9788522116348_Manual_Solucoes_ingles.pdf

Solutions Manual to Accompany Introduction to Hydraulics and Hydrology with Applications for Stormwater Management Four

Views 45 Downloads 3 File size 35MB

Report DMCA / Copyright

DOWNLOAD FILE

Citation preview

Solutions Manual to Accompany

Introduction to Hydraulics and Hydrology with Applications for Stormwater Management Fourth Edition

John E. Gribbin, P.E. Essex County College

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

92690_fm_ptg01_pi-iv.indd 1

11/12/12 10:57 AM

Solutions Manual to Accompany Introduction to Hydraulics and Hydrology with Applications for Stormwater Management, 4E John E. Gribbin Vice President, Editorial: Dave Garza Director of Learning Solutions: Sandy Clark Senior Acquisitions Editor: James DeVoe Managing Editor: Larry Main Senior Product Manager: John Fisher Editorial Assistant: Aviva Ariel Vice President, Marketing: Jennifer Ann Baker Marketing Director: Deborah Yarnell

© 2014, 2007 Delmar, Cengage Learning ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher. For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706 For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be e-mailed to [email protected]

Sr. Market Development Manager: Erin Brennan Senior Brand Manager: Kristin McNary

ISBN-13: 978-1-133-69269-0

Production Director: Wendy A. Troeger

ISBN-10: 1-133-69269-9

Production Manager: Mark Bernard Content Project Manager: David S. Barnes Production Technology Assistant: Emily Gross Art Director: Bethany Casey Technology Project Manager: Joe Pliss

Delmar 5 Maxwell Drive Clifton Park, NY 12065-2919 USA Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region Cengage Learning products are represented in Canada by Nelson ­Education, Ltd. To learn more about Delmar, visit www.cengage.com/delmar Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com Notice to the Reader Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the readers’ use of, or reliance upon, this material.

92690_fm_ptg01_pi-iv.indd 2

12/12/12 10:50 AM

Contents Solutions: Chapter   1 - Hydraulics and Hydrology in Engineering...............................................1 Chapter   2 - Fluid Mechanics.......................................................................................4 Chapter   3 - Fundamental Hydrostatics ......................................................................6 Chapter   4 - Fundamental Hydrodynamics ...............................................................23 Chapter   5 - Hydraulic Devices .................................................................................39 Chapter   6 - Open Channel Hydraulics . ...................................................................51 Chapter   7 - Uniform Flow in Channels ....................................................................58 Chapter   8 - Varied Flow in Channels .......................................................................67 Chapter   9 - Culvert Hydraulics . ..............................................................................75 Chapter 10 - Fundamental Hydrology .......................................................................81 Chapter 11 - Runoff Calculations...............................................................................97 Chapter 12 - Storm Sewer Design.............................................................................126 Chapter 13 - Culvert Design ....................................................................................140 Chapter 14 - Stormwater Detention..........................................................................150 Chapter 15 - Detention Design.................................................................................156

iii

92690_fm_ptg01_pi-iv.indd 3

11/12/12 10:57 AM

92690_fm_ptg01_pi-iv.indd 4

11/12/12 10:57 AM

C h a p t e r

1 Hydraulics and Hydrology in Engineering

1. A 5 A5

pd2 4 p(3.04)2 4

A 5 7.26 ft2   (3 sig. figures)    (Answer) 2. 1.0 mi 3

5280 ft 5 5280 ft 1.0 mile

5 (L)(W)(T) V V 5 (5280)(22.0)(.650) V 5 75,504 ft3 V 5 2796 yd3 V 5 2800 yd3   (2 sig. figures)    (Answer) 3. 6 1/2s 5 13/2s   (2 sig. figures) 13/2 in 3

1 ft 5 13/24 ft 5 0.5417 ft 12 in

Depth 5 0.54 ft   (2 sig. figures)    (Answer) 4. V 5 V 5

pd 2L 4

p(1.30)2(60) 4

V 5 79.64 ft3 V 5 80 ft3   (2 sig. figures)    (Answer) 1

92690_ch1_ptg01_p001-003.indd 1

11/12/12 8:26 AM

2      CHAPTER 1 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

5. 12.25 151 25.0 188.25 Answer is 188 ft. 6. D 5 36 in 3

.02540 m 5 0.9144 m 1 in

A 5 pD2/4 5 p(.9144)2/4 A 5 0.66 m2   (2 sig. figures)   (Answer) 7. a)  A 5 (45.00)(125.00) 5 5625 ft2   (4 sig. figures) 1 acre 5 0.1291 acres   (4 sig. figures) b) A 5 5625 ft2 3 43560 ft2 .0929 2 c) A 5 5625 ft2 3 m 5 522.6 m2   (4 sig. figures) 1 ft2 1 acre .40469 hectare d) A 5 5625 ft2 3 5 .05226 hectare   (4 sig. figures) 2 3 1 acre 43560 ft 8. Design a connector roadway. Design considerations:

1. Intersection configurations



2. Width of road based upon expected traffic



3. Type of curb



4. Amount of crown



5. Grade of profile



6. Grading of adjacent ground



7. Sight distances



8. Property lines



9. Pavement thickness



10. Drainage



11. Stop signs and painted stop lines



12. Signalization (consideration)



13. Consideration of sidewalks



14. Consideration of guide rails



15. Consideration of snow removal

9. Design a pedestrian walkway. Design considerations:

1. Size and location of walkway to consider amount of pedestrian traffic and convenience of traffic routing

92690_ch1_ptg01_p001-003.indd 2

11/12/12 8:26 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      3



2. Consideration of conflicts with existing utilities, trees, etc.



3. Grading to provide drainage



4. Handicap access



5. Concrete mixture and thickness



6. Crushed stone base course



7. Expansion and control joints



8. Driveway treatment: reinforcement, added thickness

10. Design a culvert pipe. Design considerations:

1. Material of pipe



2. Diameter based upon expected flood flow



3. Cover over pipe



4. Gradient for gravity flow



5. Erosion protection at inlet and outlet



6. Headwalls



7. Trench: stone bedding, shoring if needed



8. Alignment of culvert to match stream



9. Consideration of possible permits for wetlands, etc.



10. Traffic control



11. Flooding during construction



12. Fish habitat



13. Upstream water level after completion

92690_ch1_ptg01_p001-003.indd 3

11/12/12 8:26 AM

C h a p t e r

2 Fluid Mechanics

1. W 5 gV    (Equation 2-1) W 5 (62.4)(1.0) W 5 62.4 lb.    (Answer) 2. W 5 gV    (Equation 2-1) But W 5 mg Thus, gV 5 mg Density 5

m V

Substituting, Density 5 Therefore, Density 5

3. Dimensions of can 5 V 5

pd2 h 4

V 5

p(.333)2 (.50) 4

g g

62.4 5 1.94 slugs/ft3    (Answer) 32.2 4.0 6.0 ft dia. 3 ft high 12 12

V 5 0.0428 ft2 g 5

W 2.0 5 5 46.77 lb/ft2 V .0428

g 5 47 lb/ft3    (Answer)

4

92690_ch2_ptg01_p004-005.indd 4

11/12/12 8:28 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    5

4. Dimensions of container 5 0.100 m 3 0.200 m 3 0.150 m V 5 (.100)(.200)(.150) V 5 0.00300 m3 g5

W 450 5 5 150,000 N/m3 V .00300

g 5 150 kN/m3    (Answer) 5. S.G. 5 S.G. 5

6. S.G. 5 S.G. 5

S.W. 62.4 lb/ft3 57.4 5 0.92    (Answer) 62.4 S.W. 9.81 kN/m3 7.85 3 103 5 0.800    (Answer) 9.81 3 103

7. The water rises higher in the 2.0 mm diameter tube because it is the narrower tube. 8. t 5

t5

F     (Equation 2-4) A 1.5 3 10 24 .75

t 5 2.0 3 10 24 lb d m 5 t     (Equation 2-8) v m5

(2.0 3 10 24)(.0417) 10

   ad 5

.50 ftb 12

m 5 8.3 3 10 27 lb-s/ft2    (Answer) 9. S.W. 5 45 lb/ft3 Density 5

g 45 5 1.40 slugs/ft3 5 g 32.2

v5

m r

v5

2.2 3 10 25 1.40

v 5 1.57 3 10 25 ft2/s    (Answer) 10. S.W. 5 7.85 3 103 N/m3 Density 5 v5

92690_ch2_ptg01_p004-005.indd 5

g 7.85 3 103 5 0.800 3 103 kg/m3 5 g 9.81

m 2.4 3 10 23 5 5 3.00 3 10 26 m2/s    (Answer) r .800 3 103

11/12/12 8:28 AM

C h a p t e r

3 Fundamental Hydrostatics

1. p 5 gz    (Equation 3-2) p 5 162.42 13502

p 5 21,840 lb/ft2 p 5 21,800 lb/ft2    (Answer) 2. a)  p 5 gz    (Equation 3-2)

b)  p 5 gz    (Equation 3-2)

p 5 162.42 14.02

p 5 162.42 112.02

2

p 5 749 lb/ft2    (Answer)

p 5 250 lb/ft     (Answer)

3. z 5 82.5 2 38.0 z 5 44.5 ft p 5 gz    (Equation 3-2) p 5 162.42 14.02

p 5 2776.8 lb/ft2 p 5 2780 lb/ft2    (Answer) 4. p 5 gz    (Equation 3-2) p 5 162.42 18.502 p 5 530.4 lb/ft2

p 5 530 lb/ft2    (Answer)

6

92690_ch3_ptg01_p006-022.indd 6

11/12/12 8:30 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    7

5. Resultant force: FR 5

gz2 w    (Equation 3-4) 2

FR 5

162.42 18.02 2 110.02 2

FR 5 19,968 lb

FR 5 20,000 lb    (Answer) Location of resultant force: 1 yR 5 z    (Equation 3-5) 3 1 yR 5 18.02 3 yR 5 2.67 ft yR 5 2.7 ft    (Answer) A

FR yR



B



© Cengage Learning 2014

8.0′

6. Resultant force: FR 5 gzlw    (Equation 3-3) FR 5 162.42 18.02 112.02 110.02 FR 5 59,904 lb

FR 5 60,000 lb    (Answer) Location of resultant force: FR located at centroid of pressure xR 5

12.0 2

xR 5 6.0 ft    (Answer)

92690_ch3_ptg01_p006-022.indd 7

11/12/12 8:30 AM

8    CHAPTER 3 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

xR



B



7. u 5 tan21

C

© Cengage Learning 2014

FR

5.0 8.0

u 5 32.0° FH 5 gz1lwcos u    (Equation 3-8) FH 5 162.42 13.02 110.02 19.4342 cos 32.0° FH 5 14,976 lb

