Arquitectura de Von Neumann

INTRODUCCIÓN Con el tiempo el hombre va inventando cosas nuevas para ir mejorando su calidad de vida, a fin de hacer las

Views 171 Downloads 3 File size 131KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

INTRODUCCIÓN Con el tiempo el hombre va inventando cosas nuevas para ir mejorando su calidad de vida, a fin de hacer las cosas más eficientes. Así es como surgen las computadoras, un aparato electrónico que hoy en día nos facilita la vida. Realiza un sin fin de funciones que para un persona le llevaría horas e incluso días. Por citar un algo, seria el comparativo de las reglas de cálculo, con las calculadoras científicas, las primeras nos facilitaban la idea de hacer un montón de cálculos a mano, pero aun así, el tiempo era muy largo. Ahora con las calculadoras científicas, el tiempo se reduce a minutos y segundos. Por eso, las computadoras son una gran herramienta muy fascinante, además de útiles. Cada día van evolucionando y siendo mejores cada día, es una de las herramientas más usadas hoy en día y todo es por el núcleo, el alma de la computadora, que es el microprocesador. Este componente hace las millones de intrusiones necesarias para el hombre a una enorme velocidad.

Arquitectura de Von Neumann Es una familia de arquitecturas de computadoras que utilizan el mismo dispositivo de almacenamiento tanto para las instrucciones como para los datos a diferencia de la arquitectura Harvard, que que almacenaba las instrucciones en cintas perforadas y los datos en interruptores. Todas las computadoras constan principalmente de dos partes, la CPU que procesa los datos, y la memoria que guarda los datos. Cuando hablamos de memoria manejamos dos parámetros, los datos en sí, y el lugar donde se encuentran almacenados (odirección). Los dos son importantes para la CPU, pues muchas instrucciones frecuentes se traducen a algo así como "coge los datos de ésta dirección y añádelos a los datos de ésta otra dirección", sin saber en realidad qué es lo que contienen los datos. En los últimos años la velocidad de las CPUs ha aumentado mucho en comparación a la de las memorias con las que trabaja, así que se debe poner mucha atención en reducir el número de veces que se accede a ella para mantener el rendimiento. Si, por ejemplo, cada instrucción ejecutada en la CPU requiere un acceso a la memoria, no se gana nada incrementando la velocidad de la CPU - este problema es conocido como 'limitación de memoria'.

Nombre El término arquitectura de Von Neumann se acuñó a partir del memorando First Draft of a Report on the EDVAC (1945) escrito por el conocido matemático John von Neumann en el que se proponía el concepto de programa almacenado. Dicho documento fue redactado en vistas a la construcción del sucesor de la computadora ENIAC y su contenido fue desarrollado por John Presper Eckert, John William Mauchly, Arthur Burks y otros durante varios meses antes de que von Neumann redactara el borrador del informe. Es por ello que otros tecnólogos como David A. Patterson y John L. Hennessy promueven la sustitución de este término por el de arquitectura Eckert-Mauchly.

ENIAC Electronic Numerical Integrator AndComputer (Computador e Integrador Numérico Electrónico), utilizada por el Laboratorio de Investigación Balística del Ejército de los Estados Unidos Era totalmente digital, es decir, que ejecutaba sus procesos y operaciones mediante instrucciones en lenguaje máquina, a diferencia de otras máquinas computadoras contemporáneas de procesos analógicos.

EDVAC (Electronic Discrete Variable Automatic Computer) por sus siglas en inglés, fue una de las primeras computadoras electrónicas. A diferencia de la ENIAC, no era decimal, sino binaria y tuvo el primer programa diseñado para ser almacenado. Este diseño se convirtió en el estándar de arquitectura para la mayoría de las computadoras modernas. El diseño de la EDVAC es considerado un éxito en la historia de la informática. El diseño de la EDVAC fue desarrollado aún antes de que la ENIAC fuera puesta en marcha y tenía la intención de resolver muchos de los problemas encontrados en el diseño de la ENIAC. Así como la ENIAC, la EDVAC fue construida por el laboratorio de investigación de balística de Estados Unidos de la universidad de Pensilvana. A los diseñadores de la ENIAC, J. Presper Eckert y John William Mauchlyse les unió el gran matemático John von Neumann. La computadora fue diseñada para ser binaria con adición, sustracción y multiplicación automática y división programada. También poseería un verificador automático con capacidad para mil palabras (luego se estableció en 1,024). Físicamente la computadora fue construida de los siguientes componentes: Un lector-grabador de cinta magnética, una unidad de control con osciloscopio, una unidad para recibir instrucciones del control y la memoria y para dirigirlas a otras unidades, una unidad computacional para realizar operaciones aritméticas en un par de números a la vez y mandarlos a la memoria después de corroborarlo con otra

