Aplicaciones de Transformada de Laplace

UNIVERSIDADAD NACIONAL DEL CENTRO DEL PERU FACULTAD DE INGENIERIA METALURGICA Y DE MATERIALES CURSO: CONTROL Y AUTOMATIZ

Views 148 Downloads 4 File size 720KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

UNIVERSIDADAD NACIONAL DEL CENTRO DEL PERU FACULTAD DE INGENIERIA METALURGICA Y DE MATERIALES CURSO: CONTROL Y AUTOMATIZACION DE PROCESOS TEMA: APLICACIONES REALES DE LA TRANSFORMADA DE LAPLACE PROFESOR : Ing. CÉSAR BASURTO C. HUANCAYO - PERÚ

CONTROL DE PROCESOS • ¿Qué es un sistema de control ? – En nuestra vida diaria existen numerosos objetivos que necesitan cumplirse. • En el ámbito doméstico – Controlar la temperatura y humedad de casas y edificios • En transportación – Controlar que un auto o avión se muevan de un lugar a otro en forma segura y exacta • En la industria – Controlar un sinnúmero de variables en los procesos de manufactura

CONTROL DE PROCESOS • En años recientes, los sistemas de control han asumido un papel cada vez más importante en el desarrollo y avance de la civilización moderna y la tecnología. • Los sistemas de control se encuentran en gran cantidad en todos los sectores de la industria: – tales como control de calidad de los productos manufacturados, líneas de ensamble automático, control de máquinasherramienta, tecnología espacial y sistemas de armas, control por computadora, sistemas de transporte, sistemas de potencia, robótica y muchos otros

EJEMPLOS DE PROCESOS AUTOMATIZADOS • Un moderno avión comercial

EJEMPLOS DE PROCESOS AUTOMATIZADOS • Satélites

EJEMPLOS DE PROCESOS AUTOMATIZADOS • Control de la concentración de un producto en un reactor químico

EJEMPLOS DE PROCESOS AUTOMATIZADOS • Control en automóvil

• • • • • • • • •

¿ POR QUE ES NECESARIO CONTROLAR UN PROCESO ? Incremento de la productividad Alto costo de mano de obra Seguridad Alto costo de materiales Mejorar la calidad Reducción de tiempo de manufactura Reducción de inventario en proceso Certificación (mercados internacionales) Protección del medio ambiente (desarrollo sustentable)

CONTROL DE PROCESOS • El campo de aplicación de los sistemas de control es muy amplia. • Y una herramienta que se utiliza en el diseño de control clásico es precisamente:

LA TRANSFORMADA DE LAPLACE

¿POR QUÉ TRANSFORMADA DE LAPLACE? • En el estudio de los procesos es necesario considerar modelos dinámicos, es decir, modelos de comportamiento variable respecto al tiempo. • Esto trae como consecuencia el uso de ecuaciones diferenciales respecto al tiempo para representar matemáticamente el comportamiento de un proceso.

¿POR QUÉ TRANSFORMADA DE LAPLACE? • El comportamiento dinámico de los procesos en la naturaleza puede representarse de manera aproximada por el siguiente modelo general de comportamiento dinámico lineal:

• La transformada de Laplace es una herramienta matemática muy útil para el análisis de sistemas dinámicos lineales.

¿POR QUÉ TRANSFORMADA DE LAPLACE? • De hecho, la transformada de Laplace permite resolver ecuaciones diferenciales lineales mediante la transformación en ecuaciones algebraicas con lo cual se facilita su estudio. • Una vez que se ha estudiado el comportamiento de los sistemas dinámicos, se puede proceder a diseñar y analizar los sistemas de control de manera simple.

EL PROCESO DE DISEÑO DEL SISTEMA DE CONTROL

• Para poder diseñar un sistema de control automático, se requiere – Conocer el proceso que se desea controlar, es decir, conocer la ecuación diferencial que describe su comportamiento, utilizando las leyes físicas, químicas y/o eléctricas. – A esta ecuación diferencial se le llama modelo del proceso. – Una vez que se tiene el modelo, se puede diseñar el controlador.

