load effects: (S.3.4.1-2)

Deck Moment

= = = =

5.28 0.70 3.02 0.40

SS = 3 için ;

m =

0.85

Dy = Kam.yük * m

Dy =

120

Mq =(s+0,6)*Dy/12

Mq =

17

θ = 1+ 15/(L+375)

θ =

1.26

Mc = Dtab S^2 / 10

Wearing sur. + Barr.

Ma = Dba. S^2 / 10

Dtab Mc Dbw Ma

kN/m kN.m kN/m kN.m

Live load effects (S.3.6.1.1.2-1) Lanes factor Truck load Live load moment impact factor Live load factored moment

kN

kN.m

Mq'= θ .Mq

Mq' = 21.49792

kN.m

Mu =1.25Mc + 1.5Ma + 1.75Mq'

Mu = 39.10369

kN.m

Bending calculations : (S.5.7.3.2.1) The pressure coefficient of the depth region

β1 =

0.85

ɸ =

0.9

fr = 0,625√f'c

fr =

3.125

constant 1 m ;

b =

110

cm

ds = hc-pp

ds =

17.5

cm

Da = int(b/si)+1

Da =

6

Moment safety factor Concrete tensile stress Section Length Sectional Elevation Account Bar numbers Bar

Mpa

Adet

Numbers / Radius(mm) / spacing(cm)

6 θ 12 / 20

As = Da.π.D^2/4

As = 6.78584

a=As.Fy/0.85.f'c.b

a = 1.219274

Mn = As.fy.(ds-a/2)

Mn = 48.13843

kN.m

Mr = ɸ.Mn

Mr = 43.32458

kN.m

Total bar area Depth of stress block Flexural strength Flexural strength of Coefficients

cm2

cm

Mr > Mu ;

OK

PROJECT NAME………:

YAVUZ SELiM BULVARI ALTGECiT iNSAATI

LOCATION…...…….....:

BEYLiKDUZU-ISTANBUL

REGULATION…..….....:

PK-750/750/750

AASHTO LRFD 2007

1_ DIMENSIONS 1.1_ LONGITIDUAL PROFILE (SPAN)

PRECAST GIRDER BEAM a = 400

a = 400

Lcalc= 18710 Lbeam = 18710 Ldeck = Span Length Ltab = Support Back length a = Between Pannel - Beam bi =

Pad length (bridge longitudinal direction) Lm = L-2*a/12

Calculation Length Lcalc =

L-2*bi/12

Girder Length Lbeam =

19510 400 50 300 18710 19410

mm mm mm mm mm mm

64.01 15.75 1.97 11.81 61.38 63.68

ft in in in ft ft

1.2_ TRANSVERSE PROFILE 300

14100 2000 80 250 0

1100 50

adet

Haunch width thw =

11 14100 300 2000 1100 80 200 0 0

Cover pp =

y6 =

Number of beam Nb = Total deck width B = The average height of the pavement Hk = The average width of the pavement Bk = Between Beam - Beam S = Wearing surface heigth tw = 300

Deck heigth ts = Haunch heigth th =

ft

mm

46.26 0.98 6.56 3.61 3.15 7.87 0.00 0.00

25

mm

1.00

in

100 125 0 300 75 150

mm

3.94 4.92 0.00 11.81 2.95 5.91

in

750 750 200 0

mm

29.53 29.53 7.87 0.00

in

mm mm mm mm mm mm mm

ft ft ft in in in in

1.3_ PRECAST BEAM SECTION

y5 = y4 = y3 = y2 = y1 = x1 = x2 = x3 = x4 =

mm mm mm mm mm

mm mm mm

in in in in in

in in in

2_ MATERIAL DATA Relative humidity RH =

60.00

Unit weight of concrete Gc =

24.0

%

2.1_ CONCRETE kN/m3

152.9

pcf

5800.0 4640.0 0.458 4248.5 563.6

psi

3625.0 3755.2

psi

60900 29000 1.87 2.18 1.75 0.18 0.35

psi

2.1.1_ PRECAST BEAM f'c = 0.8 fc'

f'ci = fb =

gcd^1,5*33*(fuci)^0,5/1000

Ebeam =

karea/12/12*gcd

Gbeam =

40.0 32.0 0.038 21948.5 8.2

Mpa

25.0 19400.0

Mpa

420.0 200000.0 1206 1407 1131 385 226

Mpa

14.2 123.9 1863 195000 1676.7 1677.1 1677.1

mm

Mpa Mpa Mpa m.de kN

psi psi ksi ft.de lb

2.1.2_ DECK SLAB f'c = Ebeam =

Mpa

ksi

2.2_ STEEL 2.2.1_ REINFORCEMENT STEEL [LRFD Art. 5.4.3.2]

fy =

[LRFD Art. 5.4.3.2]

Esteel = Ø16

Shear reinforcement in the bodyı Asg =

6 7 2x5

Stirrups in the middle of the beam Ase =

Ø8

Stirrups at the beam Ase =

Ø12

/150 /70

Top face of the beam(compression) As' = Bottom face of the beam(tension) As =

[LRFD Eq. 5.4.2.4-1]

Ø16 Ø12

mm2 mm2 mm2 mm2/m mm2

ksi in2 in2 in2 in2/ft in2

2.2.2_ PRESTRESSED STEEL Strand Diameter Cap =

[LRFD Table 5.4.4.1-1]

Area of one strand Astr.1 = fpu =

[LRFD Art. 5.4.4.2] [LRFD Table 5.9.3-1]

Mpa

Estrand = 0,9*fpu

fpy =

0,75*fpu

fpi =

0,8*fpy

fpe =

mm2 Mpa Mpa Mpa Mpa Mpa

0.561 0.192 270196 28275 243176.2 202646.8 194541.0

in in2 psi ksi psi psi psi

2.3_ WEARING SURFACE, PAVEMENT, BARRIERS Pavement and barrier weight Wbarr = Unit weight of asphalt wearing surface Gw =

4.76 22.0

kN/m kN/m3

326.0 140.0

lb /ft pcf

[*] Kiriş ringde çalışıyor.dingil araları %50 azaltıldı. Dingil yükleri %50 arttırıldı.

IMPACT ( IM) =

0.26

[H30-S24] P+%50 X-%50 30.00 P1 = 120.00 P2 = 120.00 P3 = 4250 X1 =

kN

P1 =

kN

P2 =

kN

P3 =

mm

X1 =

US 6.7 27.0 27.0 14.1

Fatigue 6.7 27.0 27.0 14.1

kip kip kip ft

X2 =

4250

mm

X2 =

14.1

28.2

IM =

0.26

0.15

ft

3_ STRAND PATTERN= [ 0,6']; [Grade 270 KSI] ; [LOW RELAXATION] ; [SEVEN WIRE] -- PRESTRESSED STRANDS TOP

0

mm

in.

KOT

1

0

0

0.00

29.53

2

0

0

0.00

29.53

3

0

0

0.00

29.53

4

0

0

0.00

29.53

5

0

0

0.00

29.53

6

0

0

0.00

29.53 0.0 STRAND PATTERN

ROW NUMBERS 6

0

0

0.00

0.00

5

0

0

0.00

0.00

4

0

0

0.00

0.00

3

0

0

0.00

0.00

2

7

120

4.72

7.00

1

10

60

2.36

10.00

BOTTOM

17

in.

17

●●●●●●● ●●●●●●●●●●

4_ KILIF DÜZENİ ROW

STRAND

NUMBER OF

NUMBERS

NUMBERS

SHEATH

6

0

0

5

0

0

4

0

0

3

0

0

2

7

1

10

BOTTOM

17

4

SHEATH LENGTH

AASHTO

mm

ft

CONTROLS

1

1478

9.82

% 14.3

14.3 ≤ 40

OK

3

2956

9.82

% 30.0

30 ≤ 40

OK

% 23.5

23,5 ≤ 25

OK

CALCULATION SHEATH LENGTH 0.16L =

9.82

ft

Min[0.16 L; 0.5L(1-(1-Mcr/Mu)^0.5)] =

19.01

ft

Ltrans+K[fpe-2/3*fpei)scap =

8.46

ft

SELECT SHEATH LENGTH min(1;2;3) =

8.46

ft

L/2 STRAND PATTERN

●●●●●●● ●●●●●●●●●●

SELECT SHEATH LENGTH min(1;2;3) =

CALCULATION CROSS-SECTION PROPERTIES BEAM X1

29.5275590551

X2

29.5275590551

X3

7.874015748

X4

0

Y1

5.905511811

Y2

2.9527559055

Y3

11.811023622

Y4

0

Y5

4.9212598425

Y6

3.937007874

IXX A(in2)

yb (in)

A*yb

Ix

A*(yb-yb')^2

A1

174.375348751 2.952755906 514.8878408 506.7793709 22935.26189

A2

31.9688139376 6.88976378 220.2575763 15.48492522 1813.413163

A3

23.2500465001 7.381889764 171.6292803 16.8926457 1152.125251

A4

93.0001860004 14.76377953 1373.034242 1081.129325 10.90648565

A5 A6

0

20.66929134

0

0

0

0

20.66929134

0

0

0

A7

53.2813565627 23.95013123 1276.095482 71.68946862 4837.846586

A8

38.7500775002 23.12992126 896.2862414 78.20669303 2938.790989

A9

116.2502325

27.55905512 3203.746565 150.1568506 20064.77883 Σ

7655.94

1.92E+03

XX -->

5.38E+04

A

STRONG AXES

531 in2

yb'

14 in

IXX

55673 in4

IYY A

yl

A*yl

Iy

A*(yl-yl')^2

A1

174.375348751 14.76377953 2574.439204 12669.48427

A2

15.9844069688 7.217847769 115.3730162 104.0931084 910.1694935

0

A3

15.9844069688 22.30971129 356.6075046 104.0931084 910.1694935

A4

23.2500465001 14.76377953 343.2585605 120.1254805

0

A5

93.0001860004 14.76377953 1373.034242 480.501922

0

A6

0

10.82677165

0

0

0

A7

0

18.7007874

0

0

0

A8

0

14.76377953

0

0

0

A9

26.6406782814 7.217847769 192.2883603 173.488514 1516.949156

A10

26.6406782814 22.30971129 594.3458409 173.488514 1516.949156

A11

38.7500775002 14.76377953 572.0976009 200.2091342

A12

116.2502325

14.76377953 1716.292803 8446.322848 Σ

YY --> WEAK AXES

7837.74

2.25E+04

0 0 4.85E+03

A

531 in2

yl'