FV 5 FV 5

gw 1z1 1 z2 2 l sin u    (Equation 3-9) 2

(62.4)(10.0) 3 3.0 1 8.0 4 (9.434) sin 32.0° 2

FV 5 17,160 lb

W5

gwl2 sin u cos u    (Equation 3-10) 2

W5

162.42 110.02 19.4342 2 sin 32.0° cos 32.0° 2

W 5 12,480 lb yR 5 yR 5

Iy 2z1 1 z2 c d     (Equation 3-7) 3 z1 1 z2 5.0 (2)(3.0) 1 8.0 c d 3 3.0 1 8.0

yR 5 2.12 ft

92690_ch3_ptg01_p006-022.indd 8

11/12/12 8:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    9

xR FH

3.0′ D

8.0′ W

W = 10.0′

FV

© Cengage Learning 2014

yR C xW 8.0′

FR

C

lR

3′

9.4

© Cengage Learning 2014

D

xR 5 one-half horizontal projection 1 xR 5 l cos u 2 1 xR 5 (9.434) cos 32.0° 2 xR 5 4.00 ft xW 5 one-third horizontal projection 1 xW 5 (9.434) cos 32.0° 3 xW 5 2.67 ft

92690_ch3_ptg01_p006-022.indd 9

11/12/12 8:31 AM

10    CHAPTER 3 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

FR 5 "Fv2 1 (FH 1 W)2    (Equation 3-11)

FR 5 "17,1602 1 (14,976 1 12,480)2 FR 5 32,377 lb

FR 5 32,000 lb    (Answer) lR 5 lR 5

1 3 F (yR) 1 W(xW) 1 FH(xR) 4     (Equation 3-12) FR v

1 3 (17,160)(2.12) 1 (12,480)(2.67) 1 (14,976)(4.00) 4 32,377

lR 5 4.00 ft    (Answer)

8. Since the length of the dam is not indicated, the force will be computed per linear foot of length (w 5 1 ft). u 5 tan21

1 3

u 5 18.435° FH 5 0 FV 5

gw (z1 1 z2) l sin u    (Equation 3-9a) 2

FV 5

(62.4)(1) (0 1 15)(47.434) sin 18.435° 2

FV 5 7,020 lb/L.F. W5

gwl2 sin u cos u    (Equation 3-10) 2

W5

(62.4)(1)(47.434) sin 18.435° cos 18.435° 2

W 5 21,060 lb/L.F. xR 5 0 yR 5

ly 2z1 1 z2 c d     (Equation 3-7) 3 z1 1 z2

92690_ch3_ptg01_p006-022.indd 10

11/12/12 8:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    11

θ

W

15.0′ Fv

© Cengage Learning 2014

yR

xW

45.0′

θ

FR

© Cengage Learning 2014

lR

4′

.43

47

yR 5

15 (2)(0) 1 15 c d 3 0 1 15

yR 5 5.0 ft

xW 5 one-third horizontal projection xW 5 15.0 ft

92690_ch3_ptg01_p006-022.indd 11

11/12/12 8:31 AM

12    CHAPTER 3 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

FR 5 "FV2 1 (FH 1 W)2    (Equation 3-11) FR 5 "7,0202 1 21,0602

FR 5 22,199 lb/L.F.

FR 5 22,200 lb/L.F.    (Answer) lR 5

lR 5

1 3 F (y ) 1 W(xw) 1 FH(xR) 4     (Equation 3-12) FR V R 1 3 (7,020)(5.0) 1 (21,060)(15.0) 1 0 4 22,199

lR 5 15.81 ft

lR 5 15.8 ft    (Answer) 9. For this problem, w 5 2.5 ft.

7.5′

Fv yR

FR 5 FR 5

g ly w 2

© Cengage Learning 2014

11.5′

(z1 1 z2)    (Equation 3-6)

(62.4)(4.0)(2.5) (7.5 1 11.5) 2

FR 5 5,928 lb    (Answer)

92690_ch3_ptg01_p006-022.indd 12

11/12/12 8:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    13

yR 5 yR 5

ly 2z1 1 z2 d     (Equation 3-7) c 3 z1 1 z2 4.0 2(7.5) 1 11.5 c d 3 7.5 1 11.5

yR 5 1.86 ft    (Answer) 10. For this problem, w 5 16 ft, f 5 90°. xH FH

z1

z2

B

Fv W © Cengage Learning 2014

yv A xW r = 2.0′ B

ϕR

A

92690_ch3_ptg01_p006-022.indd 13

FR

© Cengage Learning 2014

ϕ=90˚

11/12/12 8:31 AM

14    CHAPTER 3 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

FH 5 gz1wrsin f    (Equation 3-13) FH 5 (62.4)(1.5)(16)(2.0) sin 90° FH 5 2995 lb

FV 5

gw (z1 1 z2)(r 2 r cos f)    (Equation 3-14) 2

FV 5

(62.4)(16) (1.5 1 3.5)(2.0 2 2.0 cos 90°) 2

FV 5 4992 lb

W 5 gw c

f r2 pr2 2 sin f cos fd     (Equation 3-15) 360 2

(2.0)2 90 2 W 5 (62.4)(16) c p(2.0) 2 sin 90 cos 90 d 360 2 W 5 3137 lb

xH 5 Centroid of rectangle xH 5 1.0 ft

yV 5 Centroid of trapezoid

yV 5

yV 5

ly 2z1 1 z2 c d 3 z1 1 z2

2.0 2(1.5) 1 3.5 c d 3 1.5 1 3.5

yV 5 0.867 ft

xW 5 Centroid of wedge of water xW 5

4r 3p

xW 5

(4)(2.0) 3p

xW 5 0.849 ft

92690_ch3_ptg01_p006-022.indd 14

11/12/12 8:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    15

FR 5 "Fv2 1 (FH 1 W)2    (Equation 3-11)

FR 5 "49922 1 (2995 1 3137)2 FR 5 7,907 lb

FR 5 7,900 lb    (Answer) fR 5 sin21 e

fR 5 sin21 e

1 3 F (y ) 1 W(xW) 1 FH(xH) 4 f rFR v v

1 3 (4992)(.867) 1 (3137)(.849) 1 (2995)(1.0) 4 f (2.0)(7907)

fR 5 sin21(.6315) fR 5 39.16°

fR 5 39°    (Answer) 11. For this problem, w 5 14.0 ft. The centroid of the wedge of water must be determined by approximate graphical methods. FH 5 0 FV 5

gz2 w    (Equation 3-4) 2

FV 5

(62.4)(9.4)2 (14.0) 2

FV 5 38,596 lb W 5 gV where V is the volume of the wedge of water. W 5 gAw where A is the cross sectional area of the wedge. W 5 (62.4)(22.7)(14.0) W 5 19,831 lb

FR 5 "FV 2 1 (FH 1 W)2    (Equation 3-11) FR 5 "38,5962 1 (0 1 19,831)2

FR 5 43,393 lb    (Answer)

92690_ch3_ptg01_p006-022.indd 15

11/12/12 8:31 AM

16    CHAPTER 3 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

9.4′ W

Fv

Fv ϕR

W

FR

ϕ

© Cengage Learning 2014

FR

fR 5 tan21

W FV

fR 5 tan21

19,831 43,393

fR 5 24.6°    (Answer) Note: In this problem, fR represents only the orientation of FR and not its actual position in space. To find the point where FR acts on the ogee surface, locate graphically the point where an angle of 24.6° is perpendicular to a tangent to the surface. 12. For this problem, w 5 8.0 ft. The area and centroid of the wedge of water can be estimated graphically to avoid a more complex mathematical analysis. FH 5 0 gz2 FV 5 w    (Equation 3-4) 2

92690_ch3_ptg01_p006-022.indd 16

11/12/12 8:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    17

FV 5

(62.4)(4.24) (8.0) 2

FV 5 4,487 lb W 5 gV   where V is the volume of the wedge of water. W 5 gAw   where A is the cross sectional area of the wedge. A 5 2.76 ft2 W 5 (62.4)(2.76)(8.0) W 5 1,378 lb

r

z Fv

W

yv

Fv ϕR

W

6.0′ FR

ϕR

92690_ch3_ptg01_p006-022.indd 17

© Cengage Learning 2014

4.24′

FR

11/12/12 8:31 AM

18    CHAPTER 3 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

FR 5 "FV 2 1 (FH 1 W)2    (Equation 3-11)

FR 5 "44872 1 (0 1 1378)2 FR 5 4,694 lb

FR 5 4,700 lb    (Answer)

fR 5 tan21

W FV

fR 5 tan21

1378 4487

fR 5 17.1°    (Answer) 13. Buoyant force equals weight of water displaced. FB 5 gV    (Equation 3-17) a) 2½s 3 5s 5 .208r 3 .417r p(.208)2 pd2 L 5 (.417) 5 0.0142 ft3 4 4



Vol. 5



FB 5 (62.4)(.0142) 5 0.886 lb    (Answer)

b) Since the weight of the can is less than the buoyant force, the can will float. 14. Buoyant force equals weight of water displaced. FB 5 gV    (Equation 3-17) Vol. 5 AL where A 5 area of cross section, L 5 length 1 A 5 (.866)(1) 5 0.433 in2 5 0.00301 ft2 2 L 5 12.75 in 5 1.0625 ft Vol. 5 (.00301)(1.0625) 5 0.00320 ft3 FB 5 (62.4)(.00320) 5 0.20 lb Since the weight of the scale (0.25 lb) is greater than the buoyant force (0.20 lb), the scale will sink. 15. Buoyant force equals weight of water displaced. FB 5 gV    (Equation 3-17) Vol. 5 (8.0)(8.0)(6.0) 5 384 ft3 FB 5 (62.4)(384) 5 23,962 lb 5 12 tons Since the weight of the chamber (10 tons) is less than the buoyant force (12 tons), the chamber will float.

92690_ch3_ptg01_p006-022.indd 18

11/12/12 8:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    19

16. Buoyant force equals weight of water displaced. FB 5 gV     (Equation 3-17) Vol. 5 1½s 3 3½s 3 2.0r 5 (.125)(.292)(2.0) 5 0.0729 ft3 FB 5 (62.4)(.0729) 5 4.55 lb Since the weight of the lumber is less than the buoyant force, the lumber will float. The volume below water Vr is W 4.0 5 5 0.0641 ft3 Vr 5 g 62.4 Depth below water is computed from the lumber dimensions. Vr 5 (.292)(2.0)(depth) Depth 5

0.0641 5 0.1098 ft (.292)(2.0)

Height above water is 0.125 2 0.1098 5 0.0152 ft    (Answer) 17. Buoyant force equals weight of water displaced. FB 5 gV    (Equation 3-17) Vol. 5 (4.0)(4.0)(4.0) 5 64 ft3 FB 5 (62.4)(64) 5 3994 lb 5 2.00 tons Since the weight of the chamber is less than the buoyant force, the chamber will float. The volume below water Vr is W 3000 5 5 48.1 ft3 Vr 5 g 62.4 Depth below water is computed from the chamber dimensions. Vr 5 (4.0)(4.0)(depth) Depth 5

48.1 5 3.00 ft (4.0)(4.0)

Height above water is 4.0 2 3.0 5 1.0 ft    (Answer) 18. Buoyant force equals weight of water displaced. FB 5 gV    (Equation 3-17) Vol. 5 p(.03125)2(.146) 5 0.000448 ft3 FB 5 (62.4)(.000448) 5 0.0280 lb 5 0.45 ounces Since the weight of the cork is less than the buoyant force, the cork will float. The volume below water Vr is Vr 5

W .0125 5 5 0.00020 ft3 g 62.4

Depth below water is computed using the formula for the segment of a circle. See sketch.