unidad idéntica, un cronómetro, y una unidad de memoria dual. Una preocupación importante fiabilidad y economía.

en

el

diseño

era

balancear

Lenguaje Máquina Los circuitos microprogramables son sistemas digitales, lo que significa que trabajan con dos únicos niveles de tensión. Dichos niveles, por abstracción, se simbolizan con el cero, 0, y el uno, 1, por eso el lenguaje de máquina sólo utiliza dichos signos. Esto permite el empleo de las teorías del álgebra booleana y del sistema binario en el diseño de este tipo de circuitos y en su programación.

Álgebra booleana También llamada Algebra de Boole, en informática y matemática, es una estructura algebraica que contiene las operaciones lógicas AND, OR y NOT, así como el conjunto de operaciones unión, intersección y complemento.

Sistema Binario En matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Los ordenadores trabajan internamente con dos niveles de voltaje, por lo que su

sistema de numeración natural (encendido 1, apagado 0).

es

el

sistema

binario

John von Neumann zu Margitta (28 de diciembre de 1903 - 8 de febrero de 1957) Fue un matemáticohúngaro-estadounidense, de ascendencia judía, que realizó contribuciones importantes en física cuántica, análisis funcional, teoría de conjuntos, informática, economía, análisis numérico, hidrodinámica (de explosiones), estadística y muchos otros campos de la matemática. Recibió su doctorado en matemáticas de la Universidad de Budapest a los 23 años. Fue pionero de la computadora digital moderna y de la aplicación de la teoría de operadores a lamecánica cuántica. Trabajó con Eckert y Mauchly en la Universidad de Pennsylvania, donde publicó un artículo acerca del almacenamiento de programas. El concepto de programa almacenado permitió la lectura de un programa dentro de la memoria de la computadora, y después la ejecución de las instrucciones del mismo sin tener que volverlas a escribir. La primera computadora en usar el citado concepto fue la llamada EDVAC (Electronic Discrete-Variable Automatic Computer, es decir 'computadora automática electrónica de variable discreta'), desarrollada por Von Neumann, Eckert y Mauchly. Los programas almacenados dieron a las computadoras flexibilidad y confiabilidad, haciéndolas más rápidas y menos sujetas a errores que los programas mecánicos. Von Neumann le dio su nombre a la arquitectura de von Neumann, utilizada en casi todos los computadores, por su publicación del concepto; aunque muchos piensan que este nombramiento ignora la contribución de J. Presper Eckert y John William Mauchly, quienes aportaron al concepto durante su trabajo en ENIAC. Virtualmente, cada computador personal, microcomputador, minicomputador y supercomputador es una máquina de von Neumann. También creó el campo de los autómatas celulares sin computadores, construyendo los primeros ejemplos de autómatas autorreplicables con lápiz y papel. El concepto de constructor universal fue presentado en su trabajopóstumo Teoría de los Autómatas Autorreproductivos. El término "máquina de von Neumann" se refiere alternativamente a las máquinas autorreplicativas. Von Neumann probó que el camino más efectivo para las operaciones mineras a gran escala, como minar una luna entera o un cinturón de asteroides, es a través del uso de máquinas auto-replicativas, para tomar ventaja del crecimiento exponencial de tales mecanismos. Adicional a su trabajo en arquitectura computacional, von Neumann es acreditado con al menos una contribución al estudio de algoritmos. Donald Knuth denomina a von Neumann

como el inventor, en 1945, del conocido algoritmomerge sort, en el cual la primera y segunda mitad de un array (vector) son cada una clasificadas recursivamente y luego fusionadas juntas.