Conociendo el proceso … • MODELACIÓN MATEMÁTICA Suspensión de un automóvil f(t)

Fuerza de entrada

z(t) m Desplazamiento, salida del sistema

k

b

 F  ma dz(t ) d 2 z (t ) f (t )  kz (t )  b m dt dt 2

EL ROL DE LA TRANSFORMADA DE LAPLACE Convirtiendo ecuaciones. diferenciales a ecuaciones. algebraicas

Suspensión de un automóvil

dz (t ) d 2 z (t ) f (t )  kz(t )  b m dt dt 2 Aplicando la transformada de Laplace a cada término (considerando condiciones iniciales igual a cero) F ( s )  kZ ( s )  bsZ ( s )  ms 2 Z ( s )



F ( s )  Z ( s ) ms 2  bs  k Z ( s) 1  F ( s ) ms 2  bs  k



Función de transferencia

Conociendo el proceso… • MODELACIÓN MATEMÁTICA Nivel en un tanque Flujo que entra – Flujo que sale = Acumulamiento qi(t) Flujo de entrada h(t)

A (área del tanque)

qo(t) R (resistencia de la válvula)

Flujo de salida

dh (t ) qi (t )  qo (t )  A dt h(t ) R qo (t ) 1 dh (t ) qi (t )  h(t )  A R dt

EL ROL DE LA TRANSFORMADA DE LAPLACE Convirtiendo ecuaciones diferenciales a ecuaciones. algebraicas

Nivel en un tanque 1 dh(t ) qi (t )  h(t )  A R dt Aplicando la transformada de Laplace 1 Qi ( s)  H ( s )  AsH ( s ) R 1 Qi ( s)  H ( s )( As  ) R H ( s) 1 R   Qi ( s ) As  1 ARs  1 R

Función de transferencia

Conociendo el proceso… • MODELACIÓN MATEMÁTICA Circuito eléctrico



di(t ) 1 ei (t )  L  Ri(t )  i (t )dt dt C 1 i (t )dt  eo (t ) C



El rol de la transformada de Laplace Convirtiendo ecuaciones diferenciales a ecuaciones. algebraicas

Circuito eléctrico



di (t ) 1 ei (t )  L  Ri (t )  i (t )dt dt C Aplicando la transformada de Laplace



1 i (t )dt  eo (t ) C

1 1 E i ( s )  LsI ( s )  RI ( s )  I ( s) I ( s )  Eo ( s ) Cs Cs Combinando las ecuaciones (despejand o para I(s)) E i ( s )  LsCsEo ( s )  RCsEo ( s ) 





1 CsEo (s) Cs

E i ( s )  Eo ( s ) LCs 2  RCs  1 Eo ( s ) 1  Ei ( s ) LCs 2  RCs  1

Función de transferencia

LA FUNCIÓN DE TRANSFERENCIA • Representa el comportamiento dinámico del proceso • Nos indica como cambia la salida de un proceso ante un cambio en la entrada Y ( s) Cambio en la salida del proceso  X ( s ) Cambio en la entrada del proceso Y ( s ) Respuesta del proceso  X ( s) Función forzante

• Diagrama de bloques Entrada del proceso

Salida del proceso

Proceso

(función forzante o

(respuesta al

estímulo)

estímulo)

La función de transferencia Diagrama de bloques • Suspensión de un automóvil Entrada

1

Salida

(Bache)

ms  bs  k

(Desplazamiento del coche)

2

-3

3

x 10

10

8

2

6

1 4

0

2

0

-1 -2

-2

-4

-6

-3 -8

-10

-4 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

0.5

1

1.5

2

2.5

3 4

x 10

La función de transferencia Diagrama de bloques • Nivel en un tanque

R ARs  1

Qi(s) (Aumento del flujo de entrada repentinamente) 20

H(s) (Altura del nivel en el tanque

25

20

15

15 10

10 5 5

0 0

-5

-10

-5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

-10

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

La función de transferencia Diagrama de bloques • Circuito eléctrico Ei(s)

1

Eo(s)

(Voltaje de entrada)

LCs 2  RCs  1

(Voltaje de salida)

20

10

18

9

16

8

14

7

12

6

10

5

8

4

6

3

4

2

2

1

0

0

0.5

1

1.5

2

2.5

3

3.5

4 4

x 10

0

0

0.5

1

1.5

2

2.5

3

3.5

4 4

x 10

Propiedades y teoremas de la transformada de Laplace más utilizados en al ámbito de control