92690_ch3_ptg01_p006-022.indd 19

11/12/12 8:31 AM

20    CHAPTER 3 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Closed valve

Elev. 525.0

© Cengage Learning 2014

Elev. 550.0

The shaded area in the sketch is a segment of the circle comprising a cross section of the cork. Call the area ar. r2 up ar 5 c 2 sin u d 2 180

where u is measured in degrees. Bisecting the angle u gives a right triangle in which r2d u cos 5 r 2 The area ar is computed from the volume Vr. Vr 5 arl 0.00020 5 ar (.146) ar 5 0.00137 ft2 Since r 5 0.03125 ft, the segment equation becomes 0.00137 5

(.03125)2 up c 2 sin u d 2 180

which reduces to

2.81 5 .0175 u 2 sin u The solution to this equation is u 5 170.0°. Then depth d is computed as follows u r2d cos 5 r 2 cos

170 .03125 2 d 5 2 .03125

d 5 0.0285 ft. Height above water 5 2r 2 d 5 2(.03125) 2 .0285 Height 5 0.034 ft 5 0.41 inches     (Answer)

92690_ch3_ptg01_p006-022.indd 20

11/12/12 8:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    21

19. Buoyant force equals weight of water displaced. FB 5 gV    (Equation 3-17) Vol. 5 p(1.0)2(3.0) 5 9.42 ft3 FB 5 (62.4)(9.42) 5 588 lb Since the weight of the tank is less than the buoyant force, the tank will float. The volume below water Vr is Vr 5

W 100 5 5 1.60 ft3 g 62.4

Depth below water is computed using the formula for the segment of a circle. See sketch.

r

Volume below water

r–d d, depth below water

© Cengage Learning 2014

θ

The shaded area in the sketch is a segment of the circle comprising a cross section of the tank. Call the area ar. ar 5

r2 up 2 sin u 2 180

where u is measured in degrees. Bisecting the angle u gives a right triangle in which u r2d cos 5 r 2 The area ar is computed from the volume Vr. Vr 5 arl 1.60 5 ar (3.60) ar 5 0.533 ft2 Since r 5 1.0 ft, the segment equation becomes 0.533 5

(1.0)2 up c 2 sin u d 2 180

which reduces to

1.067 5 .0175 u 2 sin u The solution to this equation is u 5 113.4°.

92690_ch3_ptg01_p006-022.indd 21

11/12/12 8:31 AM

22    CHAPTER 3 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Then depth d is computed as follows r2d u cos 5 r 2 cos

113.4 1.0 2 d 5 2 1.0

d 5 0.451 ft. Height above water 5 2r 2 d 5 2(1.0) 2 .451 Height 5 1.55 ft    (Answer) 20. Buoyant force equals weight of water displaced. FB 5 gV    (Equation 3-17) 4 Vol. 5 p (.5)3 5 0.5236 ft3 3 FB 5 (62.4)(.5236) 5 32.67 lb 5 0.45 ounces Since the weight of the ball is less than the buoyant force, the ball will float. The volume below water Vr is Vr 5

W 25 5 5 0.401 ft3 g 62.4

Depth below water d is computed using the formula for the partial volume of a sphere. See sketch.

d

r

© Cengage Learning 2014

c

The volume below water Vr can be expressed as Vr 5

p d 3 3d(2r 2 d) 1 d2 4 6

Therefore, 0.401 5

p d 3 3d(2r 2 d) 1 d2 4 6

which reduces to

0.765 5 d 3 3d(1.0 2 d) 1 d2 4

The solution to this equation is d 5 0.69 ft. Height above water 5 2r 2 d 5 2(.5) 2 .69 Height 5 0.31 ft.    (Answer)

92690_ch3_ptg01_p006-022.indd 22

11/12/12 8:31 AM

C h a p t e r

4 Fundamental Hydrodynamics

1. NR 5 NR 5

Dv        where y 5 1 3 1025 ft2/s. y

12.02 16.212 1 3 1025

NR 5 12.42 3 105 1Answer2

NR 5 1,242,000

Since NR . 10,000, flow is turbulent.    (Answer) 2. NR 5

Dv        where y 5 1 3 1025 ft2/s. y

D 5 2.5 in 5 0.208 ft a5

p1.2082 2 pD2 5 0.0341 ft2 4 4

v5

Q .150 5 4.40 ft/s a .0341



NR 5

1.2082 14.402 0.915 3 105 1 3 1025

NR 5 91,500

1Answer2

Since NR . 10,000, flow is turbulent.    (Answer) 3. NR 5

Dv y

D 5 4 inches 5 0.333 ft a 5 pr2 5 p1.1672 2 5 0.0872 ft2 v5

Q 4.0 3 1023 5 5 0.0459 ft/s A .0872

23

92690_ch4_ptg01_p023-038.indd 23

11/12/12 8:43 AM

24      CHAPTER 4 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

NR 5

1.3332 1.04592 5 0.0153 3 105 1 3 1025 1Answer2

NR 5 1,530

Since NR , 2,000, flow is laminar.    (Answer) 4. NR 5

Dv y

where y 5 9.29 3 1027 m2/s.

D 5 300 mm 5 0.300 m p1.3002 2 pD2 a5 5 5 0.0707 m2 4 4 v5

Q .250 5 5 3.54 m/s a .0707

NR 5

1.3002 13.542 7 27 5 0.114 3 10 9.29 3 10 1Answer2

NR 5 1,140,000

Since NR . 10,000, flow is turbulent.    (Answer) 5. Velocity head 5 Velocity head 5 6. Pressure head 5 Pressure head 5 7. Velocity head 5 Velocity head 5

y2 2g 16.212 2 5 0.60 ft 2132.22 p g

1Answer2

22.1 5 0.35 ft.     1Answer2 62.4 v2 2g 14.252 2 2132.22

Velocity head 5 0.28 ft      1Answer2 8. Friction head loss 5 f



L v2 D 2g

Friction head loss 5 1.02152



11152 17.492 2 5 3.23 ft.      1Answer2 .67 2132.22

9. e 5 0.001     1Table 4-12 e .001 5 5 0.00033 D 3.0 NR 5

13.02 112.52 Dv 5 3.75 3 106 5 y 1 3 1025

f 5 0.015     1from Moody Diagram2

92690_ch4_ptg01_p023-038.indd 24

11/12/12 8:43 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      25

Friction head loss 5 f



L y2 D 2g

12252 112.52 2 5 2.73 ft.      1Answer2 Friction head loss 5 1.0152 3.0 2132.22

10. e 5 0.000005     1Table 4-12 e .000005 5 5 0.00003 D .167 NR 5

1.1672 11.352 Dv 5 2.25 3 104 5 y 1 3 1025

f 5 0.026     1from Moody Diagram2 Friction head loss 5 f



L y2 D 2g

Friction head loss 5 1.0262 11. h1 1



1252 11.352 2 5 0.110 ft.      1Answer2 1.1672 2132.22

p2 v1 2 v2 2 1 5 h2 1      1Equation 4-72 g 2g 2g

v1 5 0, p2 5 0 410 1 0 5 372.5 1 0 1

v2 2 2132.22

v22 5 2132.22 1410 2 372.52 5 2415 v2 5 49.14 ft/s      1Answer2 Q 5 v2a     1Equation 4-32 a5

p1.6672 2 pd2 5 5 0.3491 ft2 4 4

Q 5 149.142 1.34912

Q 5 17.15 cfs      1Answer2 410.0

8″ Dia

372.5 50′

92690_ch4_ptg01_p023-038.indd 25

© Cengage Learning 2014

.

11/12/12 8:43 AM

26      CHAPTER 4 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

12. h1 1

p2 v2 2 v1 2 1 5 h2 1 1 he 1 hf g 2g 2g

v1 5 0 due to negligible water movement in the reservoir p2 5 0 no pressure at free discharge he 5 0 neglect entrance losses v2 2 v2 2 1 f 1L/D2 2g 2g v2 2 v2 2 1 f 150/.672 410 5 372.5 1 2132.22 2132.22

h1 5 h2 1





37.5 5



v2 2 11 1 75f 2 64.4



2415 5 v22 11 1 75f 2



Solve this equation by use of the Moody diagram. e 5 .00085     1Table 4-12 e .00085 5 5 .00127 D .67 Trial 1:  f 5 0.02     1assumed value of f 2

v2 2 5

2415 1 1 751.022

v22 5 966 v2 5 31.1 ft/s NR 5

131.12 1.672 5 2.08 3 106      1from Equation 4-12 1025

f 5 0.021     1from Moody Chart2 Trial 2:  f 5 0.021 v2 2 5

2415 1 1 751.0212

v22 5 937.9 v2 5 30.6 ft/s NR 5

130.62 1.672 5 2.04 3 106 1025

f 5 0.021    (from Moody Chart) v2 5 30.6 ft/s    (Answer) Q 5 v2a    (Equation 4-3) a5

p1.672 2 pd2 5 5 0.349 ft2 4 4

Q 5 130.62 1.3492

Q 5 10.7 cfs      1Answer2

92690_ch4_ptg01_p023-038.indd 26

11/12/12 8:43 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      27

13. Locate Station 1 in the upper reservoir and Station 2 at the point where the pipe connects to the lower reservoir. p2 v2 2 v1 2 1 h1 1 5 h2 1 1 he 1 hf g 2g 2g v1 5 0 due to negligible water movement in the reservoir he 5 0 neglect entrance losses p2 by h2 where h2 is measured to the free surface of the lower reservoir instead g of the center of the pipe.