15 in

2546

mm

IYY

27326 in4

CALCULATIONS AND CONTROLS Precast section

15.11

0.00

0.00

15.11

-14.42

-5.56

-14.42

Distance from centroid to the extreme bottom fiber yb =

3.66E+02

mm

14.4

in

distance from centroid to the extreme top fiber yt =

3.84E+02

mm

15.1

in

Beam Heigth hb =

7.50E+02

mm

29.5

in

Area of Beam Abeam =

3.43E+05

mm2

530.9

in2

hb-yb TOPLA(G45:G50)

Moment of inertia I =

2.32E+10

mm4

55673.5

in4

I/yb

Section modulus for the extreme bottom fiber Sb =

6.33E+07

mm3

3860.5

in3

I/yt

Section modulus for the extreme top fiber St =

6.04E+07

mm3

3685.5

in3

Composite section

Description Beam Haunch

alan

yb

A.yb

A(ycb-yb)2

Istrong

Istr+ADy2

(in2)

(in)

(in3)

(in4)

(in4)

(in4)

530.88

14.42

7.66E+03

2.94E+04

5.57E+04

8.51E+04

0.00

29.53

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Slab

341.00

33.46

1.14E+04

4.58E+04

1.56E+03

4.74E+04

total

871.88

[LRFD Art. 4.6.2.6.1]

[TxDOT Pg. #7-85]

1.91E+04

1.33E+05

Edsm/Ekrs

n=

0.88

ck*12/4

1* =

4.68E+03

mm

184.15

0.88 in

S*12

2* =

1.10E+03

mm

43.31

in

12*ts+xii/2

3* =

2.78E+03

mm

109.25

in

n*min(1*;2*;3*)

ekkg =

9.72E+02

mm

38.28

in

ts*ekkg

ekka =

1.94E+05

mm2

301.40

in2

Akomp =

5.63E+05

mm2

871.88

in2

hc =

9.50E+02

mm

37.40

in

ts+th+hb

Ic =

5.52E+10

mm4

ΣArea*yb/ΣArea

ybc =

5.55E+02

mm

132527 21.87

in4 in

D-ybc

ytg =

1.95E+02

mm

7.66

in

hc-ybc

ytc =

3.95E+02

mm

15.53

in

Ic/ybc

Sbc =

9.93E+07

mm3

6059.95

in3

Ic/ytg

Stg =

2.84E+08

mm3

17305.25

in3

Ic/(ytc*nc)

Stc =

1.58E+08

mm3

9653.32

in3

SHEAR FORCES AND BENDING MOMENTS DEAD LOAD [ DC ] [LRFD Art. 3.3.2]

Dtab Dbeam

0.36 0.56

kip/ft

Gcd/1000*(ts/12*S+th/12*thw)

kips/ft

Gkiris/1000+DA

DEAD LOAD [ DW ]

[LRFD Art. 4.6.2.2.1]

Dbarr 0.06 kips/ft/krs 2*Wbarr/1000/Nb Dwear 0.15 kip/ft/krs Gw/1000*tw/12*(B-2*tbarr)/Nb Dbw 0.21 kip/ft/krs DBarr+Dwear no factored shear and moments HD 27.62 ft Lhesap/2-Lhesap/20 BEAM WEIGHT

x ft. 0.00 3.13 3.50 4.60 6.14 12.28 18.42 24.55 27.62 30.69

x/L 0.000 0.051 0.057 0.100 0.200 0.300 0.400 0.425 0.450 0.500

V kips 17.30 15.53 15.33 14.70 13.84 10.38 6.92 3.46 1.73 0.00 17.30

M k-ft 0.00 51.39 57.07 73.66 95.56 169.88 222.97 254.82 262.79 265.44 265.44

BARRIER WEIGHT

x ft. 0.00 3.13 3.50 4.60 6.14 12.28 18.42 24.55 27.62 30.69

x/L 0.000 0.051 0.057 0.100 0.200 0.300 0.400 0.425 0.450 0.500

V kips 1.82 1.63 1.61 1.55 1.46 1.09 0.73 0.36 0.18 0.00 1.82

M k-ft 0.00 5.40 6.00 7.75 10.05 17.87 23.45 26.80 27.64 27.92 27.92

SLAB WEIGHT

V kips 11.11 9.98 9.84 9.44 8.89 6.67 4.44 2.22 1.11 0.00 11.11

M k-ft 0.00 33.01 36.66 47.31 61.38 109.12 143.22 163.68 168.80 170.50 170.50

total DC

V kips 28.41 25.51 25.17 24.15 22.73 17.04 11.36 5.68 2.84 0.00 28.41

W.SURF. WEIGHT

V kips 4.54 4.08 4.02 3.86 3.63 2.72 1.82 0.91 0.45 0.00 4.54

M k-ft 0.00 13.49 14.98 19.34 25.09 44.60 58.54 66.90 68.99 69.69 69.69

M k-ft 0.00 84.40 93.73 120.97 156.94 279.00 366.19 418.51 431.59 435.95 435.95

total DW

V kips 6.36 5.71 5.64 5.41 5.09 3.82 2.54 1.27 0.64 0.00 6.36

M k-ft 0.00 18.90 20.99 27.09 35.14 62.47 81.99 93.70 96.63 97.60 97.60

DC +DW

x ft. 0.00

x/L 0.000

V kips 34.77

M k-ft 0.00

w

3.13 3.50 4.60 6.14 12.28 18.42 24.55 27.62 30.69

0.051 0.057 0.100 0.200 0.300 0.400 0.425 0.450 0.500

31.22 30.80 29.55 27.81 20.86 13.91 6.95 3.48 0.00 34.77

103.29 114.72 148.06 192.08 341.47 448.18 512.21 528.21 533.55 533.55

L

V= w (0.5 L-x) M=0.5 w x (L-x)

LIVE LOADS [ LL ] [LRFD Art. 3.6.1.2.1]

n eg Kg NL

1.13 19.04 280798 3.00 S= 3,6089238 ts= 7,874015 L= 64,009186 Nb= 11 Kg= 280798

Factor of bendıng moment 0.30 DFM 0.38 DFM DFM 0.38

Ekrs/Edsm in

ts/2+yt

in4

n*(I+karea*C120^2)

şerit

tamsayı((B-2*tbarr)/12)

ft

3,5 ≤ S ≤ 16 4,5 ≤ ts ≤ 12 20 ≤ L ≤ 240 Nb ≥ 4

in ft

[LRFD Art. 3.6.1.1.1]

OK OK OK OK OK

10.000 ≤ Kg ≤ 7.000.000

[LRFD Table 5.4.4.1-1] NL = 1

0.06 + (S/14)^0.4 (S/L)^0.3 (Kg/(12Lts^3))^0.1

NL > 1

0.075 + (S/9,5)^0.6 (S/L)^0.2 (Kg/(12Lts^3))^0.1

şerit/krs

Factor of shear force.

[LRFD Table 4.6.2.2.3a-1]

DFS

0.49 0.50 0.49

IMPACT IM(aashto) IM(Lrfd)

0.27 0.33

DFS DFS

NL = 1

0.2 + (S/12) - (S/35)^2

NL > 1

0.36 + (S/25)

şerit/krs

50/(ck+125) ≤ 0,3 [LRFD Table 3.6.2.1-1]

Truck load

[H30-S24] P+P+%50 X-%50 P1 = 30 P2 = 120 P3 = 120 X1 = 4250 X2 = 4250 IMPACT ( IM) = 0.265

Tandem load

kN kN kN mm mm

[H30-S24] P+%50 X-%50 P1 = P2 = P3 = X1 = X2 = IM = 24,73

24,73 14,12

US 6.74 26.98 26.98 14.12 14.12 0.26

Fatigue 6.74 kip 26.98 kip 26.98 kip 14.12 ft 28.24 ft 0.15

Pta = Xta =

110.00 4250

24.73 14.12

kN mm

kip ft

Lanes load

0,69

Qlanes =

10.00

0.69

kN/m

kip/ft

LOADING RESULT 27,0

27,0 14,1

6,7 14,1

MOTION DIRECTION 61,38

TRUCK x

x/L

ft. 0.00 3.13 3.50 4.60 6.14 12.28 18.42 24.55 27.62 30.69

TRUCK LOAD TRUCK + IM

0.000 0.051 0.057 0.100 0.200 0.300 0.400 0.425 0.450 0.500 max value

V kips 51.39 48.30 47.93 46.84 45.32 39.25 33.18 27.11 24.08 21.04 51.39

M k-ft 0.00 140.88 156.32 201.21 260.00 453.75 601.55 684.76 698.42 693.45 698.42

VLT kips 31.85 29.93 29.71 29.03 28.09 24.33 20.57 16.80 14.92 13.04 31.85

MLT k-ft 0.00 67.84 75.28 96.90 125.21 218.51 289.69 329.76 336.34 333.95 336.34

TANDEM LOAD FACTORED UNFOCTORED x

x/L

ft. 0.00 3.13 3.50 4.60 6.14 12.28 18.42 24.55 27.62 30.69

0.000 0.051 0.057 0.100 0.200 0.300 0.400 0.425 0.450 0.500 max value

kips 43.77 43.77 43.77 43.77 43.77 -5.69 -5.69 -5.69 -5.69 -5.69 43.77

k-ft 0.00 77.42 86.53 113.85 151.81 303.61 455.42 607.22 683.12 759.03 759.03

LANES LOAD x

x/L

V

M

Vlta kips 21.45 21.45 21.45 21.45 21.45 -2.79 -2.79 -2.79 -2.79 -2.79 21.45

Mlta k-ft 0.00 29.48 32.95 43.36 57.81 115.62 173.43 231.24 260.14 289.05 289.05

FATIGUE TRUCK TRUCK+IM M Mf

ft. 0.00 3.13 3.50 4.60 6.14 12.28 18.42 24.55 27.62 30.69

0.000 0.051 0.057 0.100 0.200 0.300 0.400 0.425 0.450 0.500 max value

kips 10.31 9.29 9.17 8.82 8.35 6.60 5.05 3.71 3.12 2.58 10.31

k-ft 0.00 23.80 26.43 34.12 44.26 78.68 103.27 118.02 121.71 122.94 122.94

k-ft 0.00 121.45 134.60 172.64 221.91 377.57 487.27 532.39 527.01 502.99 532.39

Mf k-ft 0.00 34.73 38.49 49.37 63.45 107.97 139.34 152.24 150.70 143.83 152.24

Service load stressed at Midspan Mg

265.44

k-ft

Ms

170.50

k-ft

MSDL

97.60

k-ft

MLT

336.34

k-ft

MLL

122.94

k-ft

fb

2.28

kip/in2

(Mg+Ms)12/Sb+[Msdl+0.8 (Mlt+Mll)]12/Sbc

0.46

kip/in2

0,19(fuc/1000)^0,5

Allowable Stress Limit Fbb

[LRFD Art. 5.9.4.2b]