PARTES DE LA ARQUITECTURA DE VON NEUMANN Los ordenadores con arquitectura Eckert-Mauchly constan de cinco partes:  La unidad aritmético-lógica (ALU)  La unidad de control  La memoria  Un dispositivo de entrada/salida  El bus de datos que proporciona un medio de transporte de los datos entre las distintas partes.

Un ordenador con arquitectura Eckert-Mauchly realiza o emula los siguientes pasos secuencialmente:  Enciende el ordenador y obtiene la siguiente instrucción desde la memoria en la dirección indicada por el contador de programa y la guarda en el registro de instrucción.

 Aumenta el contador de programa en la longitud de la instrucción para apuntar a la siguiente.  Decodifica la instrucción mediante la unidad de control. Ésta se encarga de coordinar el resto de componentes del ordenador para realizar una función determinada.  Se ejecuta la instrucción. Ésta puede cambiar el valor del contador del programa, permitiendo así operaciones repetitivas. El contador puede cambiar también cuando se cumpla una cierta condición aritmética, haciendo que el ordenador pueda 'tomar decisiones', que pueden alcanzar cualquier grado de complejidad, mediante la aritmética y lógica anteriores.  Vuelve al paso 2.

LENGUAJE DE PROGRAMACIÓN Con la aparición de las computadoras desaparecen las secuencias de posiciones de llaves mecánicas que debían desconectarse para obtener una acción determinada, una llave conectada era un 1 y una llave desconectada era un 0. Una sucesión de llaves en cualquiera de sus dos posiciones definía una secuencia de ceros y unos (por ejemplo: 0100011010011101...) que venía a representar una instrucción o un conjunto de instrucciones (programa) para el ordenador (o computador) en el que se estaba trabajando. A esta primera forma de especificar programas para una computadora se la denomina lenguaje máquina o código máquina. La necesidad de recordar secuencias de programación para las acciones usuales llevó a denominarlas con nombres fáciles de memorizar y asociar: ADD (sumar), SUB (restar), MUL (multiplicar), CALL (ejecutar subrutina), etc. A esta secuencia de posiciones se le denominó "instrucciones", y a este conjunto de instrucciones se le llamó lenguaje ensamblador. Posteriormente aparecieron diferentes lenguajes de programación, los cuales reciben su denominación porque tienen una estructura sintáctica similar a los lenguajes escritos por los humanos.

Concepto Un lenguaje de programación es un conjunto de símbolos y reglas sintácticas y semánticas que definen su estructura y el significado de sus elementos y expresiones, y utilizado para controlar el comportamiento físico y lógico de una máquina. Un lenguaje de programación permite a uno o más programadores especificar de manera precisa: sobre qué datos una computadora debe operar, cómo deben ser estos almacenados, transmitidos y qué acciones debe tomar bajo una variada gama de circunstancias. Todo esto, a través de un lenguaje que intenta estar relativamente próximo al lenguaje humano o natural, tal como sucede con el lenguaje Léxico. Una característica relevante de los lenguajes de programación es precisamente que más de un programador puedan tener un conjunto común de instrucciones que puedan ser comprendidas entre ellos para realizar la construcción del programa de forma colaborativa.

Los procesadores usados en las computadoras son capaces de entender y actuar según lo indican programas escritos en un lenguaje fijo llamado lenguaje de máquina. Todo programa escrito en otro lenguaje puede ser ejecutado de dos maneras:  Mediante un programa que va adaptando las instrucciones conforme son encontradas. A este proceso se lo llama interpretar y a los programas que lo hacen se los conoce como intérpretes.  Traduciendo este programa al programa equivalente escrito en lenguaje de máquina. A ese proceso se lo llama compilar y al traductor se lo conoce como un malhecho compilador.

Clasificación programación

de

los

lenguajes

de

Los lenguajes de programación se determinan según el nivel de abstracción, Según la forma de ejecución y Según el paradigma de programación que poseen cada uno de ellos y esos pueden ser:

Según su nivel de abstracción Lenguajes Maquina Están escritos en lenguajes directamente inteligibles por la maquina (computadora), ya que sus instrucciones son cadenas binarias (0 y 1). Da la posibilidad de cargar (transferir un programa a la memoria) sin necesidad de traducción posterior lo que supone una velocidad de ejecución superior, solo que con poca fiabilidad y dificultad de verificar y poner a punto los programas. Lenguajes de bajo nivel Los lenguajes de bajo nivel son lenguajes de programación que se acercan al funcionamiento de una computadora. El lenguaje de más bajo nivel es, por excelencia, el código máquina. A éste le sigue el lenguaje ensamblador, ya que al programar en ensamblador se trabajan con los registros e memoria de la computadora de forma directa.