Replace h2 1

h1 5 h2 1

v2 2 L v2 2 1f 2g D 2g

v22 425 v22 1132.0 5 1079.5 1 1f 2132.22 1.0 2132.22

52.5 5

v22 11 1 425f 2 64.4



3381 5 v22 11 1 425f 2

Solve this equation by use of the Moody Diagram. e 5 0.001     1Table 4-12 e .001 5 5 0.001 D 1.0 Trial 1:  f 5 0.02    (assumed value of f ) v2 2 5

3381 1 1 4251.022

v22 5 355.9 v2 5 18.87 ft/s NR 5

11.02 118.872 5 1.908 3 106 1 3 1025

f 5 0.0195    (from Moody Diagram) Trial 2:  f 5 0.0195 v2 2 5

3381 1 1 4251.01952

v22 5 364.0 v2 5 19.08 ft/s NR 5

11.02 119.082 5 1.908 3 106 1 3 1025

f 5 0.0195    (from Moody Diagram) (OK)

92690_ch4_ptg01_p023-038.indd 27

11/12/12 8:43 AM

28      CHAPTER 4 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Q 5 v2a2 a2 5

p11.02 pD2 5 5 0.785 ft2 4 4

Q 5 119.082 1.7852 Q 5 14.98 cfs

Q 5 15 cfs    (Answer) 14. First, find the velocity at the discharge end of the pipe. h1 1

p2 v2 2 v12 1 5 h2 1 1 he 1 hf g 2g 2g

v1 5 0 due to negligible water movement in the reservoir p2 5 0 no pressure at free discharge he 5 0 neglect entrance losses h1 5 h2 1

v2 2 L v2 2 1f 2g D 2g

h2 5 221.12 1 2.50 5 223.62 ft 268.0 5 223.62 1

v22 1425 v22 1f 2132.22 5.0 2132.22

2858 5 v22 11 1 285 f 2

Solve this equation by use of the Moody Diagram. e 5 0.010    (Table 4-1) .010 e 5 5 0.002 D 5.0 Trial 1:  f 5 0.02    (assumed value of f ) v2 2 5

2858 1 1 2851.022

v22 5 426.6 v2 5 20.65 ft/s NR 5

15.02 120.652 5 1.033 3 107 1 3 1025

f 5 0.022    (from Moody Diagram) Trial 2:  f 5 0.024 v2 2 5

2858 1 1 2851.0242

v22 5 364.5 v2 5 19.1 ft/s NR 5

15.02 119.12 5 9.5 3 106 1 3 1025

f 5 0.024    (from Moody Diagram) (OK)

92690_ch4_ptg01_p023-038.indd 28

11/12/12 8:43 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      29

Therefore, velocity at discharge is 19.1 ft/s. But velocity is the same throughout the pipe, including Point A. h1 5 h2 1

p2 v2 2 L v2 2 1 1f g 2g D 2g

Find h2: Slope of pipe 5

242.5 2 221.12 5 0.0150 ft/ft 1425

h2 5 234.25 1 2.50 5 236.75 ft. 268.0 5 236.75 1 31.25 5

119.12 2 p2 550.0 119.12 2 1 1 1.0242 62.4 2132.22 5.0 2132.22

p2 1 5.66 1 14.95 62.4

p2 5 664 lb/ft2    (Answer) 15. Water in the piezometer at Point B rises to the level of the HGL. The HGL is a distance p/g above the center of the pipe. Find p/g at Point B. Velocity, from Problem 14, is 19.1 ft/s. Find h2: Slope of pipe, from Problem 14, is 0.0150 ft/ft. Invert elevation at B 5 242.5 2 8211.01502 5 230.19 ft. h2 5 230.19 1 2.50 5 232.69 ft. p2 v2 2 L v2 2 1 h1 5 h2 1 1f g 2g D 2g

ELEV. 268.0 PIEZOMETER

INV. 221.12

HG

L

B

60″ 821′ 1425′

92690_ch4_ptg01_p023-038.indd 29

© Cengage Learning 2014

INV. 242.5

11/12/12 8:43 AM

30      CHAPTER 4 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

268.0 5 232.69 1 35.31 5

119.12 2 p2 821 119.12 2 1 1 1.0242 g 2132.22 5.0 2132.22

p2 1 5.66 1 22.32 g

p1 5 7.33 ft g

Elevation in piezometer 5 232.69 1 7.33 5 240.02 ft.    (Answer) 16. Velocity from Problem 14 is 19.1 ft/s. Since velocity is the same throughout the pipe, velocity at Point A is 19.1 ft/s.  (Answer) 17. h1 1

p2 v1 2 v2 2 1 5 h2 1 1 he 1 hf g 2g 2g

p2 5 0 no pressure at free discharge he 5 0 neglect entrance losses h1 5 h2 1

v2 2 L v2 2 1f 2g D 2g

Find h2: h2 5 489.20 1

2 12

h2 5 489.37 ft. D5

4 5 0.33 ft 12

515.50 5 489.37 1 2

26.13 5

v2 2 175 v22 1f 2132.22 .33 2132.22

v2 11 1 530f 2 64.4







1683 5 v22 11 1 530f 2

Solve this equation by use of the Moody Diagram. e 5 0.00085    (Table 4-1) e .00085 5 5 0.0026 D .33 Trial 1:  f 5 0.02    (assumed value of f ) v2 2 5

1683 1 1 5301.022

v22 5 145 v2 5 12.05 ft/s NR 5

1.332 112.052 5 4.0 3 105 1 3 1025

f 5 0.026    (from Moody Diagram) Trial 2:  f 5 0.026 v2 2 5

1683 1 1 5301.0262

v22 5 113.9

92690_ch4_ptg01_p023-038.indd 30

11/12/12 8:43 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      31

v2 5 10.67 ft/s NR 5

1.332 110.672 5 3.55 3 105 1 3 1025

f 5 0.026    (from Moody Diagram) (OK) Therefore, v2 5 10.67 ft/s.    (Answer) Q 5 v2a2 p1.332 2 pD2 a2 5 5 5 0.087 ft2 4 4 Q 5 110.672 1.0872

Q 5 0.929 cfs    (Answer) 18. h1 5 h2 1

v2 2 v2 2 1 f 1L/D2 2g 2g



v22 v2 2 1 f 12250/102 2132.22 2132.22

825.0 5 700.0 1





8050 5 v22 11 1 225f 2



Solve this equation by use of the Moody diagram. e 5 0.001    (Table 4-1) .001 e 5 5 0.0001 D 10 Trial 1:  f 5 0.02 v2 2 5

8050 1 1 2251.022

v22 5 1464 v2 5 38 ft/s NR 5

1382 1102 5 3.8 3 107    (From Equation 4-1) 1 3 1025

f 5 0.012    (From Moody chart) Trial 2:  f 5 0.012 v2 2 5

8050 1 1 2251.0122

v22 5 2176 v2 5 47 ft/s NR 5

1472 1102 5 4.7 3 107    (From Equation 4-1) 1 3 1025



f 5 0.012    (From Moody chart) (OK) v2 5 47 ft/s    (Answer) Q 5 v2 a    (Equation 4-3)

92690_ch4_ptg01_p023-038.indd 31

11/12/12 8:43 AM

32      CHAPTER 4 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

a 5 pr2 5 p152 2 5 78.5 ft2 Q 5 1472 178.52

Q 5 3,690 cfs    (Answer) 19. h1 5 h2 1

v2 2 v2 2 1 f 1L/D2 2g 2g



v22 v2 2 615.0 5 602.25 1 1 f 15000/.52 2132.22 2132.22



821.1 5 v22 11 1 10000f 2











Solve this equation by use of the Moody diagram. e 5 0.0005    (Table 4-1) .0005 e 5 5 0.001 D .5 Trial 1:  f 5 0.02 v2 2 5

821.1 2 1 100001.022

v22 5 4.085 v2 5 2.02 ft/s NR 5

12.022 1.52 5 1.01 3 105    (From Equation 4-1) 1 3 1025

f 5 0.0225      (From Moody chart) Trial 2:  f 5 0.0225 v2 2 5

821.1 2 1 100001.02252

v22 5 3.63 v2 5 1.91 ft/s NR 5

11.912 1.52 5 .95 3 105    (From Equation 4-1) 1 3 1025

f 5 0.0225    (From Moody chart) (OK) v2 5 1.91 ft/s    (Answer) Q 5 v2 a    (Equation 4-3) a 5 pr2 5 p1.252 2 5 0.196 ft2 Q 5 11.912 1.1962

Q 5 0.38 cfs    (Answer)

92690_ch4_ptg01_p023-038.indd 32

11/12/12 8:43 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      33

20. See sketch below.

© Cengage Learning 2014

EGL HGL

21. a) V  elocity head is constant throughout the pipe. Velocity head 5 2.4 ft measured by scale. Velocity is computed as v2 2g



Velocity head 5



2.4 5



v 5 12.4 ft/s    (Answer)

v2 2132.22

b) Pressure head at the midway point in the pipe is measured by scale to be 4.0 ft. Pressure is computed as p g



Pressure head 5



4.0 5



p 5 249.6 lb/ft2



p 5 250 lb/ft2    (Answer)

p 62.4

c) Entrance loss is the drop in the EGL at the beginning of the pipe and is measured by scale to be 0.8 ft.    (Answer) d) Friction loss head at 10.0 feet is the drop of the EGL at a point 10.0 feet into the pipe and is measured as 5.7 ft.    (Answer) 22. a) V  elocity head is constant throughout the pipe. Velocity head 5 1.5 ft measured by scale. Velocity is computed as

92690_ch4_ptg01_p023-038.indd 33

v2 2g



Velocity head 5



1.5 5



v 5 9.83 ft/s    (Answer)

v2 2132.22

11/12/12 8:43 AM

34      CHAPTER 4 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

b) Pressure head at the entrance to Reservoir 2 is measured by scale to be 5.5 ft. Pressure is computed as p g



Pressure head 5



5.5 5



p 5 343.2 lb/ft2



p 5 343 lb/ft2    (Answer)

p 62.4

c) Velocity head is constant throughout the pipe. Velocity head 5 1.5 ft measured by scale. Velocity is computed as v2 2g



Velocity head 5



1.5 5



v 5 9.83 ft/s    (Answer)

v2 2132.22

d) Pressure head at Point A is measured by scale to be 8.5 ft. Pressure is computed as Pressure head 5 8.5 5

p g

p 62.4

p 5 530.4 lb/ft2 p 5 530 lb/ft2    (Answer) 23. Divide cross section into Sectors A, B, C, D, and E. Using a scale, measure the areas. Area (ft2)



Sector



A



B

16.0



C

21.25



D

12.25



E

2.75

4.25

Calculate average velocities. 0 1 .86 vA 5 5 0.43 ft/s 2 vB 5

.86 1 3.15 5 2.005 ft/s 2

vC 5

3.15 1 2.59 5 2.87 ft/s 2

vD 5

2.59 1 .46 5 1.525 ft/s 2

vE 5

.46 1 0 5 0.23 ft/s 2

92690_ch4_ptg01_p023-038.indd 34

11/12/12 8:43 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      35

Calculate discharges using Equation 4-3. QA 5 1.432 14.252 5 1.83 cfs

QB 5 12.0052 116.02 5 32.08 cfs

QC 5 12.872 121.252 5 60.99 cfs

QD 5 11.5252 112.252 5 18.68 cfs QE 5 1.232 12.752 5 0.63 cfs

Sum the discharges. Q 5 114.21 cfs

Q 5 114 cfs    (Answer) 24. Divide cross section into Sectors A, B, C, D, E and F. Using a scale, measure the areas. Area (ft2)