Required Number of Strands (GHS) fpb

1.82

yb

14.42

kip/in2

fb-fbb

in

ybs= the distance from center of gravity of the strand at midspan to the bottom of the beam

ybs

2.36

in

ec*

12.06

in

yb-ybsi

Ppei

363.14

kips

fpb*karea*Sb/(Sb+karea*ec)

lossy

20.00

%

lossk

40.53

kip/in2

(lossy/100)*(fpi/1000)

loss

31.13

kips

Sarea*(fpi/1000- lossk)

GHS

12

Karea Sb

#

530.88

in2

3860.50

in3

eh

0.00

in

ybsend

3.33

in

ybs

3.33

in

HS

17

#

ec

11.09

in

eci

11.09

in

Ppe*

529.15

fb*

2.52

PRESTRESSED LOSSES ∆fpT Viok Mg Ms Msdl ec I Ic ybc ybs fb.reqd

Kips

HS*loss

kip/in2

ppu/karea+ecu*ppu/Sb

% or kip/i

∆fpES + ∆fpSR + ∆fpCR + ∆fpR2

Viok Pi fcgp

∆fpES ∆fpSR ∆fcdp ∆fpCR ∆fpR2 Viok* Pi* fcgp*

∆fpES* ∆fpCR* ∆fpR2* Viok** Pi** fcgp**

∆fpES** ∆fpCR ∆fpR2 Viok***

∆fpi Pi***

Σ∆fpT Σ∆fpT(%)

4248.55 0.00 661.43 2.07 13.79 8.00 0.42 21.90 2.55 7.43 612.26 1.87 12.45 19.48 2.86 6.85 616.14 1.89 12.56 19.67 2.83 6.89 13.97 615.83 43.06 21.25

OK

[LRFD Eq. 5.9.5.1-1]

8.00 265.44 170.50 97.60 11.09 55673.46 132527.26 21.87 20.04 1.82

% k-ft k-ft k-ft in in4 in4 in in kip/in2

1.ITERATION Ekrs

≤ 1,82

2.ITERATION Ekrs Viok Pi fcgp

∆fpES ∆fpSR ∆fcdp ∆fpCR ∆fpR2 NO

Viok* Pi* fcgp*

∆fpES* ∆fpCR* ∆fpR2* NO

Viok** Pi** fcgp**

∆fpES** ∆fpCR ∆fpR2 NO

Viok***

∆fpi Pi*** %

Σ∆fpT Σ∆fpT(%)

3700.17 6.89 615.83 1.89 14.41 8.00 0.42 19.66 2.61 7.75 610.15 1.86 14.41 19.38 2.63 7.76 610.12 1.86 14.23 19.38 2.65 7.67 15.55 610.67 44.26 21.84

3.ITERATION Ekrs Viok Pi fcgp

∆fpES ∆fpSR ∆fcdp ∆fpCR ∆fpR2 NO

Viok* Pi* fcgp*

∆fpES* ∆fpCR* ∆fpR2* OK

Viok** Pi** fcgp**

∆fpES** ∆fpCR ∆fpR2 NO

Viok***

∆fpi Pi*** %

Σ∆fpT Σ∆fpT(%)

4339.15 7.67 610.67 1.86 12.15 8.00 0.42 19.40 2.90 6.71 617.06 1.89 12.32 19.72 2.86 6.78 616.56 1.89 12.30 19.69 2.86 6.78 13.74 616.60 42.86 21.15

NO

NO

OK

%

159.59 520.88 2.48 0.90 1.22 0.16 2.11

fpe* Ppe* fb* ft.srvI.MP ft.tr.srvI.MP ft.srvI.HDP ft.tr.srvI.HDP

< 195 OK

158.39 516.98 2.46 0.91 0.77 1.22 0.18 0.17 2.09 -0.69 2.90

fpe* Ppe*

> 1,82 OK

fb*

1502.36 ft.EP+PR 2033.15 ft.½EP+½PR+T 271.93 ft.EP+PR+TR 3519.50 fbf.SIII

fti.HDP

fti.HDP

fbi.HDP

fbi.HDP

fti.END

fti.END

FBi.END

FBi.END

271.9 3519.5

MİN MAX

f'ci.reqd.min f'ci.reqd.max Ekrs.reqd

-1155.59 4887.03 4360.17

MİN MAX

159.79 < 195 OK 521.54 2.48 > 1,82 OK > 1,82 OK fb* 2012.9 ft.EP+PR 0.90 2001.5 1928.4 ft.½EP+½PR+T 0.77 1922.0 2040.5 ft.EP+PR+TR 1.22 2031.9 923.0 fbf.SIII 0.20 1155.1 281.6 fti.HDP 0.16 270.5 3478.6 fbi.HDP 2.12 3525.6 -1144.5 fti.END -0.69 -1155.6 4840.0 FBi.END 2.93 4887.0319 -1144.5 -1155.6 MİN 4840.0 4887.0 MAX < 195 OK

fpe*

Ppe*

kip/in1 kip/in2 kip/in2

PRESTRESSED LOSSES ∆fpES Elastic Shortening Pi I Mg ec Karea fcgp Estr Ekrs ∆fpES ∆fpSR

616.60 55673.46 265.44 11.09 530.88 1.89 28275.00 4360.17 12.25

HS*Sarea*(1-viok/100)*fpi/1000

in4 k-ft in in2 kip/in2

Pi/karea+Pi*ec^2/I-Mg*ec/I*12

kip/in2 kip/in2 kip/in2

Estr/Ekrs*fcgp [LRFD Eq. 5.9.5.4.2-1]

60.00 8.00

% kip/in2

17-0,15*RH

Creep of Concrete Ms MSDL ybc ybs* I Ic ∆fcdp ∆fpCR

∆fpR2

Kips

Shrinkage RH ∆fpSR

∆fpCR

[LRFD Art. 5.9.5.2.3a]

170.50 97.60 21.87 20.04 55673.46 132527.26 0.42 19.69

[LRFD Eq. 5.9.5.4.3-1] k-ft k-ft in in

loss-ec

in4 in4 kip/in2

Ms*12*ec/I+Msdl*12*(ybc-ybsu)/Ic

kip/in2

12*fcgp-7*Dfctp

Relaxation after Transfer Ms MSDL ybc fpi HS Mg ∆fpR2 Karea

170.50 97.60 21.87 202646.85 17 265.44 2.862 530.88

[LRFD Eq. 5.9.5.1-1] k-ft k-ft in lbf/in2 # k-ft kip/in2 in2

0,3*(20-0,4*DfpES-0,2*(DfpSR+DfpCR))

Ekrs Estr ec ∆fctp ∆fpSR Σ∆fp

4360.17 28275.00 11.09 0.42 8.00

ksi ksi in ksi ksi

Total Losses at Service Loads IPLoss ∆fpT ∆fpT% fpe Ppe

6.78 42.80 21.12 159.786 521.73

[LRFD Eq. 5.9.5.1-1] %

(DfpES+0,5*DfpR2_)*100/fpi

kip/in2

∆fpES + ∆fpSR + ∆fpCR + ∆fpR2

%

DfpTksi*100/fpi

kip/in2 kips

HS*Sarea*fpei

STRESS SUMMARY f 'ci.güncel 0.6f'ci 0.0948√f'ci √

[LRFD Art. 5.9.4] 4887.03 2.9322 6.63

lbf/in2 kip/in2

Stresses at Beam End ≤ 0.60f'ci.reqd. ec eci Pi

11.09 11.09 616.60

in

top

fti

-0.693

kip/in2

Pii/karea-Pii*eci/St

≤ 2,9322

OK

bottom

fbi

2.9322

kip/in2

Pii/karea+Pii*eci/St

≤ 2,9322

OK

in kips

[LRFD Art. 5.8.2.3]

Stresses at Transfer Length Section ≤ 0.60f'ci.reqd. Ltran Mtran et

2.80 48.09 11.09

ft

Scap*60/12

k-ft

0,5*Gkiris*Ltran*(Lk-C553)/1000

in

ec-(ec-eci)*(Lharp-Ltran)/Lharp

top

ft

-0.537

kip/in2

Pii/karea-et*Pii/St+Mtran*12/St

≤ 2,9322

OK

bottom

fb

2.7827

kip/in2

Pii/karea-et*Pii/St+Mtran*12/St

≤ 2,9322

OK

11.09 27.62 28.77 283.02

in

ec

ft

0,45*Lhesap

ft

Lharp+(Lbeam-Lhesap)/2

k-ft

0,5*Gkiris*Lharppo*(Lbeam-C566)/1000

kip/in2

Pii/karea-eharp*Pii/St+C567*12/St

Stresses at Harp points ≤ 0.60f'ci.reqd. eharb Lharb Lharb* Mharp top

ft

0.228

≤ 2,9322

OK

bottom

fb

2.0525

kip/in2

Pii/karea+eharp*Pii/Sb-Mharp*12/Sb

≤ 2,9322

OK

Stresses at Midspan ≤ 0.60f'ci.reqd. ec Morta

11.09 285.6758

in k-ft

0,5*Gkiris*(Lbeam/2)^2/1000

top

ft

0.237

kip/in2

Pii/karea-ec*Pii/St+Morta*12/St

≤ 2,9322

OK

bottom

fb

2.0442

kip/in2

Pii/karea+ec*Pii/Sb-Morta*12/Sb

≤ 2,9322

OK

control point

x

Beam.end

0.00 2.80 27.62 30.69

Ltransfer Harp.Point MidSpan

ft-top

(ft)

(ksi)

0.623√f'ci -1.377

fb-bot.