Lenguajes de medio nivel Hay lenguajes de programación que son considerados por algunos expertos como lenguajes de medio nivel (como es el caso del lenguaje C) al tener ciertas características que los acercan a los lenguajes de bajo nivel pero teniendo, al mismo tiempo, ciertas cualidades que lo hacen un lenguaje más cercano al humano y, por tanto, de alto nivel. Lenguajes de alto nivel Artículo principal: Lenguaje de alto nivel Los lenguajes de alto nivel son normalmente fáciles de aprender porque están formados por elementos de lenguajes naturales, como el inglés. En BASIC, el lenguaje de alto nivel más conocido, los comandos como "IF CONTADOR = 10 THEN STOP" pueden utilizarse para pedir a la computadora que pare si CONTADOR es igual a 10. Por desgracia para muchas personas esta forma de trabajar es un poco frustrante, dado que a pesar de que las computadoras parecen comprender un lenguaje natural, lo hacen en realidad de una forma rígida y sistemática.

Según la forma de ejecución Lenguajes compilados Naturalmente, un programa que se escribe en un lenguaje de alto nivel también tiene que traducirse a un código que pueda utilizar la máquina. Los programas traductores que pueden realizar esta operación se llaman compiladores. Éstos, como los programas ensambladores avanzados, pueden generar muchas líneas de código de máquina por cada proposición del programa fuente. Se requiere una corrida de compilación antes de procesar los datos de un problema. Los compiladores son aquellos cuya función es traducir un programa escrito en un determinado lenguaje a un idioma que la computadora entienda (lenguaje máquina con código binario). Al usar un lenguaje compilado (como lo son los lenguajes del popular Visual Studio de Microsoft), el programa desarrollado nunca se ejecuta mientras haya errores, sino hasta que luego de haber compilado el programa, ya no aparecen errores en el código Lenguajes interpretados Se puede también utilizar una alternativa diferente de los compiladores para traducir lenguajes de alto nivel. En vez de traducir el programa fuente y grabar en forma permanente

el código objeto que se produce durante la corrida de compilación para utilizarlo en una corrida de producción futura, el programador sólo carga el programa fuente en la computadora junto con los datos que se van a procesar. A continuación, un programa intérprete, almacenado en el sistema operativo del disco, o incluido de manera permanente dentro de la máquina, convierte cada proposición del programa fuente en lenguaje de máquina conforme vaya siendo necesario durante el proceso de los datos. No se graba el código objeto para utilizarlo posteriormente. La siguiente vez que se utilice una instrucción, se le debe interpretar otra vez y traducir a lenguaje máquina. Por ejemplo, durante el procesamiento repetitivo de los pasos de un ciclo, cada instrucción del ciclo tendrá que volver a ser interpretado cada vez que se ejecute el ciclo, lo cual hace que el programa sea más lento en tiempo de ejecución (porque se va revisando el código en tiempo de ejecución) pero más rápido en tiempo de diseño (porque no se tiene que estar compilando a cada momento el código completo). El intérprete elimina la necesidad de realizar una corrida de compilación después de cada modificación del programa cuando se quiere agregar funciones o corregir errores; pero es obvio que un programa objeto compilado con antelación deberá ejecutarse con mucha mayor rapidez que uno que se debe interpretar a cada paso durante una corrida de producción

Según el paradigma de programación Un paradigma de programación representa un enfoque particular o filosofía para la construcción del software. No es mejor uno que otro, sino que cada uno tiene ventajas y desventajas. Dependiendo de la situación un paradigma resulta más apropiado que otro. Atendiendo al paradigma de clasificar los lenguajes en :

programación,

se

pueden

 El paradigma imperativo o por procedimientos es considerado el más común y está representado, por ejemplo, por el C o por BASIC.  El paradigma funcional está representado por la familia de lenguajes LISP (en particular Scheme), ML o Haskell.  El paradigma lógico, un ejemplo es PROLOG.  El paradigma orientado a objetos. Un lenguaje completamente orientado a objetos es Smalltalk. 