Sector



A

30.4



B

90.0



C

174.7



D

212.5



E

150.0



F

25.5

Calculate average velocities. vA 5

0 1 .75 5 0.375 ft/s 2

vB 5

.75 1 1.91 5 1.33 ft/s 2

vC 5

1.91 1 5.21 5 3.56 ft/s 2

vD 5

5.21 1 4.78 5 5.00 ft/s 2

vE 5

4.78 1 1.34 5 3.06 ft/s 2

vF 5

1.34 1 0 5 0.67 ft/s 2

Calculate discharges using Equation 4-3. QA 5 1.3752 130.42 5 11.4 cfs

QB 5 11.332 190.02 5 119.7 cfs

QC 5 13.562 1174.72 5 621.9 cfs

QD 5 15.002 1212.52 5 1062.5 cfs QE 5 13.062 1150.02 5 459.0 cfs QF 5 10.672 125.52 5 17.1 cfs

92690_ch4_ptg01_p023-038.indd 35

11/12/12 8:43 AM

36      CHAPTER 4 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Sum the discharges. Q 5 2,291.6 cfs Q 5 2,290 cfs    (Answer) 25. Using scale, h 5 0.80 ft. h5

v2 2g

.80 5

v2 2132.22

v2 5 1.802 122 132.22 v 5 7.18 ft/s

v 5 7.2 ft/s.    (Answer) 26. Using scale, hr 5 0.80 ft. hr 5 .43



v2 2g

.80 5 .43 v2 5



v2 2132.22

.80164.42 .43

v2 5 119.8 v 5 10.95 ft/s v 5 11 ft/s.      1Answer2 27. W 5 9.0 inches, H 5 712 inches 5 0.625 ft. Q 5 3.0H1.53    (Table 4-3) Q 5 3.01.6252 1.53 Q 5 1.46 cfs Q 5 1.5 cfs    (Answer) 28. W 5 2.50 ft, H 5 1.8 ft. Q 5 4 WH1.522W

0.026

    (Table 4-3)

Q 5 412.502 11.82 1.522W Q 5 1102 11.82 3.805

0.026

0.026

Q 5 1102 11.82 1.035 Q 5 18.38 cfs

Q 5 18 cfs    (Answer)

92690_ch4_ptg01_p023-038.indd 36

11/12/12 8:43 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      37

29. D1 5 8.00 inches 5 0.667 ft D2 5 4.00 inches 5 0.333 ft p1 5 1.64 ft g p2 5 0.88 ft g a2 5

p1.3332 2 5 0.0871 ft2 4 2ga

Q 5 ca2

p2 p1 2 b g g

D2 4 12a b ï D1

Q 5 c1.08712

Q 5 c1.62922 v5

c1.62922 .0871

ã

    (Equation 4-12)

2132.22 11.64 2 .882 .333 4 12a b .667

v 5 c17.2242 Solve by trial and error. Trial 1:  v 5 5 ft/s      (Assumed value of v) c 5 0.957         (from Table 4-2) v 5 1.9572 17.2242 v 5 6.91 ft/s

Trial 2:  v 5 6.91 ft/s    (Assumed value of v) c 5 0.9576        (from Table 4-2) v 5 1.95762 17.2242 v 5 6.92 ft/s

Trial 3:  v 5 6.92 ft/s    (Assumed value of v) c 5 0.9576        (from Table 4-2) v 5 1.95762 17.2242

v 5 6.92 ft/s    (OK) Therefore, v 5 6.92 ft/s, c 5 0.9576 Q 5 16.922 1.08712

Q 5 0.603 cfs    (Answer)

92690_ch4_ptg01_p023-038.indd 37

11/12/12 8:43 AM

38      CHAPTER 4 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

30. D1 5 24.00 inches 5 2.00 ft D2 5 10.00 inches 5 0.833 ft p1 5 2.36 ft g p2 5 0.63 ft g a2 5

p1.8332 2 5 0.5454 ft2 4 2ga

Q 5 ca2

p2 p1 2 b g g

D2 4 12 a b ï D1

Q 5 c1.54542

Q 5 c15.8452 v5

c15.8452 .5454

ã

    (Equation 4-12)



2132.22 12.36 2 .632 12a

.833 4 b 2.00

v 5 c110.7182 Solve by trial and error. Trial 1:  v 5 5 ft/s      (Assumed value of v) c 5 0.9645         (Interpolated from Table 4-2) v 5 1.96452 110.7182 v 5 10.34 ft/s

Trial 2:  v 5 10.34 ft/s    (Assumed value of v) c 5 0.9762         (Interpolated from Table 4-2) v 5 1.97622 110.7182 v 5 10.46 ft/s

Trial 3:  v 5 10.46 ft/s    (Assumed value of v) c 5 0.9763         (Interpolated from Table 4-2) v 5 1.97632 110.7182

v = 10.46 ft/s    (OK) Therefore, v 5 10.46 ft/s, c 5 0.9763 Q 5 110.462 1.54542

Q 5 5.70 cfs    (Answer)

92690_ch4_ptg01_p023-038.indd 38

11/12/12 8:43 AM

C h a p t e r

5 Hydralic Devices

1. a 5 pd2/4 5 p11.252 2/4 5 1.227 ft2 Q 5 ca"2gh    (Equation 5-3) Q 5 (.62)(1.227)"2(32.2)(7.5) Q 5 17 cfs    (Answer) 2. Elevation of center of orifice: 905.25 1 0.5 5 905.75

h 5 928.75 2 905.75 5 23.0 ft



Area of orifice: a 5 (1.0)(1.0) 5 1.0 ft2 Q 5 ca"2gh     (Equation 5-3) Q 5 (.62)(1)"2(32.2)(23) Q 5 24 cfs    (Answer)

928.75

905.25

© Cengage Learning 2014

12″ x 12″ Orifice

39

92690_ch5_ptg01_p039-050.indd 39

11/12/12 8:47 AM

40      CHAPTER 5 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

3. h 5 296.85 2 293.59 5 3.26 ft

(The elevation of the center of the orifice is not used.)



Area of the orifice: a 5

p(.8333)2 pd2 5 5 0.5454 ft2 4 4

Q 5 ca"2gh     (Equation 5-3) Q 5 (.62)(.5454)"2(32.2)(3.26) Q 5 4.90 cfs    (Answer)

296.85

293.59

289.12

© Cengage Learning 2014

10″ Dia. Orifice

4. h 5 472.00 2 467.50 5 4.5 ft.

p(.25)2 pd2 Area of the orifice: a 5 5 5 0.0491 ft2 4 4 Q 5 ca"2gh    (Equation 5-3) Q 5 (.62)(.0491)"2(32.2)(4.5) Q 5 0.52 cfs    (Answer)

5. h 5 472.00 2 470.00 5 2.0 ft.

Area of the orifice: a 5 0.0491 ft2    (from prob. 4) Q 5 (.62)(.0491)"2(32.2)(2.0) Q 5 0.35 cfs    (Answer)

6. a 5

p(.150)2 5 0.01767 m2 4

h 5 79.25 2 66.10 5 13.15 m Q 5 ca"2gh Q 5 (.62)(.01767)"2(9.81)(13.15) Q 5 0.176 m3/s    (Answer)

92690_ch5_ptg01_p039-050.indd 40

11/12/12 8:47 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      41

7. a 5 0.01767 m2    (from Problem 6)

h 5 79.25 2 71.98 5 7.27 m



Q 5 ca"2gh



Q 5 (.62)(.01767)"2(9.81)(7.27)



Q 5 0.131 m3/s    (Answer) p(.333)2 5 0.0871 ft2 4 h 5 10.0 2 1.00 5 9.0 ft

8. a)  a 5

Q 5 ca"2gh Q 5 (.62)(.0871)"2(32.2)(9.0) Q 5 1.30 cfs    (Answer) b) Divide the tank into five horizontal slices with 1-foot thickness as shown below. Compute discharge at each slice and then compute the time to drain each slice.

1.0′

9.0′

1.0′

10.0′

92690_ch5_ptg01_p039-050.indd 41

10-foot level:

Q 5 1.30 cfs    (from Part a)

9-foot level:

Q 5 (.62)(.0871)"2(32.2)(8.0) 5 1.23 cfs

8-foot level:

Q 5 (.62)(.0871)"2(32.2)(7.0) 5 1.15 cfs

7-foot level:

Q 5 (.62)(.0871)"2(32.2)(6.0) 5 1.06 cfs

6-foot level:

Q 5 (.62)(.0871)"2(32.2)(5.0) 5 0.969 cfs

5-foot level:

Q 5 (.62)(.0871)"2(32.2)(4.0) 5 0.867 cfs

© Cengage Learning 2014

4″ ORIFICE

11/12/12 8:47 AM

42      CHAPTER 5 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Time to drain first (top) slice: Average Q 5

1.30 1 1.23 5 1.265 cfs 2

Volume of each slice 5 (10.0)(10.0)(1.0) 5 100 ft3 Time 5

Vol. 100 5 5 79.1 s Q 1.265

Time to drain second slice: Average Q 5 Time 5

1.23 1 1.15 5 1.19 cfs 2

100 5 84.0 s 1.19

Time to drain third slice: Average Q 5 Time 5

1.15 1 1.06 5 1.105 cfs 2

100 5 90.5 s 1.105

Time to drain fourth slice: Average Q 5 Time 5

1.06 1 .969 5 1.0145 cfs 2

100 5 98.6 s 1.0145

Time to drain fifth slice: Average Q 5 Time 5

.969 1 .867 5 0.918 cfs 2

100 5 108.9 s .918

Total time 5 79.1 1 84.0 1 90.5 1 98.6 1 108.9 5 461.1 s Total time 5 461.1 s 5 7.69 min     (Answer) 9. h 5 7.5 in 3

1 ft 5 0.625 ft 12 in



c 5 2.5



u Q 5 c tan  H 5/2     (Equation 5-7) 2



Q 5 2.5(tan 45)(.625)5/2



Q 5 0.77 cfs    (Answer)

92690_ch5_ptg01_p039-050.indd 42

11/12/12 8:47 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      43

10. h 5 6.25 in 3

1 ft 5 0.521 ft 12 in



c 5 2.5



Q 5 c tan u H5/2    (Equation 5-7)



Q 5 2.5(tan 60)(.521)5/2



Q 5 0.85 cfs    (Answer)

11. H 5 0.55 ft

n 5 1    (one contraction)



L 5 Lr 2 0.1 nH    (Equation 5-5)



L 5 4.00 2 0.1(1)(.55)



L 5 3.945 ft



H c 5 3.27 1 0.40     (Equation 5-6) P .55 c 5 3.27 1 0.40 1.25 c 5 3.446



Q 5 cLH3/2



Q 5 (3.446)(3.945)(.55)3/2



Q 5 5.55 cfs    (Answer)



12. H 5 121.32 2 120.00 5 1.32 ft

n 5 0    (No contractions)