OK

2.932 2.783 2.052 2.044

-0.693 -0.537 0.228 0.237

OK OK OK

(ksi)

0.6f'ci 2.932 OK OK OK OK

Concrete Stresses at Service Loads Allowable Stress Limits [LRFD Art. 5.9.4.2]

(f'c.güncel =f'ci.güncel) f 'c.güncel 4887.03 f 'c 3625

lbf/in2 lbf/in2

precast beam slab

compression Due to (Effective prestress + permanent loads) for load combination service I 0.45f'c 2.20 kip/in2 precast beam 0.45f'c 1.63 kip/in2 slab Due to ½(effective prestress + permanent loads) + transient loads for load comb. Service I 0.4f'c 1.95 kip/in2 precast beam Due to permanent and transient loads for load combination Service I 0.6f'c 2.93 kip/in2 precast beam 0.6f'c 2.18 kip/in2 slab tension For components with bonded prestressing tendons for load combination Service III: -0,19√f'c -0.420 kip/in2 precast beam Stresses at Midspan Concrete stresses at top fiber of the beam: The compressive stresses are checked for two cases 1. Effective prestress + permanent loads, Service I ft

0.90

kip/in2

precast beam

≤ 0.45f'ci.reqd. ≤ 2,2

2. ½(Effective prestress + permanent loads) + transient loads, Service I: ft

0.77

kip/in2

precast beam

3. Under permanent and transient loads, Service I:

OK ≤ 0.40f'ci.reqd.

≤ 1,95

OK ≤ 0.60f'ci.reqd.

ft 1.22 kip/in2 Stresses at the top of the deck

precast beam

≤ 2,93

1. Under permanent loads, Service I ftc

0.137

kip/in2

≤ 0.45f'ci.reqd. slab

≤ 1,63

2. Under permanent and transient loads, Service I ftc

0.783

kip/in2

0.205

kip/in2

0.93 0.23

kip/in2

OK ≤ 0.60f'ci.reqd.

slab

≤ 2,18

Concrete stresses at bottom fiber of the beam, Service III: fb

OK

OK

≤ -0,19√f'c.reqd.

precast beam

≤ -0,42

OK

≤ 0,93

OK

FATIGUE ft ffat

kip/in2

MIDSPAN

STRENGTH LIMIT STATE service I service III strength I fatigue Mu 1.25[DC] Mg Ms Mbarr 1.5[DW] Mw 1.75[LL+IM] Mll Mlt Mu fpu fpe k

SLAB TOP LIFT

BEAM TOP LIFT

BEAM BOT.

Permanent

total load

Permanent

total load

service III

(ft)

(ksi)

(ksi)

(ksi)

(ksi)

(ksi)

30.69

0.14 OK

0.78 OK

0.90

1.22

OK

OK

0.21 OK [LRFD Table 3.4.1-1 snd 2]

Q = 1.00 ( DC+DW ) + 1.00 ( LL+IM ) Q = 1.00 ( DC+DW ) + 0.80 ( LL+IM )

max. min.

Q = 1.25 ( DC ) + 1.50 ( DW ) + 1.75 ( LL+IM ) Q = 0.90 ( DC ) + 0.65 ( DW ) + 1.75 ( LL+IM ) Q = 0.75 ( LL+IM )

1.25[DC] + 1.5[DW] + 1.75[LL+IM] 265.44 k-ft 170.50 k-ft 27.92 k-ft 69.69 k-ft 122.94 k-ft 336.34 k-ft 1488.10 270.20 159.79

k-ft kip/in2

fpu/1000

fpe>0,5fpu

kip/in2

0.28

2*(1,04-fpy/fpu)

> 135,1

OK

[LRFD Eq. 5.7.3.1.1-1] [LRFD Table C5.7.3.1.1-1]

dp β1 Aps As As' b f'c fy fy'

34.07 0.85 3.26 2.18 1.87 43.31 3.63 60.90 60.90

in

hc-ybs

in2

HS*Sarea

[LRFD Art. 5.7.2.2] in2 in2 in

S*12

kip/in2

fcu/1000

kip/in2

fy/1000

kip/in2

fy/1001

c = (Aps*fpu+As*fy-Asu*fyu)/(0,85*bti*fcu*b_+k*Aps*fpu/db)

c a fps

7.47 6.35 253.62

in

c < ts a < ts

in

β1*c

kip/in2

fpu*(1-k*c_/db)/1000

≤ 7,87 ≤ 7,87

OK OK

[LRFD Eq. 5.7.3.1.1-1]

Nominal flexural resistance: Mn 2131.15 ø 1.00 Mr 2131.15

[LRFD Art. 5.7.3.2.3] kip-ft

Aps*fps*(dp-a/2)/12

[LRFD Eq. 5.7.3.2.2-1]

resistance factor

[LRFD Art. 5.5.4.2.1]

Mr > Mu

kip-ft

> 1488,1

OK

LIMITS OF REINFORCEMENT MAX

[LRFD Art. 5.7.3.3.1]

c/dc ≤ 0.42 dc c/dc

[LRFD Eq. 5.7.3.3.1-1]

29.49 0.25

in

(Aps*fps*dp+As*fy*1)/(Aps*fps+As*fy)

c/dc ≤ 0.42

[LRFD Eq. 5.7.3.3.1-2]

≤ 0.42

MIN

OK [LRFD Art. 5.7.3.3.2]

Check at midspan: fr 0.53 Ppe 521.73 ec 11.09 fpe 2.48 Md-nc 435.95 Mcr 1272.49 Scfr 3215.16

kip/in2

0,24*(fuci_/1000)^0,5

[LRFD Art. 5.4.2.6]

kips in kip/in2

Ppe/karea+Ppe*ec/Sb

kip-ft

Mg+Ms

kip-ft

(fr+fpe_)*Sbc/12-Mdnc*(Sbc/Sb-1)

[LRFD Eq. 5.7.3.3.2-1]

kip-ft

Sbc*fr

Scfr > Mcr

(1+HIM)*Mu

Mu* > 1.2Mcr

> 1526

OK

Mr > 1.2Mcr

> 1526

OK

Mu*

1881.82

kip-ft

Mr

2131.15

kip-ft

> 1272

OK

SHEAR DESIGN

x ft. 0.00 3.13 3.50 4.60 6.14 12.28 18.42 24.55 27.62 30.69

0.000 0.051 0.057 0.100 0.200 0.300 0.400 0.425 0.450 0.500

barrier weight Mbarr k-ft 0.00 5.40 6.00 7.75 10.05 17.87 23.45 26.80 27.64 27.92

wea.surf. weight Mw k-ft 0.00 13.49 14.98 19.34 25.09 44.60 58.54 66.90 68.99 69.69

beam weight Mg k-ft 0.00 51.39 57.07 73.66 95.56 169.88 222.97 254.82 262.79 265.44

slab weight Ms k-ft 0.00 33.01 36.66 47.31 61.38 109.12 143.22 163.68 168.80 170.50

truck load M k-ft 0.00 140.88 156.32 201.21 260.00 453.75 601.55 684.76 698.42 693.45

x/L Mg Ms Mbarr

0 0.00 0.00 0.00

0,051L 51.39 33.01 5.40

0,057L 57.07 36.66 6.00

0,1L 73.66 47.31 7.75

0,2L 95.56 61.38 10.05

x/L

truck IM MLT k-ft 0.00 67.84 75.28 96.90 125.21 218.51 289.69 329.76 336.34 333.95

lanes load MLL k-ft 0.00 23.80 26.43 34.12 44.26 78.68 103.27 118.02 121.71 122.94

Mw Mlt Mll Q

x ft. 0.00 3.13 3.50 4.60 6.14 12.28 18.42 24.55 27.62 30.69

0.00 0.00 0.00 0.00

13.49 67.84 23.80 292.86

14.98 75.28 26.43 325.13

19.34 96.90 34.12 419.18

25.09 125.21 44.26 542.93

0.000 0.051 0.057 0.100 0.200 0.300 0.400 0.425 0.450 0.500

barrier weight Vbarr kips 1.82 1.63 1.61 1.55 1.46 1.09 0.73 0.36 0.18 0.00

wea.surf. weight Vw kips 4.54 4.08 4.02 3.86 3.63 2.72 1.82 0.91 0.45 0.00

beam weight Vg kips 17.30 15.53 15.33 14.70 13.84 10.38 6.92 3.46 1.73 0.00

slab weight Vs kips 11.11 9.98 9.84 9.44 8.89 6.67 4.44 2.22 1.11 0.00

truck load V kips 51.39 48.30 47.93 46.84 45.32 39.25 33.18 27.11 24.08 21.04

x/L Vg Vs Vbarr Vw Vlt Vll Q

0 17.30 11.11 1.82 4.54 31.85 10.31 118.38

0,051L 15.53 9.98 1.63 4.08 29.93 9.29 108.68

0,057L 15.33 9.84 1.61 4.02 29.71 9.17 107.55

0,1L 14.70 9.44 1.55 3.86 29.03 8.82 104.15

0,2L 13.84 8.89 1.46 3.63 28.09 8.35 99.45

x/L

Critical section near the supports is the greater of: bv 7.87 in a 6.35 in 0.72h 26.93 in dc 34.07 in 0.9dc 30.66 in dv 30.89 in

3.26 202.65 0.00 3.33 29.53 28.77 0.0757 0.00 0.00 307.09 0.90 11.81 4360.17

lanes load VLL kips 10.31 9.29 9.17 8.82 8.35 6.60 5.05 3.71 3.12 2.58

[LRFD Art. 5.8.3.2]

[LRFD Art. 5.8.2.9] hc-ybsend dc-0,5*a

[LRFD Art. 5.7.3.3.1]

dv ≥ 0.72h dv ≥ 0.9dc

Vc = 0.0316 β √ f'c bv dv Ash fpo yht ybsend hb HDe ψ Vp Nu Ac φ Lem Ec

truck IM VLT kips 31.85 29.93 29.71 29.03 28.09 24.33 20.57 16.80 14.92 13.04

≥ 26 ≥ 30

OK OK [LRFD Eq. 5.8.3.3.-3]

in2

(HS-hhs)*Sarea

kip/in2 in in in

Lbeam/2-(Lhesap*0,5-Lhesap*0,45)

ft

ATAN((hb-yht-ybsend)/12/HDe)

rad

Ppe/HS*hhs*SİN(kisi)

kips

Ppe/HS*hhs*SİN(kisi)

kips in2 in kip/in2

xi*yi+(xi+xiii)/2*yii+xiii*(hc/2-yi-yii)