Si bien puede seleccionarse la forma pura de estos paradigmas al momento de programar, en la práctica es habitual que se mezclen, dando lugar a la programación multiparadigma. Actualmente el paradigma de programación más usado debido a múltiples ventajas respecto a sus anteriores, es la programación orientada a objetos.

Lenguaje ensamblador El lenguaje ensamblador es un tipo de lenguaje de bajo nivel utilizado para escribir programas informáticos, y constituye la representación más directa del código máquina específico para cada arquitectura de computadoras legible por un programador. Fue usado ampliamente en el pasado para el desarrollo de software, pero actualmente sólo se utiliza en contadas ocasiones, especialmente cuando se requiere la manipulación directa del hardware o se pretenden rendimientos inusuales de los equipos.

Características  Programar

en

aprender,

lenguaje

entender,

ensamblador leer,

es

difícil

de

escribir,

depurar

y

mantener, por eso surgió la necesidad de los lenguajes compilados.  A

pesar

de

compilación,

perder

rendimiento

en

actualidad

la

en la

un

proceso

mayoría

de

de las

computadoras son suficientemente rápidas.

 El lenguaje ensamblador no es portable.  Programar en lenguaje ensamblador lleva mucho tiempo.

 Los

programas

hechos

en

lenguaje

ensamblador

son

generalmente más rápidos. Al programar cuidadosamente en lenguaje ensamblador se pueden crear programas de 5 a

10

nivel.

veces más

rápidos que

con

lenguajes

de

alto

 Los

programas

hechos

en

lenguaje

ensamblador

generalmente ocupan menos espacio. Un buen programa en lenguaje ensamblador puede ocupar casi la mitad de espacio que su contraparte en lenguaje de alto nivel.

 Con el lenguaje ensamblador se pueden crear segmentos de código imposibles de formar en un lenguaje de alto nivel.

Ventajas y desventajas Lenguaje Ensamblador

del

El proceso de evolución trajo consigo algunas desventajas, que ahora veremos como las ventajas de usar el Lenguaje Ensamblador, respecto a un lenguaje de alto nivel:  Velocidad  Eficiencia de tamaño  Flexibilidad

Velocidad El proceso de traducción que realizan los intérpretes, implica un proceso de cómputo adicional al que el programador quiere realizar. Por ello, nos encontraremos con que un intérprete es siempre más lento que realizar la misma acción en Lenguaje Ensamblador, simplemente porque tiene el costo adicional de estar traduciendo el programa, cada vez que lo ejecutamos. De ahí nacieron los compiladores, que son mucho más rápidos que los intérpretes, pues hacen la traducción una vez y dejan el código objeto, que ya es Lenguaje de Máquina, y se puede ejecutar muy rápidamente. Aunque el proceso de traducción es más complejo y costoso que el de ensamblar un programa, normalmente podemos despreciarlo, contra las ventajas de codificar el programa más rápidamente. Sin embargo, la mayor parte de las veces, el código generado por un compilador es menos eficiente que el código equivalente que un programador escribiría. La razón es que el compilador no tiene tanta inteligencia, y requiere ser capaz de crear código genérico, que sirva tanto para un programa como para otro; en cambio, un programador humano puede aprovechar las características específicas del problema, reduciendo la generalidad pero al mismo tiempo, no desperdicia ninguna instrucción, no hace ningún proceso que no sea necesario. Para darnos una idea, en una PC, y suponiendo que todos son buenos programadores, un programa para ordenar una lista tardará cerca de 20 veces más en Visual Basic (un intérprete), y 2 veces más en C (un compilador), que el equivalente en Ensamblador.

Por ello, cuando es crítica la velocidad del programa, Ensamblador se vuelve un candidato lógico como lenguaje. Ahora bien, esto no es un absoluto; un programa bien hecho en C puede ser muchas veces más rápido que un programa mal hecho en Ensamblador; sigue siendo sumamente importante la elección apropiada de algoritmos y estructuras de datos. Por ello, se recomienda buscar optimizar primero estos aspectos, en el lenguaje que se desee, y solamente usar Ensamblador cuando se requiere más optimización y no se puede lograr por estos medios.

