Aplicaciones en La Ingenieria Civil

aplicaciones 1ra unidadDescripción completa

Views 213 Downloads 2 File size 491KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Las ecuaciones diferenciales son muy interesantes en cuanto a la posibilidad que presentan para indagar sobre variedad de problemas de las ciencias físicas, biológicas y sociales. A partir de la formulación matemática de distintas situaciones se describen procesos reales aproximados. Dentro de los diversos campos de acción de la ingeniería civil, una de las múltiples aplicaciones de ecuaciones diferenciales está relacionada con el estudio de las flexiones, un ejemplo es: 

FLEXION DE UNA VIGA EN VOLADIZO PARA PEQUEÑAS FLEXIONES:

Una viga o una barra delgada son sólidos homogéneos e isótropos cuya longitud es grande comparada con las dimensiones de su sección trasversal. Cuando una viga flexiona debido a las fuerzas exteriores que se aplican, existen algunas partes de la viga que se acortan y hay otras zonas que se alargan. Pero hay una línea, denominada eje neutro, que no se acorta ni se alarga. Este eje se encuentra en el centro de gravedad de la sección trasversal. Se usará una barra empotrada de un determinado material, de longitud L, de anchura a y de espesor b. Se fijará uno de sus extremos y se aplicará una fuerza en su extremo libre. Mediremos el desplazamiento del extremo libre y(L) o flecha en función de la fuerza aplicada F, comprobando su relación de proporcionalidad, mientras que la flexión de la barra sea pequeña. A continuación, examinaremos la teoría de la flexión de una viga en voladizo en detalle, calculando el desplazamiento de su extremo libre cuando se aplica una fuerza en dicho extremo que produce una flexión considerable. Este ejemplo, nos permite practicar con procedimientos numéricos aplicados al  

Cálculo de la raíz de una ecuación. Integral definida.

Supongamos que  

La barra tiene una longitud L mucho mayor que las dimensiones de su sección trasversal, y que la deformación debida a su propio peso es despreciable. Que la sección de la barra no cambia cuando se dobla. Cuando el espesor de la barra es pequeño comparado con el radio de curvatura, la sección trasversal cambia muy poco.

En estas condiciones es aplicable la ecuación de Euler-Bernoulli que relaciona el momento flector M de la fuerza aplicada y el radio de curvatura ρ de la barra deformada

El radio de curvatura de una función y(x) es

2

Para pequeñas pendientes (dy/dx) ≈0

Si despreciamos el peso de la propia barra, el momento de la fuerza F aplicada en el extremo libre, respecto del punto P (x, y) es M=F(xf-x)≈F(L-x)

Que integramos dos veces con las siguientes condiciones iníciales x=0, y=0, dy/dx=0.

El desplazamiento yf del extremo libre x=L es proporcional a la fuerza F aplicada

 

Y es el módulo de Young del material I se denomina momento de inercia de la sección trasversal respecto de la fibra neutra

Se considera que la aproximación de pequeñas flexiones: el desplazamiento y del extremo libre de la barra, es proporcional a la fuerza F aplicada, produce resultados aceptables hasta un cierto valor del parámetro a dimensional α