L 5 Lr 5 8.50r



H c 5 3.27 1 0.40     (Equation 5-6) P 1.32 c 5 3.27 1 .40 1.50 c 5 3.62



Q 5 cLH3/2    (Equation 5-4)



Q 5 (3.62)(8.50)(1.32)3/2



Q 5 46.7 cfs    (Answer)



Elev. 121.32

Channel Inv. 118.50 8.50′

92690_ch5_ptg01_p039-050.indd 43

© Cengage Learning 2014

Crest Elev. 120.00

11/12/12 8:47 AM

44      CHAPTER 5 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

13. H 5 0.82 ft, Lr 5 2.50 ft, P 5 1.75 ft, n 5 2.

L 5 Lr 2 0.1 nH    (Equation 5-5)



L 5 2.50 2 (.1)(2)(.82)



L 5 2.336 ft



H c 5 3.27 1 0.40     (Equation 5-6) P (.82) c 5 3.27 1 .40 1.75 c 5 3.457



Q 5 cLH3/2    (Equation 5-4)



Q 5 (3.457)(2.336)(.82)1.5



Q 5 5.996 cfs



Q 5 6.00 cfs    (Answer)



14. H 5 121.32 2 120.00 5 1.32 ft

c 5 2.90    (From Appendix A-5)



Q 5 cLH3/2    (Equation 5-4)



Q 5 (2.90)(8.50)(1.32)3/2



Q 5 37.4 cfs    (Answer)

15. First, calculate Q1 for the primary (lower) crest.

H 5 525.14 2 522.75 5 2.39 ft



c 5 3.02    (From Appendix A-5)



Q1 5 cLH3/2    (Equation 5-4)



Q1 5 (3.02)(1.50)(2.39)3/2



Q1 5 16.7 cfs



Next, calculate Q2 for the secondary crest.



L 5 10.00 2 1.50 5 8.50 ft



H 5 525.14 2 522.75 2 2.00



H 5 0.39 ft



c 5 2.61    (From Appendix A-5)



Q2 5 cLH3/2    (Equation 5-4)



Q2 5 (2.61)(8.50)(.39)3/2



Q2 5 5.4 cfs

92690_ch5_ptg01_p039-050.indd 44

11/12/12 8:47 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      45



Finally, find total Q.



Q 5 Q1 1 Q2



Q 5 16.7 1 5.4



Q 5 22.1 cfs    (Answer) Elev. 525.14

2.00′ 1.50′

Elev. 522.75

© Cengage Learning 2014

10.00′

16. Breadth 5 1.0 ft, L 5 12.0 ft, H 5 2.0 ft.

c 5 3.30     (Figure A-5)



Q 5 cLH3/2     (Equation 5-4)



Q 5 (3.30)(12.0)(2.0)1.5



Q 5 112 cfs    (Answer)

17. Breadth 5 7.0 ft    (by scale)

a)  L1 5 15 ft    (by scale) H1 5 322.10 2 320.0 5 2.1 ft c1 5 2.65    (Interpolated from Figure A-5) Q1 5 (2.65)(15)(2.1)1.5 Q1 5 121 cfs    (Answer)



b)  L1 5 15 ft H1 5 324.17 2 320.0 5 4.17 ft c1 5 2.68    (Interpolated from Figure A-5) Q1 5 (2.68)(15)(4.17)1.5 Q1 5 342 cfs L2 5 130 ft    (by scale) H2 5 324.17 2 324.0 5 0.17 ft c2 5 2.40    (Interpolated from Figure A-5) Q2 5 (2.40)(130)(.17)1.5 Q2 5 21.9 cfs Q 5 342 1 21.9 5 364 cfs    (Answer)

92690_ch5_ptg01_p039-050.indd 45

11/12/12 8:47 AM

46      CHAPTER 5 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL



c)  L1 5 15 ft H1 5 325.24 2 320.0 5 5.24 ft c1 5 2.76    (Interpolated from Figure A-5) Q1 5 (2.76)(15)(5.24)1.5 Q1 5 497 cfs L2 5 130 ft H2 5 325.24 2 324.0 5 1.24 ft c2 5 2.67    (Interpolated from Figure A-5) Q2 5 (2.67)(130)(1.24)1.5 Q2 5 479 cfs L2 5 56 ft    (by scale) H2 5 325.24 2 325.0 5 0.24 ft c2 5 2.42    (Interpolated from Figure A-5) Q2 5 (2.42)(56)(.24)1.5 Q2 5 15.9 cfs Q 5 497 1 479 1 15.9 Q 5 992 cfs Q 5 990 cfs    (Answer)

18. a 5 1/ 2(4.00)(6.25) 5 12.50 ft2 h 5 12.72 2 c 5 0.77

1 6.25 a b 5 11.1575 ft 2 2

Q 5 ca"2gh     (Equation 5-3) Q 5 (.77)(12.50)"2(32.2)(11.1575) Q 5 258 cfs    (Answer) p2 v22 v12 1 5 h2 1 1 he 1 h f 19. a)  h1 1 g 2g 2g v1 5 0 due to negligible water movement in the pool p2 5 0 no pressure at free discharge he 5 0 neglect entrance losses h1 2 h2 5

92690_ch5_ptg01_p039-050.indd 46

v22 L v22 1f 2g D 2g

11/12/12 8:47 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      47

10.0 5

v22 v22 50 1f 2(32.2) .083 2(32.2)

644 5 v22(1 1 600f )

Solve this equation by use of the Moody Diagram. e 5 0.000005    (Table 4-1) e .000005 5 5 0.00006 D .083 Trial 1:  f 5 0.02    (assumed value of f ) v22 5

644 1 1 600(.02)

v22 5 49.54 v2 5 7.04 ft/s NR 5

(.083)(7.04) 5 5.86 3 104 1 3 1025

f 5 0.02    (from Moody Diagram) (OK) v2 5 7.04 ft/s a5

p(.083)2 pD2 5 5 0.00544 ft2 4 4

Q 5 v2a Q 5 (7.04)(.00544) Q 5 0.038 cfs    (Answer)

b) Divide the pool into four horizontal 1-foot thick slices as shown below. Compute ­discharge at each slice and then compute the time to drain each slice.

6.0′ 2.0′

92690_ch5_ptg01_p039-050.indd 47

© Cengage Learning 2014

1.0′

11/12/12 8:47 AM

48      CHAPTER 5 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

6-foot level: Q 5 0.038 cfs    (from Part a) 5-foot level: v22 v22 50 9.0 5 1f 2(32.2) .083 2(32.2)

579.6 5 v22(1 1 600f )

f 5 0.02 v2 5 6.68 ft/s Q 5 (6.68)(.00544) Q 5 0.036 cfs 4-foot level: 8.0 5

v22 v22 50 1f 2(32.2) .083 2(32.2)

515.2 5 v22(1 1 600f )

f 5 0.021 v2 5 6.15 ft/s Q 5 (6.15)(.00544) Q 5 0.033 cfs 3-foot level: v22 v22 50 1f 7.0 5 2(32.2) .083 2(32.2)

450.8 5 v22(1 1 600f )

f 5 0.0215 v2 5 5.69 ft/s Q 5 (5.69)(.00544) Q 5 0.031 cfs 2-foot level: v22 v22 50 1f 6.0 5 2(32.2) .083 2(32.2)

386.4 5 v22(1 1 600f )

f 5 0.022 v2 5 5.22 ft/s Q 5 (5.22)(.00544) Q 5 0.028 cfs

92690_ch5_ptg01_p039-050.indd 48

11/12/12 8:47 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      49

Time to drain first (top) slice: Average Q 5

.038 1 .036 5 0.037 cfs 2

Volume of each slice 5 (8.00)(12.00)(1.00) 5 96.0 ft3 Time 5

Vol. 96.0 5 5 2595 s Q .037

Time to drain second slice: Average Q 5 Time 5

.036 1 .033 5 0.0345 cfs 2

96.0 5 2783 s .0345

Time to drain third slice: Average Q 5 Time 5

.033 1 .031 5 0.032 cfs 2

96.0 5 3000 s .032

Time to drain fourth slice: Average Q 5 Time 5

.031 1 .028 5 0.0295 cfs 2

96.0 5 3254 s .0295

Total time 5 2595 1 2783 1 3000 1 3254 5 11,632 s Total time 5 193.9 min Total time 5 3.23 hours    (Answer) 20. h1 5 h2 1

f(L) v22 v22 1 2g D 2g

1125.0 5 (1032.0 1 7.5) 1

f(1230) v22 v22 1 2(32.2) 15 2(32.2)

85.5(64.4) 5 v22(1 1 82f )

5506 5 v22(1 1 82f )

92690_ch5_ptg01_p039-050.indd 49

11/12/12 8:47 AM

50      CHAPTER 5 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Solve this equation by use of the Moody diagram. e 5 0.001    (Table 4-1) e .001 5 5 0.000067 D 15 Trial 1:  f 5 0.02 v22 5

5506 1 1 82(.02)

v22 5 2086 v2 5 45.7 ft/s NR 5

(15)(45.7) 5 6.9 3 107    (From Equation 4-1) 1 3 1025

f 5 0.011    (From Moody chart) Trial 2:  f 5 0.011 v22 5

5506 1 1 82(.011)

v22 5 2895 v2 5 53.8 ft/s NR 5

(15)(53.8) 5 8.1 3 107    (From Equation 4-1) 1 3 1025

f 5 0.011    (From Moody chart) (OK) v2 5 53.8 ft/s    (Answer) Q 5 v2a     (Equation 4-3) a 5 pr2 5 p(7.5)2 5 176.7 ft2 Q 5 (53.8)(176.7) Q 5 9507 cfs Q 5 9500 cfs    (Answer)

92690_ch5_ptg01_p039-050.indd 50

11/12/12 8:47 AM

C h a p t e r

6 Open Channel Hydraulics

1. slope 5 slope 5

drop length 3.75 200

slope 5 0.01875 ft/ft slope 5 1.88%    (Answer) 2. slope 5

drop length

slope 5

423.92 2 422.05 150 2 100

slope 5

1.87 50

slope 5 0.0374 ft/ft slope 5 3.74%    (Answer) 3. (a)  a 5 (6.0)(2.45) 5 14.7 ft2    (Answer) (b)  p 5 (2)(2.45) 1 6.0 5 10.9 ft    (Answer) (c)  R 5 4. a 5 a5

a 14.7 5 5 1.35 ft    (Answer) p 10.9

Q     (Equation 4-3) v 210 5.45

a 5 38.5 ft2    (Answer) 51

92690_ch6_ptg01_p051-057.indd 51

11/12/12 8:49 AM

52      CHAPTER 6 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

5. (a)  a 5

8.5 2 4.5 (1.50) 5 9.75 ft2    (Answer) 2



(b)  p 5 (2)(2.5) 1 4.5 5 9.5 ft    (Answer)