• TEOREMA DE TRASLACIÓN DE UNA FUNCIÓN (Nos indica cuando el proceso tiene un retraso en el tiempo)

• TEOREMA DE DIFERENCIACIÓN REAL (Es uno de los más utilizados para transformar las ecuaciones diferenciales)

Propiedades y teoremas de la transformada de Laplace más utilizados en al ámbito de control

• TEOREMA DE VALOR FINAL (Nos indica el valor en el cual se estabilizará la respuesta)

• TEOREMA DE VALOR INICIAL (Nos indica las condiciones iniciales)

Ejemplo aplicado: Intercambiador de calor •

Se tiene un intercambiador de calor 1-1, de tubos y coraza. En condiciones estables, este intercambiador calienta 224 gal/min de agua de 80°F a 185°F por dentro de tubos mediante un vapor saturado a 150 psia.



En un instante dado, la temperatura del vapor y el flujo de agua cambian, produciéndose una perturbación en el intercambiador.

Ejemplo aplicado: Intercambiador de calor •





a) Obtenga la función de transferencia del cambio de la temperatura de salida del agua con respecto a un cambio en la temperatura del vapor y un cambio en el flujo de agua, suponiendo que la temperatura de entrada del agua al intercambiador se mantiene constante en 80°F. b) Determine el valor final de la temperatura de salida del agua ante un cambio tipo escalón de +20°F en la temperatura del vapor, y un cambio de +10 gal/min en el flujo de agua. c) Grafique la variación de la temperatura de salida del agua con respecto al tiempo.

Ejemplo aplicado: Intercambiador de calor •

Ecuación diferencial que modela el intercambiador de calor

Intercambiador de calor •

Ecuación diferencial

• •

Donde: Ud0: Coeficiente global de transferencia de calor referido al diámetro exterior (BTU/h °F ft2) ATC0: Área de transferencia de calor referida al diámetro exterior (ft2) Cp : Capacidad calorífica (BTU/lb °F) tv : Temperatura del vapor (°F) te : Temperatura del agua a la entrada (°F) ts : Temperatura del agua a la salida (°F) (te+ ts) / 2 :Temperatura del agua dentro de tubos (°F) tref : Temperatura de referencia (°F) w : Flujo de agua (lb/h) m : Cantidad de agua dentro de tubos (lb) : Valores en condiciones estables tv, ts, tw Tv , Ts , W Variables de desviación

• • • • • • • • • • • •

Intercambiador de calor • Linealizando 1 2

• Evaluando en condiciones iniciales estables 3 • Restando (2) de (3)

Intercambiador de calor • Utilizando variables de desviación

• Aplicando la transformada con Laplace

Intercambiador de calor • Simplificando

• Datos físicos – – – – – – – –

Largo del intercambiador = 9 ft Diámetro de coraza = 17 ¼’’ Flujo = 224 gal/min Temperatura de entrada =80°F Temperatura de salida = 185°F Presión de vapor =150psia. Número de tubos= 112 Diámetro exterior de tubo = ¾ ’’ de diámetro y BWG 16, disposición cuadrada a 90°, con un claro entre tubos de 0.63’’. – Conductividad térmica de los tubos = 26 BTU/hft°F, – Factor de obstrucción interno = 0.0012 hft2°F/BTU; externo = 0.001 hft2°F/BTU – Coeficiente global de transferencia de calor = 650 BTU/hft2°F

Intercambiador de calor • Calculando las constantes

Intercambiador de calor • Función de transferencia

• Determine el valor final de la temperatura de salida del agua ante un cambio tipo escalón de +20°F en la temperatura del vapor, y un cambio de +10 gal/min en el flujo de agua.

0

0

Intercambiador de calor 20

20

18

18

16

16

240 14

234 14

12

12

10

10

8

8

6

6

224

220 4

4

2

2 0

0

0

5

10

15

20

25

30

35

40

45

0

5

10

15

20

25

30

35

40

45

50

50

Flujo de agua entrada

Temp de Vapor entrada

Salida de vapor

Salida de Agua °T 40

35

30 188.85

25

20

15

18510

5

0

0

5

10

15

20

25

30

35

40

45

50

La respuesta del proceso en el tiempo Transformada Inversa De Laplace

K1 K2 Ts ( s)  Tv ( s)  W (s) 1s  1  2s  1 Ts ( s) 