0,051L

0,057L

0,1L

0,2L

Ø

23.000

19.573

19.779

20.058

[LRFD Table. 5.8.3.4.2-1]

0.5dv.cotØ

36.391

43.445

42.956

42.307

kpo

42.296

49.350

48.861

48.213

Mu

292.863

325.132

419.180

542.933

Vu

108.680

107.545

104.148

99.449

εx

-0.001

-0.001

-0.001

-0.001

εx

-0.00014

-0.00013

-0.00012

-0.00011

Uu

0.496

0.491

0.476

0.454

εx

-0.140

-0.128

-0.118

-0.105

Uu/f'c

0.102

0.101

0.097

0.093

β

3.509

3.515

3.487

3.524

279.796

276.874

268.128

256.030

OK

OK

OK

OK

Vu dv Mu ≥ Vu dv

0.102

-0.140

OK

[LRFD Eq. 5.8.2.4.2-1] LineerEnterpolation calc. detail 'Ø ve β table' see

x/L minβ Vc

0,1L 3.49 59.26

kips

0,0316*Betta*(fuci_/1000)^0,5*bv*dv [LRFD Art. 5.8.2.4-1]

Vu

104.15

Vu > 0.5 ø (Vc + Vp ) > 26

kips

Ø ve β table

Ø Uu/f'c 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 β Uu/f'c 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

interpolation 0,057L

OK

[LRFD Table. 5.8.3.4.2-1]

-0.2 22.20 18.10 19.90 21.60 23.20 24.70 26.10 27.50

-0.1 20.40 20.40 21.90 23.30 24.70 26.10 27.30 28.60

-0.05 21.00 21.40 22.80 24.20 25.50 26.70 27.90 29.10

-0.2 6.32 3.79 3.18 2.88 2.73 2.63 2.53 2.39

-0.1 4.75 3.38 2.99 2.79 2.66 2.59 2.45 2.39

-0.05 4.10 3.24 2.94 2.78 2.65 2.52 2.42 2.33

ex < 1,0 0 21.80 22.50 23.70 25.00 26.20 27.40 28.50 29.70 ex < 1,0 0 3.75 3.14 2.87 2.72 2.60 2.51 2.40 2.33

Lineer Enterpolation β -0.200 -0.140 -0.100

0.125 24.30 24.90 25.90 26.90 28.00 29.00 30.00 30.60

0.25 26.60 27.10 27.90 28.80 29.70 30.60 30.80 31.30

0.5 30.50 30.80 31.40 32.10 32.70 32.80 32.30 32.80

1 36.40 36.70 37.00 37.30 36.80 36.10 35.70 35.80

0.125 3.24 2.91 2.74 2.60 2.52 2.43 2.34 2.12

0.25 2.94 2.75 2.62 2.52 2.44 2.37 2.14 1.93

0.5 2.59 2.50 2.42 2.36 2.28 2.14 1.86 1.70

1 2.23 2.18 2.13 2.08 1.96 1.79 1.64 1.50

Y2 = [ (X2-X1) (Y3-Y1) / (X3-X1) ] + Y1

1 -0.200

Ø -0.140

2 -0.100

2

0.100 0.102 0.125

3 interpolation 0,1L 2

0.100 0.101 0.125

3 interpolation 0,2L 1

0.075 0.097 0.100

2

3.790

3.546 3.515 3.067

3.180

β -0.128 3.497 3.487 3.044

-0.200 3.790 3.180

β -0.118 5.038 3.524 3.343

-0.200 6.320 3.180

3.380 2.990

-0.100 3.380 2.990

-0.100 4.750 3.380

18.100 18.214 19.900 1 -0.200 18.100 18.137 19.900 1 -0.200 22.200 18.536 18.100

19.573

Ø -0.128 19.779

Ø -0.118 20.058

20.400 20.495 21.900 2 -0.100 20.400 20.431 21.900 2 -0.100 20.400 20.400 20.400

STIRRUP CALCULATION

Vu/ø ≤ Vc + Vs + Vp Vs 56.46 kips Vs = Av fy dv (cotØ+cotα) sinα / s α 90.00 drc cot α 0.00 sin α 1.00 Ø 19.78 drc cot Ø 2.78 stirrup spacing

s= s=

150 5.906

Vu/ffi-Vc-Vp [LRFD Eq. 5.8.3.3-4]

mm in

Av 0.064 spacing control 0.125f'c 0.61 Vu 0.10 if Vu < 0.125 f'c then; smax min[ 0.8dv ; 24]

in2/ft

0.8dv smax

in

24.72 24.00

[LRFD Eq. 5.8.3.3-1]

s_*Vs/(fy/1000*dv*(cotO+cotA)*sinA) [LRFD Art. 5.8.2.7]

kip/in2 kip/in2 [LRFD Eq. 5.8.2.7-1]

in

if Vu ≥ 0.125 f'c then; smax

[LRFD Eq. 5.8.2.7-2]

min[ 0.4dv ; 12]

0.4dv smax

12.36 12.00

in

Vu < 0.125 f'c smax

24.00

in

s Av.seç

5.906 0.182

in

in [LRFD Eq. 5.8.2.7-1]

Vs

161.27

in2/ft

2*Pİ()*C924^2/4

kips

Av_*fy/1000*dv*cotO/s_

min. shear reinforcement control Avmin = 0.0316√ f'c bv s /fy Avmin

s ≤ smax 0,182> 0,064

[LRFD Art. 5.8.2.5] [LRFD Eq. 5.8.2.5-1]

0.05

0,053< 0,182

max. shear reinforcement control Vu/ø ≤ Vn = Vc + Vs + Vp ==>

OK OK

OK

Vc + Vs ≤ 0.25 f'c bv dv

Vn = 0.25 f'c bv dv

[LRFD Eq. 5.8.3.3-2]

0.25 f'c bv dv

297.20

kips

Vc + Vs

115.72

kips

factored shear force

≤ 0.25 f'c bv dv

OK

[LRFD Art. 5.8.4]

Vh=Vu/dv

[LRFD Eq. C5.8.4.1-1]

0,1L point strength I STIRRUP CALCULATION 0,1L kips

Vbarr Vw VLT VLL Vu

1.55 3.86 29.03 8.82 73.97

Vh

1,25*Vbarr+1,5*Vw+1,75*(VLT+VLL)

2.39

kips/in

2.66

kip/in

required min. Stresses Vn = Vu/ø Vn

Contribution of Reinforcement to Nominal Shear Resistance Vn = c Acv + μ [Avf fy +Pc ] c

0.075

[LRFD Eq. 5.8.4.1-1] [LRFD Art. 5.8.4.2]

μ bvt Acv Pc fy Avf

0.600 29.53 29.53 0.00 60.90 0.15

Avf'

1.75

in in2 kip/in2 in2/ft in2/ft

existing =>

2x5 Ø12

1,75 > 0,15

minAvf

OK

[LRFD Eq. 5.8.4.1-4]

0.05bv /fy

0.29

in2/ft

Avf ≥ 0.05 bv / fy

OK

Vnp

7.55

kips/in

0,2f'c Acv

21.41

kips/in

Vn ≤ 0.2 f'c Acv

OK

0.8 Acv

23.62

kips/in

Vn ≤ 0.8 Acv

OK

ADDITIONAL LONGITUDINAL REINFORCEMENT REQUIREMENT

x ft. 0.49

wea.surf. weight Mw k-ft 2.22

beam weight Mg k-ft 8.44

slab weight Ms k-ft 5.42

truck load M k-ft 23.29

truck IM MLT k-ft 11.21

lanes load MLL k-ft 3.91

0.000

barrier weight Vbarr kips 1.79

wea.surf. weight Vw kips 4.47

beam weight Vg kips 17.02

slab weight Vs kips 10.93

truck load V kips 50.91

truck IM VLT kips 31.55

lanes load VLL kips 10.15

x/L Vg Vs Vbarr Vw Vlt

0.49 17.02 10.93 1.79 4.47 31.55

x/L Mg Ms Mbarr Mw Mlt

0.49 8.44 5.42 0.89 2.22 11.21

x/L 0.000

x ft. 0.49

barrier weight Mbarr k-ft 0.89

x/L

Vll Q

10.15 116.85

Mll Q

1,25*(Vg+Vs+Vbarr)+1,5*Vw+1,75*(Vlt+Vll)

3.91 48.24

1,25*(Mg+Ms+Mbarr)+1,5*Mw+1,75*(Mlt+Mll)

As fy + Aps fps ≥ Mu / [dv ø] + 0.5 Nu/ø +[Vu/ø -0.5 Vs -Vp) cot Ø

[LRFD Art. 5.8.3.5]

Lbearing end of beam cot Ø ø Nu Mu Vu Vs Vp dv eh ybsend As fy Ltransfer

11.81 0.49 2.78 0.90 0.00 48.24 116.85 161.27 0.00 30.89 0.00 3.33 2.18 60.90 2.80

in

right left

157.62 276.64

kips

Mu / [dv ø] + 0.5 Nu/ø +[Vu/ø -0.5 Vs -Vp) cot Ø

kips

0+SHS*Sarea*fpei*(eh+ybsend*cotO)/(Ltransfer*12)

ft

kip-ft kips kips kips in in in in2 kip/in2 ft

PRETENSIONED ANCHORAGE ZONE

[LRFD Art. 5.10.10]

min. Vertical reinforcement fs 20.00 fpi 661.43 Pr = %4 fpi 26.46 Asea 1.32 mesafe 9.35 s' 2.76 Asea'

OK

1.40

[LRFD Art. 5.10.10.1] kip/in2 kips

Pr = fs.As ≥ 0.04 fpi

kips in2/ft in

hc/4

in

1,402 > 1,323

in2/ft

REINFORCEMENT DRAWING

Top face of the beam(compression) As'



6

Ø16

Bottom face of the beam(tension) As



7

Ø16

Shear reinforcement in the body Asg



2x5

Ø12

OK

Stirrups in the middle of the beam Ase

Stirrups at the beam Ase'