(c)  R 5

6. (a)  a 5

a 9.75 5 5 1.03 ft    (Answer) p 9.5 8.0 1 5.0 (3.0) 5 19.5 ft2    (Answer) 2

(b)  p 5 "(1.5)2 1 (3.0)2 1 5.0 1 "(1.5)2 1 (3.0)2 5 11.7 ft    (Answer) (c)  R 5

a 19.5 5 5 1.67 ft    (Answer) p 11.7

7. (a)  Dn 5 2 1 0.5 5 2.5 ft    (Answer)

(b)  a 5 (2)(.5) 1 c



(d)  R 5

10 1 22 d (2) 5 33 ft2    (Answer) 2

(c)  p 5 "22 1 62 1 4 1 .5 1 2 1 .5 1 2 1 .5 1 4 1 "22 1 62 5 23.6 ft    (Answer)

8. (a)  a 5

a 33 5 5 1.40 ft    (Answer) p 23.6

24.0 1 4.00 (5.0) 5 70 ft2    (Answer) 2



(b)  p 5 (2)"(5.0)2 1 (10.0)2 1 4.00 5 26 ft    (Answer)



(c)  R 5

a 70 5 5 2.69 ft    (Answer) p 26

9. (a)  Dn 5 3.8 ft   (by scale)    (Answer)

(b)  a 5 (3.8)(8.0) 5 30.4 ft2    (Answer)



(c)  p 5 3.8 1 8.0 1 3.8 5 15.6 ft   (by scale)    (Answer)



(d)  R 5

a 30.4 5 5 1.95 ft    (Answer) p 15.6

10. (a)  Dn 5 4.5 ft   (by scale)    (Answer)

(b)  a 5 c



(d)  R 5

23.7 1 6.0 d (4.5) 5 66.8 ft2    (Answer) 2

(c)  p 5 9.8 1 6.0 1 9.8 5 25.6 ft   (by scale)    (Answer) a 66.8 5 5 2.61 ft    (Answer) p 25.6

11. (a)  Dn 5 3.7 ft   (by scale)    (Answer)

(b)  a 5 1/2(18.3)(3.7) 5 33.9 ft2    (Answer)



(c)  p 5 5.2 1 14.9 5 20.1 ft   (by scale)    (Answer)



(d)  R 5

92690_ch6_ptg01_p051-057.indd 52

a 33.9 5 5 1.69 ft    (Answer) p 20.1

11/12/12 8:49 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      53

12. (a)  Dn 5 5.15 ft   (by scale)    (Answer)

(b)  a 5 1/2(8.75)(.9) 1 (8.75)(.85) 1 c



(d)  R 5

16.0 1 20.0 d (3.4) 5 73 ft2    (Answer) 2

(c)  p 5 3.4 1 4.0 1 .85 1 4.5 1 4.5 1 .85 1 3.3 1 5.0 5 26.4 ft    (Answer) a 73 5 5 2.75 ft    (Answer) p 26.4

13. (a)  Dn 5 5.6 ft   (by scale)    (Answer)

(b)  a 5 c

18.2 1 22.0 d (5.6) 1 (6.8)(3.2) 5 134 ft2    (Answer) 2

(c) The inclined sides cannot be measured directly using an exaggerated scale. Use the Pythagorean Theorem.    Left side: length 5 "(5.6)2 1 (25)2 5 25.6 ft

   Middle side: length 5 "(2.4)2 1 (6.0)2 5 6.5 ft

   Right side: length 5 "(3.2)2 1 (7.5)2 5 8.2 ft



   p 5 25.6 1 18.2 1 6.5 1 6.8 1 8.2 5 65.3 ft    (Answer)



(d)  R 5

a 134 5 5 2.05 ft    (Answer) p 65.3

14. (a)  Dn 5 4.8 ft   (by scale)     (Answer)

(b) To measure area use CAD software or divide the area into vertical strips and measure each incremental area. Following is measurement of eight strips. (since the channel is symmetrical, four strips will be measured and the area doubled.



   strip 1: a 5 1(2.0)(2.0) 5 2.0 ft2



   strip 2: a 5 c

2.0 1 3.5 d 12.02 5 5.5 ft2 2

   strip 4: a 5 c

4.3 1 4.8 d (2.0) 5 9.1 ft2 2



   strip 3: a 5 c

3.5 1 4.3 d (2.0) 5 7.8 ft2 2

   a 5 2(2.0 1 5.5 1 7.8 1 9.1) 5 48.8 ft2    (Answer)



(c) To estimate wetted perimeter, measure the length of each strip. (Make four measurements and double the length.)



   strip 1: p 5 2.8 ft



   strip 2: p 5 2.4 ft



   strip 3: p 5 2.2 ft



   strip 4: p 5 2.0 ft



   p 5 2(2.8 1 2.4 1 2.2 1 2.0) 5 18.8 ft    (Answer)



(d) R 5

92690_ch6_ptg01_p051-057.indd 53

a 48.8 5 5 2.60 ft    (Answer) p 18.8

11/12/12 8:49 AM

54      CHAPTER 6 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

15. T 5 8.0 ft, Q 5 125 cfs. Dc 5 c

Dc 5 c

Q2 1/3 d     (Equation 6-3) T2g 1/3 1252 d 18.02 2(32.2)

Dc 5 2.0 ft    (Answer)

16. Q 5 100 cfs. Find Dc using Equation 6-2 solved by trial and error. Q2 (100)2 5 310.6 5 g 32.2 Trial

Dc (ft)

a (ft2)

a3

T (ft)

a3/T

1

1.0

5.5

  166

6.0

  28

2

2.0

12.0

1728

7.0

247

3

3.0

19.5

7415

8.0

927

4

2.14

12.99

2192

7.14

307

(OK)

Therefore, Dc 5 2.14 ft    (Answer) 17. Q 5 200 cfs. Find Dc using Equation 6-2 solved by trial and error. Q2 (200)2 5 1242 5 g 32.2 Trial

Dc (ft)

a (ft2)

T (ft)

a

a3/T

1

1.0

6.0

   216

8.0

   27

2

2.0

16.0

  4096

12.0

  341

3

3.0

30.0

27000

16.0

1688

4

2.78

26.58

18772

15.12

1242

3

(OK)

Therefore, Dc 5 2.78 ft    (Answer) Note: Check this answer using Chart 17 in Appendix A-3. 18. Q 5 350 cfs. Find Dc using Equation 6-2 solved by trial and error. Q2 (350)2 5 3804 5 g 32.2 Trial

Dc (ft)

a (ft2)

a3

T (ft)

a3/T

1

2.0

10.2

  1061

10.2

  104

2

3.0

22.8

11852

15.2

  780

3

4.0

40.0

64000

20.0

3200

4

4.2

43.3

80958

20.6

3930

(OK)

Therefore, Dc 5 4.2 ft    (Answer)

92690_ch6_ptg01_p051-057.indd 54

11/12/12 8:49 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      55

19. Q 5 650 cfs. Find Dc using Equation 6-2 solved by trial and error. Q2 (650)2 5 13,121 5 g 32.2 Trial

Dc (ft)

1

2.0

2

a (ft2)

a3

T (ft)

a3/T

28

  21952

18.0

  1220

3.0

48

110592

22.0

  5027

3

4.0

72

373248

26.0

14356

4

3.90

69.4

334544

25.6

13068 (OK)

Therefore, Dc 5 3.90 ft    (Answer) Note: Check this answer using Chart 23 in Appendix A-3. 20. Q 5 150 cfs. Find Dc using Equation 6-2 solved by trial and error. Q2 (150)2 5 699 5 g 32.2 Trial

Dc (ft)

a (ft2)

a3

T (ft)

a3/T

1

1.0

7.0

   343

9.0

   38

2

2.0

18.0

  5832

13.0

  449

3

3.0

33.0

35937

17.0

2114

4

2.25

21.4

9766

14.0

  698

(OK)

Therefore, Dc 5 2.25 ft    (Answer) Note: Check this answer using Chart 18 in Appendix A-3. 21. Q 5 115 cfs. Find velocity using Equation 4-10. Find the Froude number using Equation 6-4. a 5 18 ft2 v5 F5

Q 115 5 5 6.4 ft/s    (Answer) a 18 v "gD

5

6.4 "(32.2)(2.0)

5 0.80    (Answer)

Flow is subcritical (F , 1)    (Answer) 22. Q 5 180 cfs. Find the Froude number using Equation 6-4. a 5 (15.0)(1.2) 5 18 ft2 v5 F5

Q 180 5 5 10 ft/s a 18 v "gD

5

10 "(32.2)(1.2)

5 1.6    (Answer)

Flow is supercritical (F . 1)    (Answer)

92690_ch6_ptg01_p051-057.indd 55

11/12/12 8:49 AM

56      CHAPTER 6 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

23. Q 5 300 cfs. Find the Froude number using Equation 6-5. a 5 19.1 ft2 v5

Q 300 5 5 15.7 ft/s a 19.1

Dh 5 F5

a 19.1 5 5 1.47 ft T 13.0 v

"gDh

5

15.7 "(32.2)(1.47)

5 2.28    (Answer)

Flow is supercritical (F . 1)    (Answer) 24. Q 5 450 cfs. Find the Froude number using Equation 6-5. a 5 37.5 ft2 v5

Q 450 5 5 10.7 ft/s a 37.5

Dn 5 F5

a 37.5 5 5 1.88 ft T 20 v

"gDn

5

10.7 "(32.2)(1.88)

5 1.38    (Answer)

Flow is supercritical (F . 1)    (Answer)

Dn (ft)

y (ft/s)

E (ft)

0.5 1.0 1.5 2.0 2.1 2.2 2.3 2.4 2.5 3.0 4.0 5.0

40.0 20.0 13.3 10.0   9.5   9.1   8.7   8.3   8.0   6.7   5.0   4.0

25.3   7.2   4.2   3.6   3.5   3.49   3.47   3.48   3.5   3.7   4.4   5.2

© Cengage Learning 2014

25. See Table 1 and Figure 1.

TABLE 1  Values of Dn vs. E for problem 25.

92690_ch6_ptg01_p051-057.indd 56

11/12/12 8:49 AM

D (ft)

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      57

5 4 3

Dc = 2.3′ 2

1

2

3

4

5

6 E (ft)

7

8

9

10

© Cengage Learning 2014

1

FIGURE 1  Graph of Dn vs. E for problem 25.