20 Tv ( s)  s

5007 .25 W (s)  s

K1  20  K 2  5007 .25      1s  1  s   2 s  1  s 

0.381883  20   7.573947 x10 4  5007 .25  7.63766 3.792464 Ts ( s)         1.712995 s  1  s  1.712995 s  1  s  1.712995 s  1s 1.712995 s  1s Expansión en fracciones parciales a1 a b1 b 4.458658 2.213928 Ts ( s)     2  2 s  0.583772 s s  0.583772 s s  0.583772  s s  0.583772  s

La respuesta del proceso en el tiempo Transformada Inversa De Laplace

 4.458658  4.458658  a1  s  0.583772    7.6376   s  0 . 583772 s  0 . 583772   s 0.583772  4.458658  4.458658  a2  s    7.6376  s  0.583772 s  s 0 0.583772  2.213928  2.213928  b1  s  0.583772    3.792453   s  0 . 583772 s  0 . 583772   s 0.583772  2.213928  2.213928  b2  s    3.792453 0.583772  s  0.583772 s  s 0 7.637670 7.637670 3.792453 3.792453 Ts ( s )      s  0.583772  s  0.583772  s s Ts (t )  7.637670 e 0.583772 t  7.637670  3.792453 e 0.583772 t  3.792453  Tss









Ts (t )  7.637670 1  e 0.583772 t  3.792453 1  e 0.583772 t  Tss

(Tss  temperatur a inicial de salida)

EL SISTEMA DE CONTROL AUTOMÁTICO Temperatura del agua de salida – Lazo abierto (sin control) Tv(s) (Aumento de la temperatura de vapor a la entrada )

K1 1s  1

Ts(s) (Aumento en la temperatura de agua a la salida)

Temperatura del agua de salida – Lazo cerrado (con control) Valor desead o

+ -

Controlador Acción de control

0.3819 1.713 s  1

Variable controlada

La ecuación del controlador • ECUACIÓN DIFERENCIAL DE UN CONTROLADOR PID  1 de(t )  m(t )  Kc e(t )  e(t )dt   d   dt i   Aplicando la transformada de Laplace



  1 M(s)  Kc E(s)  E ( s )   d sE ( s ) is     M (s) 1  Kc E(s)  E ( s )   d sE ( s ) E (s) is     M (s) 1  Kc 1    d s E (s)  is 

Donde E(s) es la diferencia entre el valor deseado y el valor medido

El sistema de control automático Temperatura de agua a la salida – Lazo cerrado (con control) +

Valor deseado

Kc1  1s   d s  i   Acción

-

Variable controlada

0.3819 1.713 s  1

de control

6

6

5

5 X: 0.683 Y: 4.91

4

4

3

3

2

2

1

1

0 -1

0

1

2

3

4

5

0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

La respuesta del sistema de control de nivel • Comparación del sistema en lazo abierto (sin control) y en lazo cerrado (con control) 6

5 X: 0.683 Y: 4.91

Con control

X: 6.873 Y: 4.91

4

Sin control 3

2

1

0

0

2

4

6

8

10

12

¿ Preguntas ?

TAREA DOMICILIARIA GRUPAL • Un sistema de suspensión simplificada de un automóvil se puede representar por la figura siguiente: • Las ecuaciones diferenciales que modelan al sistema están dadas por:

d 2 x(t )  dy(t ) dx(t )  m1  k 2  y (t )  x(t )   b    k1 u (t )  x(t )  2 dt dt   dt d 2 y (t )  dy(t ) dx(t )  m2  k 2  y (t )  x(t )   b   2 dt dt   dt

Tarea domiciliaria Y (s) U (s)

a) Obtén la función de transferencia (Tip: transforma ambas ecuaciones, despeja X(s) en ambas e iguálalas, finalmente reacomoda para dejar Y(s)/U(s) ) b) Se sabe que b=1300 Ns/cm, k1=2000 KN/cm, k2=50KN/cm, m2=1850 kg y m1 = 20 kg. Si se le aplica una cambio escalón unitario en la entrada de fuerza, obtén la expresión en el tiempo, es decir, la transformada inversa de dicha función. c) Utilizando cualquier paquete de graficado, excel, matlab, mathematica, etc. Grafica la respuesta del desplazamiento en el tiempo para t = [0,20]