④③②① Ø12

④③②① /70

Ø8

/150

DEFLECTION AND CAMBER DIPLACEMENT

CAMBER CALCULATION Pi 616.60 Ec 4248.55 ec 11.09 ybs 3.33 a 28.77 L 61.38 I 55673.46 ∆cam

1.40

↑ kips kip/in2 in in ft ft in4 in ↑

Ppe/Ekrsg/I*(ec*(Lbeam*12)^2/8-(ec-ybs)*(Lharppo*12)^2/6)

DEFLECTIONS CALCULATION ↓ Deflection due to wearing surface weight at midspan + Deflection due to barrier weight at midspan Gbw 0.21 kips/ft

Eci Ic L

4360.17 132527.26 61.38

∆bw

0.115

kip/in2 in4 ft in ↓

5*(Dbw/12)*(Lhesap*12)^4/(384*Ekrsg*Ic)

Deflection at midspan due to slab weight Gtab 0.36 kips/ft Eci 4360.17 kip/in2 I 55673.46 in4 L 61.38 ft ∆tab

0.476

in ↓

5*(Dtab/12)*(Lhesap*12)^4/(384*Ekrsg*I)

Deflection due to beam weight at midspan Gbeam 0.564 kips/ft Eci 4360.17 kip/in2 Ic 55673.46 in4 L 61.38 ft ∆beam

0.742

in ↓

5*(Dwear/12)*(Lhesap*12)^4/(384*Ekrsg*I)

Deflection due to lanes load at midspan DFM 0.381 NL/Nb Llsehim 0.26 kip/ft/beam ∆lanes

0.144

in ↓

5*(DFM*Qlanes/12)*(Lhesap*12)^4/(384*Ekrsg*I)

Deflection due to truck + IM load at midspan MLT 336.34 ∆arac 0.316 in ↓ 5*(Dwear/12)*(Lhesap*12)^4/(384*Ekrsg*I) ∆cam ∆bw ∆tab ∆beam ∆lanes* ∆arac* Σ∆

-35.6mm

-1.40 in



2.9mm

0.11 in



12.1mm

0.48 in



18.8mm

0.74 in



3.7mm

0.14 in



8.0mm

0.32 in



6.2mm

0.25 in



(*) max.

L/800

23.39

0.92

L/800 > Σ∆



UNITS

US

SI

1 in.

25,4 mm

1 in.2

645,2 mm2

1 ft.

0,305 m

1 ft.2

0,093 m2

1 psi

0,006895 MPa

1 ksi

6,895 MPa

1 kip

4,448 kN

0





SI

US

1 mm

0,0394 in.

1 mm2

0,002 in.2

1m

3,279 ft.

1 m2

10,753 ft.2

1 MPa

145,035 psi

1 MPa

0,145 ksi

1 kN

0,225 kip

OK

1 ft-kip

1,356 kN-m

1 lb

0,004448 kN

1 kip

1000 lb

1 Kn

1000 N

1 lb/ft

0,01459 kN/m





1 kN-m

0,737 ft-kip

1 kN

224,82 lb

1 lb

0,001 kip

1N

0,001 kN

1 kN/m

68,54 lb/ft

PROJECT NAME………:

YAVUZ SELiM BULVARI ALTGECiT iNSAATI

LOCATION…...……....:

BEYLiKDUZU-ISTANBUL

REGULATION……......:

ELASTOMERIC BEARING DESIGN

AASHTO LRFD 2007

METHOD B

System and material input data : Expandable span length

Ls =

18710

mm

DFt =

165

Mpa

Hshore =

50

G=

0.7

Mpa

fy =

240

Mpa

Lpad =

300

mm

Wpad =

300

mm

Elastomer cover thickness:

hc =

2.5

mm

Elastomer internal layer thickness:

hri =

8

mm

Number of steel reinforcement layers:

Nst =

6

hs =

3

Constant amplitude fatigue threshold for Category A Elastomer hardness: Shear modulus of elastomer

{ (0,68 - 0,93) SELECT }

Steel reinforcement yield strength: Pad length (bridge longitudinal direction): Pad width (bridge transverse direction):

Steel reinforcement thickness:

mm

System and material output data : Elastomer creep deflection at 25 years divided by the instantaneous deflection:

Number of elastomer internal layers total elastomer thickness Total steel plate heigth Total bearing heigth Bearing surface area Check Nst (14.7.6.1) : Nst = hc = 0.70 hri =

6 2.5 5.6

Cd = Nel = hrt = hst = ht = Area =

0.25 5 45 18 63 90000

mm mm mm mm2

Nst > 2 ise; hc ≤ 0.70 hri

OK

Compute Shape Factor (14.7.5.1-1) : Sint = Scov = S =

9.375 30 9.375

Si = L.W / (2.hri.(L+W)) Si = L.W / (2.hc.(L+W)) S=min(Sint,Scov)

Check Compressive Stress (14.7.5.3.2) : DLs LLs σs σL

= 106 = 111 = 2.411111 = 1.233333

kN kN MPa MPa

DL reaction/girder LL reaction /girder σs = (DLs+LLs) /Area σL = LLs / Area

Shear deformation? -YES- (14.7.5.3.2-2) : 1.66 G.S = 10.89375 0.66 G.S = 4.33125

Mpa Mpa

σs ≤ 1,66 G.S σs ≤ 11 σL ≤ 0,66 G.S

OK OK OK

σs ≤ 2 G.S σs ≤ 12 σL ≤ G.S

OK OK OK

Shear deformation? -NO- (14.7.5.3.2-4) : G.S = 2G.S =

6.5625 13.125

Mpa Mpa

Check Compressive Deflection (14.7.5.3.3) : εi δLi δLt δcr Σδ 0.07 hri

= = = = = =

0.02662 0.212963 1.197919 0.006655 1.204574 0.56

50 60 70 C 0.013966 0.01513 0.011639 x 0.288213 0.262921 0.284806 εi = Cs^x 0.02662 0.012879 0.009775

durometer

mm mm mm mm mm

δLi ≤ 0.07 hri

OK

Check Shear Deformation (14.7.5.3.4) : α = 1.17E-05 tset = 20 γTU = 1.2

/°C °C

Δco = 4.37814 Δs = 5.253768

mm mm

Δco = α . tset . Ls Δs = Δco . γTU

2.Δs = 10.50754

mm

2. Δco ≤ hrt

OK

Check Rotation or Combined Compression and Rotation (14.7.5.3.5) : Ls θsx θsz σs Nel G.S n

= 18710 = 0.003 = 0.003 = 2.411111 = 5 = 6.5625 = 6

mm rad. rad. MPa

Construction Tolerance

Mpa

Lch = 2.360366

Mpa

Wch = 2.360366

Mpa

Lch = 0.5 GS (Lpad/hri)^2 (θsx/n) Lch ≤ σs Wch = 0.5 GS (Wpad/hri)^2 (θsz/n) Wch ≤ σs

OK OK

Check Stability (14.7.6.3.6) : ht = minLW =

63 100

mm mm

minLW=min(Lpad/3 , Wpad/3) ht ≤ minLW

OK

Check Reinforcement (14.7.6.3.7) : hmax = 8 hsi = 0.241111 hsii = 0.119596

mm mm mm

hsi =3 hri σs / fy hsi ≤ hmax hsii =2 hri σL / Aft hsii ≤ hmax

OK OK

Metrication Conversion Guide for 318M and 318S Note: Based on IEEE/ASTM SI 10-2002 document The values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other, without combining values in any way.

1a. LENGTH Rules:

1 in. =

25.40

mm

1. Convert in. to mm using the factor 25.40 and round to two significant digits. 2. Orange shading: equivalence number for ACI 318M document. 3. Change to m, when conversion reaches 1000 mm. Example 1: 1/2 in. = 0.5 x 25.40 = 12.70 à use 13 mm in.-lb Units [in.] 1/4 3/8 1/2 5/8 3/4 7/8 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3 3 1/2 4 5 5 1/2 6 7 7 1/2 8 9 9 3/4 10 11 12 12.5 14 16 18 20 24 25 30

ACI Engineering

Conversion to SI Units [mm] 6.35 9.53 12.70 15.88 19.05 22.23 25.40 31.75 38.10 44.45 50.80 63.50 76.20 88.90 101.60 127.00 139.70 152.40 177.80 190.50 203.20 228.60 247.65 254.00 279.40 304.80 317.50 355.60 406.40 457.20 508.00 609.60 635.00 762.00

Equivalent SI Units [mm] 6.4 9.5 13 16 19 22 25 32 38 44 51 64 76 89 100 130 140 150 180 190 200 230 250 250 280 300 320 360 410 460 510 610 640 760

Page 72

ACI 318M Units [mm] 6 10 13 16 20 22 25 30 40 45 50 65 75 90 100 125 140 150 175 190 200 230 245 250 280 300 315 350 400 450 500 600 635 750

12/01/2017

36

ACI Engineering

914.40

910

Page 73

900

12/01/2017

1a. LENGTH CONTINUED in.-lb Units [in.] 48 50 54 60 72 120 144 1,200 1,800

Conversion to SI Units [m] 1.22 1.27 1.37 1.52 1.83 3.05 3.66 30.48 45.72

1b. CRACK WIDTH Rule:

Equivalent SI Units [m] 1.2 1.3 1.4 1.5 1.8 3.0 3.7 30 46

1 in. =

ACI 318M Units [m] 1.2 1.3 1.4 1.5 1.8 3.0 3.7 30 46 25.40

mm

Convert in. to mm using the factor 25.40 and round to 2 significant digits. Example : 0.013 in. = 0.013 x 25.40 = 0.3302 à use 0.33 mm in.-lb Units [in.] 0.012 0.016

Conversion to SI Units [mm] 0.3048 0.4064

Equivalent SI Units [mm] 0.30 0.41

ACI 318M Units [mm] 0.30 0.41

Size and Nomenclature are the Same SI Units 100 mm 90 mm 75 mm 63 mm 50 mm 37.5 mm 25.0 mm 22.4 mm 19.0 mm 16.0 mm 12.5 mm 9.5 mm 6.3 mm 4.75 mm 3.35 mm 2.36 mm 2.00 mm 1.18 mm 850 mm 600 mm 425 mm 300 mm 180 mm 150 mm 75 mm

ACI 318M Units [mm]