Eficiencia de Tamaño Por las mismas razones que vimos en el aspecto de velocidad, los compiladores e intérpretes generan más código máquina del necesario; por ello, el programa ejecutable crece. Así, cuando es importante reducir el tamaño del ejecutable, mejorando el uso de la memoria y teniendo también beneficios en velocidad, puede convenir usar el lenguaje Ensamblador. Entre los programas que es crítico el uso mínimo de memoria, tenemos a los virus y manejadores de dispositivos (drivers). Muchos de ellos, por supuesto, están escritos en lenguaje Ensamblador.

Flexibilidad Las razones anteriores son cuestión de grado: podemos hacer las cosas en otro lenguaje, pero queremos hacerlas más eficientemente. Pero todos los lenguajes de alto nivel tienen limitantes en el control; al hacer abstracciones, limitan su propia capacidad. Es decir, existen tareas que la máquina puede hacer, pero que un lenguaje de alto nivel no permite. Por ejemplo, en Visual Basic no es posible cambiar la resolución del monitor a medio programa; es una limitante, impuesta por la abstracción del GUI Windows. En cambio, en ensamblador es sumamente sencillo, pues tenemos el acceso directo al hardware del monitor.

Por otro lado, al ser un lenguaje más primitivo, el Ensamblador tiene ciertas desventajas respecto a los lenguajes de alto nivel:    

Tiempo de programación Programas fuente grandes Peligro de afectar recursos inesperadamente Falta de portabilidad

Tiempo de programación Al ser de bajo nivel, el Lenguaje Ensamblador requiere más instrucciones para realizar el mismo proceso, en comparación con un lenguaje de alto nivel. Por otro lado, requiere de más cuidado por parte del programador, pues es propenso a que los errores de lógica se reflejen más fuertemente en la ejecución. Por todo esto, es más lento el desarrollo de programas comparables en Lenguaje Ensamblador que en un lenguaje de alto nivel, pues el programador goza de una menor abstracción.

Programas fuente grande Por las mismas razones que aumenta el tiempo, crecen los programas fuentes; simplemente, requerimos más instrucciones primitivas para describir procesos equivalentes. Esto es una desventaja porque dificulta el mantenimiento de los programas, y nuevamente reduce la productividad de los programadores.

Peligro de afectar recursos inesperadamente Tenemos la ventaja de que todo lo que se puede hacer en la máquina, se puede hacer con el Lenguaje Ensamblador (flexibilidad). El problema es que todo error que podamos cometer, o todo riesgo que podamos tener, podemos tenerlo también en este Lenguaje. Dicho de otra forma, tener mucho poder es útil pero también es peligroso. En la vida práctica, afortunadamente no ocurre mucho; sin embargo, al programar en este lenguaje verán que es mucho más común que la máquina se "cuelgue", "bloquee" o "se le vaya el avión"; y que se reinicialize. ¿Por qué?, porque con este lenguaje es perfectamente posible (y sencillo) realizar secuencias de instrucciones inválidas, que normalmente no aparecen al usar un lenguaje de alto nivel. En ciertos casos extremos, puede llegarse a sobrescribir información del CMOS de la máquina (no he visto efectos más riesgosos); pero, si no la conservamos, esto puede causar que dejemos de "ver" el disco duro, junto con toda su información.

Falta de portabilidad Como ya se mencionó, existe un lenguaje ensamblador para cada máquina; por ello, evidentemente no es una selección apropiada de lenguaje cuando deseamos codificar en una máquina y luego llevar los programas a otros sistemas operativos o modelos de computadoras. Si bien esto es un problema general a todos los lenguajes, es mucho más notorio en ensamblador: yo puedo reutilizar un 90% o más del código que desarrollo en "C", en una PC, al llevarlo a una RS/6000 con UNIX, y lo mismo si después lo llevo a una Macintosh, siempre y cuando esté bien hecho y siga los estándares de "C", y los principios de la programación estructurada. En cambio, si escribimos el programa en Ensamblador de la PC, por bien que lo desarrollemos y muchos estándares que sigamos, tendremos prácticamente que reescribir el 100 % del código al llevarlo a UNIX, y otra vez lo mismo al llevarlo a Mac.