1c. AGGREGATE SIZE ASTM E 11 Approx. Size Nomenclature in.-lb Units [in.] in.-lb Units 4 4 in. 3.5 3-1/2 in. 3 3 in. 2.5 2-1/2 in. 2 2 in. 1.5 1-1/2 in. 1 1 in. 0.875 7/8 in. 0.750 3/4 in. 0.625 5/8 in. 0.500 1/2 in. 0.375 3/8 in. 0.250 1/4 in. 0.187 No. 4 0.132 No. 6 0.0937 No. 8 0.0787 No. 10 0.0469 No. 16 0.0331 No. 20 0.0234 No. 30 0.0165 No. 40 0.0117 No. 50 0.0070 No. 80 0.0059 No. 100 No. 200 0.0029

ACI Engineering

Page 74

100 mm 90 mm 75 mm 63 mm 50 mm 37.5 mm 25.0 mm 22.4 mm 19.0 mm 16.0 mm 12.5 mm 9.5 mm 6.3 mm 4.75 mm 3.35 mm 2.36 mm 2.00 mm 1.18 mm 850 mm 600 mm 425 mm 300 mm 180 mm 150 mm 75 mm

12/01/2017

1d. AREA Rule:

1 ft2 =

5,000

Conversion to SI Units [m2] 464.50

1e. AREA PER UNIT LENGTH

Equivalent SI Units [m2] 460

ACI 318M Units [m2] 460

1 in.2 / ft =

2117

mm2 / m

Convert in2/ft to mm2/m using the factor 2117 and round to 2 significant digits. Therefore : 0.10 in.2/ft = 0.10 x 2117 = 211.7 à use 210 mm2/m in.-lb Units [in.2/ft] Conversion to SI Units [mm2/m] 0.10 211.70

1f. VOLUME Rule:

m2

Convert ft2 to m2 using the factor 0.09290 and round to 2 significant digits. Therefore 5,000 ft2 = 5,000 x 0.09290 = 464.5 à use 460 m2 in.-lb Units [ft2]

Rule:

0.09290

Equivalent SI Units [mm2/m] 210

ACI 318M Units [mm2/m] 210

1 yd3 =

0.7646

m3

Convert yd3 to m3 using the factor 0.7646 and round to 2 significant digits. Example : 50 yd3 = 50 x 0.7646 = 38.23 à use 38 m3 in.-lb Units [yd3] 50 150

Conversion to SI Units [m3] 38.23 114.69

1g. LOADS Rule:

1 lb =

0.004448

kN

Convert lb to kN using the factor 0.004448 and round to 2 significant digits. Example : 16,000 lb = 16,000 x 0.004448 = 71.17 à use 71 kN in.-lb Units [lb] 3,000 9,000 10,000 16,000

Conversion to SI Units [kN] 13.34 40.03 44.48 71.17

1h. LOADS PER UNIT LENGTH Rule:

Equivalent in SI ACI 318M Units Units [m3] [m3] 38 38 110 110

Equivalent SI Units [kN] 13 40 44 71 1 lb / ft =

ACI 318M Units [kN] 13 40 44 71 0.01459

kN / m

Convert lb/ft to kN/m using the factor 0.01459 and round to 2 significant digits. Example : 1,500 lb/ft = 1,500 x 0.01459 = 21.89 à use 22 kN/m in.-lb Units [lb/ft] 200 300 1,500 3,000

ACI Engineering

Conversion to SI Units [kN/m] 2.918 4.377 21.885 43.770

Equivalent SI Units [kN/m] 2.9 4.4 22 44

Page 75

ACI 318M Units [kN/m] 3.0 4.4 22 44

12/01/2017

1i. AREA LOADS Rule:

1 psf =

kN/m2

Convert psf to kN/m2 using the factor 0.04788 and round to 2 significant digits. Therefore : 100 psf = 100 x 0.04788 = 4.788 à use 4.8 kN/m2 in.-lb Units [psf] 100

Conversion to SI Units [kN/m2] 4.7880

2. TEMPERATURE Rule:

0.04788

Equivalent SI Units [kN/m2] 4.8

ACI 318M Units [kN/m2] 4.8

Degree F = (F-32)/1.8 = Degree C

To convert °F to °C use the conversion above and round to the nearest degree. Except for temperatures above 212 deg F, for which the conversion is rounded to 2 significant figures). Example: 35 °F = (35 – 32)/1.8 = 1.67 à use 2 °C According to ACI style manual, the degree symbol should be used with temperature, °F and °C. in.-lb Units [°F] 35 40 50 60 90 95 100 200 300 400 600 1,500

Conversion to SI Units [°C] 1.6667 4.4444 10.0000 15.5556 32.2222 35.0000 37.7778 93.3333 148.8889 204.4444 315.5556 815.5556

3. CONCRETE UNIT WEIGHT Rule:

Equivalent SI Units [°C] 2 4 10 16 32 35 38 93 150 200 320 820

1 lb/ft3 =

ACI 318M Units [°C] 2 4 10 16 32 35 38 93 150 200 320 820 16.02

kg/m3

Convert the unit weight in lb/ft3 to kg/m3 using the factor 16.02 and round to three (3) significant digits. (Show to the nearest 5 kg/m3 for values in the 'ones' digit.) Example: 144 x 16.02 = 2307 à use 2310 kg/m3 in.-lb Units [pcf] 70 90 105 110 115 120 140 144 145 150

ACI Engineering

Conversion to SI Units [kg/m3] 1121.40 1441.80 1682.10 1762.20 1842.30 1922.40 2242.80 2306.88 2322.90 2403.00

Equivalent SI Units [kg/m3] 1120 1440 1680 1760 1840 1920 2240 2310 2320 2400

Page 76

ACI 318M Units [kg/m3] 1120 1440 1680 1760 1840 1920 2240 2310 2320 2400

12/01/2017

155

2483.10

2480

2480

NOTE: In SI Units the kg is a unit of mass therefore the term "unit weight" in a SI document should be "unit density."

ACI Engineering

Page 77

12/01/2017

4a. CONCRETE STRESS Rule:

1000 psi =

6.895

MPa

Convert psi to MPa using the factor 0.006895 and round to two (2) significant digits (except for concrete stress levels 5000 psi and above round to the nearest 5 MPa - see shaded equivalents below). Example 1: 4440 psi = 4.44 x 6.894757 = 30.61 à use 31 MPa Example 2: 12,000 psi = 12 x 6.894757 = 82.737 à use 85 MPa

in.-lb Units [psi] 50 70 80 100 125 150 200 225 250 260 300 400 500 700 800 1,000 1,200 2,000 2,500 3,000 3,500 4,000 4,440 4,500 5,000 6,000 8,000 10,000 11,000 12,000 15,000

Conversion to SI Units [MPa] 0.3448 0.4827 0.5516 0.6895 0.8619 1.0343 1.3790 1.5514 1.7238 1.7927 2.0685 2.7580 3.4475 4.8265 5.5160 6.8950 8.2740 13.7900 17.2375 20.6850 24.1325 27.5800 30.6138 31.0275 34.4750 41.3700 55.1600 68.9500 75.8450 82.7400 103.4250

4b. MODULUS OF ELASTICITY Rule:

Equivalent SI Units [MPa] 0.34 0.48 0.55 0.69 0.86 1.0 1.4 1.6 1.7 1.8 2.1 2.8 3.4 4.8 5.5 6.9 8.3 14 17 21 24 28 31 31 35 40 55 70 75 85 105 1000 psi =

ACI 318M Units [MPa] 0.35 0.5 0.55 0.7 0.9 1.0 1.4 1.6 1.7 1.8 2.1 2.8 3.5 5.0 5.5 7.0 8.3 14 17 21 24 28 31 31 35 40 55 70 75 85 105 6.895

MPa

Convert psi to MPa using the factor 0.006895 and round to 2 significant digits. Therefore : 29,000,000 psi = 29,000,000 x 6.895 / 1000 = 199,995 à use 200,000 MPa in.-lb Units [psi] 29,000,000

ACI Engineering

Conversion to SI Units [MPa] 199955

Equivalent SI Units [MPa] 200000

Page 78

ACI 318M Units [MPa] 200 000

12/01/2017

5. EMPIRICAL EQUATIONS FOR CONCRETE WITH MULTIPLIERS OF 1/12.043 or 0.08304

Rule:

To convert the multipliers of use the factor 1/12.043 (or 0.08304) and round to two (2) significant digits. Show constants or multipliers in front of equation.

Conversion of commonly used multipliers of in.-lb Units 0.1 0.6 0.75 1 1.25 1.33 1.7 1.9 2 2.66 3 3.3 3.5 4 5 6 6.7 7 7.5 8 10 12 15 16 20 25 33 40 50 65 100 160 57000

ACI Engineering

Conversion to SI Units 0.0083 0.0498 0.0623 0.0830 0.1038 0.1104 0.1412 0.1578 0.1661 0.2209 0.2491 0.2740 0.2906 0.3322 0.4152 0.4982 0.5564 0.5813 0.6228 0.6643 0.8304 0.9965 1.2456 1.3286 1.6608 2.0760 2.7403 3.3216 4.1520 5.3976 8.3040 13.2864 4733.2800

: Equivalent SI Units 0.0083 0.050 0.062 0.083 0.10 0.11 0.14 0.16 0.17 0.22 0.25 0.27 0.29 0.33 0.42 0.50 0.56 0.58 0.62 0.66 0.83 1.0 1.2 1.3 1.7 2.1 2.7 3.3 4.2 5.4 8.3 13 4700

Page 79

ACI 318M Units 0.0083 0.050 0.062 0.083 0.10 0.11 0.14 0.16 0.17 0.22 0.25 0.27 0.29 0.33 0.42 0.50 0.56 0.58 0.62 0.66 0.83 1.0 1.2 1.3 1.7 2.1 2.7 3.3 4.2 5.4 8.3 13 4700

12/01/2017

6a. STEEL GRADES IN REFERENCED ASTMs FOR REINFORCING BARS, WELDED WIRE REINFORCEMENT, STEEL STRANDS, AND STRUCTURAL STEEL PLATES & SHAPES Conversion of reinforcing steel grades per ASTMs listed in the 318: (Minimum yield strengths) Not included: A 53 - 02, A 307 - 04, A 500 - 03, A 501 - 01 A 185 - 02 and A 497 - 02 refer to A 82 A 185 - 02 and A 497 - 02 refer to A 82 A 775 - 01 and A 934 - 03 refer to A 615, A 706, and A 996 A 884 - 02 refers to A 82, A 185, A 496, and A 497 in.-lb Units SI Units [ksi] [MPa] ASTM A 36/ A 36M - 03 36 250 ASTM A 82 - 02 56 385 65 450 70 485 ASTM A 242/ A 242M - 03 42 290 46 315 50 345 4 ASTM A 416/ A 416M - 02 250 1725 270 1860 ASTM A 421/ A 421M - 02 235 1620 240 1655 250 1725 ASTM A 496 - 02 70 485 ASTM A 572/ A 572M - 03 42 290 50 345 4 55 380 60 415 4 65 450 ASTM A 588/ A 588M - 03 42 290 46 315 50 345 4 ASTM A 615/ A 615M - 03 40 280 60 420 75 520 ASTM A 706/ A 706M - 03 60 420 ASTM A 722/ A 722M - 98 150 1035 ASTM A 767/ A 767M - 00 40 300 4 50 350 60 420

ACI Engineering

in.-lb Units [ksi]

SI Units [MPa]

Summary

Plate, Bar and Shapes WWR

36 40 42 46 50 55 56 60 70 75 150 235 240 250 270

Plate, Bar and Shapes

Strand

Strand

WWR

250 280(300)1 290 315 350(345)2 380 385 420(415)3 485 520 1035 1620 1655 1725 1860

1. ASTM is in the process of changing to 280. 2. Steel plate uses 345 and concrete reinforcement uses 350: Use 350. 3. Steel plate uses 415 and concrete reinforcement uses 420: Use 420. 4. Red values shall not be used.

Plate, Bar and Shapes

Plate, Bar and Shapes

Rebar

Rebar Rebar Rebar

Page 80

12/01/2017

75 520 ASTM A 992/ A 992M - 03 50 345 4 65 450 ASTM A 996/ A 996M - 03 40 280 50 350 60 420

ACI Engineering

Plate, Bar and Shapes Rebar

Page 81

12/01/2017

6b. STEEL STRESSES NOT REFERENCED IN ASTMs 1000 psi =

6.895

MPa

Rule: Convert psi to MPa using the factor 0.006895; round to 2 significant digits (except for 5000 psi and above round up to the nearest 5 MPa) Example: 80,000 psi = 80000 x 0.006895 = 551.6 à use 550 MPa in.-lb Units Conversion to SI Equivalent SI [psi] Units [MPa] Units [MPa] 3,000 20.69 21 10,000 68.95 70 18,000 124.11 125 20,000 137.90 140 30,000 206.85 205 52,000 358.54 360 80,000 551.60 550 100,000 689.50 690 125,000 861.88 860 275,000 1896.13 1895

ACI Engineering

ACI 318M Units [MPa] 21 70 125 140 210 360 550 700 860 1900

Page 82

12/01/2017

7a. REINFORCING BAR SIZE Conversion of reinforcing steel bar sizes per ASTM: in.-lbs Units (SI) Units ASTM A 615/ A 615M–03 No. 3 No. 10 No. 4 No. 13 No. 5 No. 16 No. 6 No. 19 No. 7 No. 22 No. 8 No. 25 No. 9 No. 29 No. 10 No. 32 No. 11 No. 36 No. 14 No. 43 No. 18 No. 57

ACI 318M No. 10 No. 13 No. 16 No. 19 No. 22 No. 25 No. 29 No. 32 No. 36 No. 43 No. 57

7b. STEEL STRAND SIZE* Conversion of steel strand sizes per ASTM:

in.-lbs Units [in.]

0.250 0.313 0.375 0.438 0.500 0.600

SI Units [mm]

ASTM A 416/ A 416M–02 6.4 7.9 9.5 11.1 12.7 15.2

ASTM Designated Strand No. 6 8 9 11 13 15

ACI 318M 6 8 9 11 13 15

7c. REINFORCING BAR SIZE* (HIGH-STRENGTH) Conversion of steel strand sizes per ASTM: in.-lbs SI Units Units [in.] [mm] ASTM A 722/ A 722M – 98 Type I (Plain) Bar ----3/4 19 7/8 22 1 25 1-1/8 29 1-1/4 32 1-3/8 35

ACI Engineering

in.-lbs SI Units Units [in.] [mm] ASTM A 722/ A 722M – 98 Type II (Deformed) Bar 5/8 15 3/4 20 ----1 26 ----1-1/4 32 1-3/8 36 1-3/4 46 2-1/2 65

ACI 318M --19 22 25 29 32 35

Page 83

12/01/2017

*Where ACI 318 gives limits on general 'Tendon' sizes, an exact conversion of shall be made. (Example; 5/8" tendon will be converted to 16 mm)

ACI Engineering

Page 84

12/01/2017

8. STEEL WIRE REINFORCEMENT ASTM does not have a direct SI equivalent (ASTM sizes and dimensions not shaded); Table below shows in.-lb unit sizes with calculated SI dimensions and suggested SI sizes (shaded). Use the nearest SI size as appropriate. in.-lb Units

SI Units ASTM A 82–02 (W, MW) and ASTM A 496-02 (D, MD)

Size

Calculated

Calculated

Diameter [mm]

Area [mm2]

2.03

3.23

2.50

5.00

2.87

6.45

0.012

3.15

7.74

0.014

3.40

9.08

3.60

10.00

4.06

12.90

Diameter [in.]

Area [in.2]

W 0.5

0.080

0.005

D1

0.113

0.01

W 1.2

0.124

W 1.4

0.134

Size

MW 5

MW 10 W 2 or D 2

0.160 : 0.159

0.02

4.40

15.00

W 2.5

0.178

0.025

4.52

16.13

W 2.9

0.192

0.029

4.88

18.70

D3

0.195

0.03

4.95

19.35

5.00

20.00

5.36

22.58

MW 15

MW 20 W 3.5

0.211

0.035 MW 25 or MD 25

W 4 or D 4

0.226 : 0.225

0.04

0.239

0.045

0.252 : 0.250

0.05

W 5.5

0.265

0.055

W 6 or D 6

0.276

0.06

W 4.5

MW 30 or MD 30 W 5 or D 5

MW 35 or MD 35

D7

0.299

0.07

W 8 or D 8

0.319

0.08

D9

0.338

0.09

0.357 : 0.356

0.10

W 10 or D 10

5.60

25

5.74 6.07

25.81 29.03

6.20

30

6.40

32.26

6.70 6.73

35 35.48

7.01

38.71

MW 40 or MD 40

7.10

40

MW 45 or MD 45

7.60

45

MW 50 or MD 50

8.00

50

8.10

51.61

MW 55 or MD 55

8.40 8.59

55 58.96

MW 60 or MD 60

8.70

60

9.07

64.52

MW 65 or MD 65

9.10

65

MW 70 or MD 70

70 70.97

0.374

0.11

9.40 9.50

0.391 : 0.390

0.12

9.93

77.42

MW 80 or MD 80 D 13

0.406

0.13

10.10 10.31

80 83.87

MW 90 or MD 90

10.70

90

W 14 or D 14

0.422

0.14

D 15

0.437

0.15

10.72 11.10

90.32 96.77

W 16 or D 16

0.451

0.16

0.465

0.17

0.479 : 0.478

0.18

D 11 W 12 or D 12

MW 100 or MD 100 D 17 W 18 or D 18

MW 120 or MD 120 D 19 W 20 or D 20

0.491

0.19

0.505 : 0.504

0.20 MW 130 or MD 130

D 21

0.517

0.21

W 22 or D 22

0.529

0.22

D 23

0.541

0.23

ACI Engineering

Page 85

11.30

100

11.46 11.81

103.25 109.68

12.17

116.13

12.40 12.47

120 122.58

12.83

129.03

12.90 13.13

130 135.48

13.44 13.74

141.90 148.39

12/01/2017

W 24 or D 24

0.533 : 0.553

0.24

D 25

0.564

0.25

W 26 or D 26

0.575

0.26

D 27

0.586

0.27

W 28 or D 28

0.597

0.28

D 29

0.608

0.29

W 30 or D 30

0.618

0.3

W 31 or D 31

0.628

0.31

MW 200 or MD 200

W 45 or D 45

0.757

0.45

MW 290 or MD 290

ACI Engineering

Page 86

14.05 14.33

154.80 161.29

14.61 14.88

167.70 174.19

15.16 15.44

180.60 187.10

15.70

193.50

15.95

200

19.22

290

12/01/2017

and 318S

d. The values stated in each e other, without combining

s.

ACI Engineering

Page 87

12/01/2017

ts.

ACI Engineering

Page 88

12/01/2017

gits.

t digits.

its.

igits.

nt digits.

ACI Engineering

Page 89

12/01/2017

nt digits.

nd to three (3) significant

ACI Engineering

Page 90

12/01/2017

be "unit density."

ACI Engineering

Page 91

12/01/2017

nificant digits (except for - see shaded equivalents

t digits. use 200,000 MPa

ACI Engineering

Page 92

12/01/2017

4) and round to two (2)

ACI Engineering

Page 93

12/01/2017

S, WELDED WIRE ES & SHAPES

ld strengths)

ACI 318M Units [MPa] Nearest 5 MPa 250 280 290 315 350 380 385 420 485 520 1035 1620 1655 1725 1860

5 and concrete

5 and concrete

ACI Engineering

Page 94

12/01/2017

ACI 318M 15 20 --26 --32 36 46 65

ACI Engineering

Page 95

12/01/2017

e below shows in.-lb unit sizes appropriate.

ACI 318 M Suggested Size MW 5

MW 5 MW 10 MW 15 MW 15 MW 20

MW 25 MW25 or MD25 MW 30 MW 30 or MD 30 MW 35 MW 40 or MD 40 MD 45 MW 50 or MD 50 MD 60 MW 65 or MD 65

MD 70 MW 80 or MD 80 MD 80 MW 90 or MD 90 MD 100 MW 100 or MD 100 MD 100 MW 120 or MD 120 MD 120 MW 130 or MD 130 MD 130

ACI Engineering

Page 96

12/01/2017

MW 200 or MD 200 MW 290 or MD 290

ACI Engineering

Page 97

12/01/2017