92690_ch6_ptg01_p051-057.indd 57

11/12/12 8:49 AM

C h a p t e r

7 Uniform Flow in Channels

1. Dn 5 1.25 ft, so 5 2.50%. Find discharge using Equation 7-2. a 5 15.02 11.252 5 6.25 ft2

p 5 15.02 1 211.252 5 7.5 ft

R5

a 6.25 5 5 0.833 ft p 7.5

1a2   Q 5 16.252

1.49 1.8332 2/3 1.0252 1/2 .014

Q 5 93.1 cfs    (Answer)

1b2  v 5

Q 93 5 5 14.9 ft/s    (Answer) a 6.25

2. Dn 5 2.9 ft, so 5 0.47%. Find discharge using Equation 7-2. a 5 13.752 12.92 5 10.88 ft2

p 5 13.752 1 212.92 5 9.55 ft

R5

a 10.88 5 5 1.14 ft p 9.55

1a2   Q 5 110.882

1.49 11.142 2/3 1.00472 1/2 .016

Q 5 76 cfs    (Answer)

(b)  v 5

Q 76 5 5 7.0 ft/s    (Answer) a 10.88

58

92690_ch7_ptg01_p058-066.indd 58

11/12/12 9:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    59

3. Dn 5 2.35 ft, so 5 1.1%. Find discharge using Equation 7-2. a 5 21.03 ft2 (Trapezoid) p 5 14.252 1 215.252 5 14.76 ft

R5

a 21.03 5 5 1.42 ft p 14.76

1a2  Q 5 121.032

1.49 11.422 2/3 1.0112 1/2 .027

Q 5 154 cfs    (Answer)

1b2 v 5

Q 154 5 5 7.31 ft/s    (Answer) a 21.03

4. Dn 5 3.0 ft, so 5 4.2%. Find discharge using Equation 7-2. a 5 46.5 ft2 (Trapezoid) p 5 18.02 1 218.082 5 24.16 ft

R5

a 46.5 5 5 1.93 ft p 24.16

1a2  Q 5 146.52

1.49 11.932 2/3 1.0422 1/2 .024

Q 5 916 cfs    (Answer)

1b2 v 5

Q 916 5 5 19.7 ft/s    (Answer) a 46.5

© Cengage Learning 2014

5. Channel cross section is shown below:

D

20.0′

Find Q using Equation 7-2 solved by trial and error. 1.49 1/2 s 5 9.926 n o

1

D 1ft2

1.0

a 1ft2 2

20

p 1ft2

2

2.0

40

24

1.67

1.41

558

3

1.5

30

23

1.30

1.19

356

4

1.49

29.8

23

1.30

1.19

352  (OK)

Trial

22

R 1ft2

.909

R2/3 .938

Q 1cfs2 186

D 5 1.49 ft    (Answer)

92690_ch7_ptg01_p058-066.indd 59

11/12/12 9:31 AM

60    CHAPTER 7 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

6. Channel cross section is shown below: 1

1

2 © Cengage Learning 2014

2

D 3.00′

Find D using Equation 7-2 solved by trial and error. 1.49 1/2 1.49 s 5 1.012 1/2 5 6.208 n o .024

1

D 1ft2

2.0

a 1ft2 2

14

p 1ft2

11.9

R 1ft2

1.18

1.11

Q 1cfs2

2

3.0

27

16.4

1.65

1.39

234

3

2.2

16.28

12.8

1.27

1.17

119

4

2.26

17.00

13.11

1.30

1.19

125  (OK)

Trial

2/3

R

  97

D 5 2.26 ft    (Answer) 7. Dn 5 2 ft, so 5 1.75%. Find discharge using Equation 7-2. n 5 0.013    (Appendix A-1) a 5 32 1 1.0 5 33 ft2 (Trapezoid and rectangle) p 5 216.322 1 2142 1 21.52 1 2 5 23.65 ft R5

a 33 5 5 1.40 ft p 23.65

1a2  Q 5 1332

1.49 11.402 2/3 1.01752 1/2 .013

Q 5 626 cfs    (Answer)

1b2 v 5

Q 626 5 5 19 ft/s    (Answer) a 33

8. Q 5 56 ft, Dn 5 1.50 ft. Find average velocity using Equation 4-3. a 5 16.02 11.502 5 9.0 ft2 v5

Q 56 5 5 6.2 ft/s    (Answer) a 9.0

9. Q 5 210 ft, v 5 5.45 ft/s. Find cross sectional area using Equation 4-3. a5

Q 210 5 5 38.5 ft2 v 5.45

92690_ch7_ptg01_p058-066.indd 60

11/12/12 9:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    61

10. so 5 0.62%. Find discharge using Equation 7-2. n 5 0.013    (Appendix A-1) 16.0 1 20.0 a 5 12 18.752 1.92 1 18.752 1.852 1 c d 13.42 5 73 ft2 2

p 5 3.4 1 4.0 1 .85 1 4.5 1 4.5 1 .85 1 3.3 1 5.0 5 26.4 ft

R5

a 73 5 5 2.75 ft p 26.4

1a2  Q 5 1732

1.49 12.752 2/3 1.00622 1/2 .013

Q 5 1,294 cfs

Q 5 1,300 cfs    (Answer) 1b2 v 5

Q 1294 5 5 18 ft/s    (Answer) a 73

11. Q 5 225 cfs, so 5 2.0%. Find normal depth using Equation 7-2 solved by trial and error. 1.49 1/2 1.49 s 5 1.0202 1/2 5 17.56 n o .012

1

Dn 1ft2

1.0

a 1ft2 2

7.0

p 1ft2

R 1ft2

0.739

0.817

Q 1cfs2

2

2.0

18.0

13.9

1.29

1.19

375

3

1.5

12.0

11.7

1.02

1.02

214

4

1.54

12.44

11.86

1.05

1.03

226  (OK)

Trial

9.47

R2/3

100

Therefore, Dn 5 1.54 ft    (Answer) Note: Check this answer using Chart 18 in Appendix A-3. 12. Dn 5 2.25 ft, v 5 7.32 ft/s. Find discharge using Equation 4-3. a 5 19.13 ft2 Q 5 va 5 17.322 119.132 5 140 cfs    (Answer)

13. a 5 134 ft2 p 5 65.3 ft

R 5 2.05 ft n 5 0.0325    (Appendix A-1) so 5 2.25% (a)  To find Q use Manning’s equation. Q 5 11342

1.49 12.052 2/3 1.02252 1/2 .0325

Q 5 1,487 cfs    (Answer)

92690_ch7_ptg01_p058-066.indd 61

11/12/12 9:31 AM

62    CHAPTER 7 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

(b)  v 5 v5

Q a 1487 5 11.1 ft/s    (Answer) 134

14. a 5 48.8 ft2 p 5 18.8 ft R 5 2.60 ft n 5 0.028    (Appendix A-1) so 5 3.00% (a)  To find Q use Manning’s equation. Q 5 148.82

1.49 12.602 2/3 1.03002 1/2 .028

Q 5 851 cfs    (Answer) (b)  v 5 v5

Q a 851 5 17.4 ft/s    (Answer) 48.8

15. Q 5 300 cfs, so 5 1.25%. Find normal depth using Equation 7-2 solved by trial and error. n 5 0.013    (Appendix A-1) 1.49 1/2 1.49 s 5 1.01252 1/2 5 12.81 n o .013

1

Dn 1ft2

1.0

a 1ft2 2

6.75

14.2

2

2.0

22.75

20.5

Trial

p 1ft2

R 1ft2

.475 1.11

R2/3 .609 1.07

Q 1cfs2   53

312  (OK)

Therefore, Dn 5 2.0 ft    (Answer) 16. Q 5 600 cfs, so 5 2.0%. Find normal depth using Equation 7-2 solved by trial and error. n 5 0.013    (Appendix A-1) 1.49 1/2 1.49 s 5 1.0202 1/2 5 16.21 n o .013

1

Dn 1ft2

2.0

a 1ft2 2

15.5

18.7

2

3.0

32.8

21.1

1.55

1.34

714

3

2.8

29.3

20.6

1.42

1.26

601  (OK)

Trial

p 1ft2

R 1ft2

.829

R2/3 .882

Q 1cfs2 222

Therefore, Dn 5 2.8 ft    (Answer)

92690_ch7_ptg01_p058-066.indd 62

11/12/12 9:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    63

17. a 5 1/2

pd2 p32 5 1/2 4 4

a 5 3.534 ft2 v5

Q     (Equation 4-3) a

v5

15 3.534

v 5 4.2 ft/s    (Answer) 18. Use Manning’s Equation for full flow. a5

p11.252 2 pd 2 5 5 1.227 ft2 4 4

p 5 pd 5 p11.252 5 3.927 ft R5

a 1.227 5 5 0.312 ft    (Equation 6-1) p 3.927

Q 5 11.2272

1.49 1.3122 2/3 1.01252 1/2    (Equation 7-2) .015

Q 5 6.27 cfs    (Answer)

19. Use Manning’s Equation for full flow. a5

p132 2 pd 2 5 5 7.069 ft2 4 4

p 5 pd 5 p132 5 9.425 ft R5

a 7.069 5 5 0.750 ft p 9.425

Q 5 17.0692

1.49 1.7502 2/3 1.0082 1/2    (Equation 7-2) .012

Q 5 64.8 cfs    (Answer)

20. Use Manning’s Equation for full flow. p1.672 2 pd 2 5 5 0.349 ft2 a5 4 4 p 5 pd 5 p1.672 5 2.09 ft R5

a .349 5 5 0.167 ft p 2.09

Q 5 1.3492

1.49 1.1672 2/3 1.0252 1/2 .009

Q 5 2.77 cfs    (Answer)

92690_ch7_ptg01_p058-066.indd 63

11/12/12 9:31 AM

64    CHAPTER 7 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

21. Q 5 75 cfs, so 5 1.20%. Find normal depth using Equation 7-2 solved by trial and error. Find cross sectional areas and wetted perimeters using Figure 7-3. Area of 60-inch pipe 5 p12.52 2 5 19.63 ft2 Perimeter of 60-inch pipe 5 p152 5 15.71 ft 1.49 1/2 1.49 s 5 1.01202 1/2 5 13.60 n o .012

1

Dn 1ft2

1.0

a 1ft2 2

2.75

4.56

2

2.0

7.26

6.91

3

1.7

5.89

6.28

Trial

p 1ft2

R 1ft2

R2/3

.603 1.05

.714 1.03

.938

.958

Q 1cfs2   27 102   77  (OK)

Therefore, Dn 5 1.7 ft    (Answer) Note: Check this answer using Chart 47 in Appendix A-4. 22. Q 5 50 cfs, so 5 1.90%. Find normal depth using Equation 7-2 solved by trial and error. Find cross sectional areas and wetted perimeters using Figure 7-3. Area of 48-inch pipe 5 p12.02 2 5 12.57 ft2 Perimeter of 48-inch pipe 5 p152 5 12.57 ft 1.49 1/2 1.49 s 5 1.01902 1/2 5 17.12 n o .012

1

Dn 1ft2

1.0

a 1ft2 2

2.39

4.15

2

2.0

6.29

6.29

3

1.3

3.52

4.90

Trial

p 1ft2

R 1ft2

R2/3

.576 1.00

.692 1.00

.718

.802

Q 1cfs2   28 108   48  (OK)

Therefore, Dn 5 1.3 ft    (Answer) Note: Check this answer using Chart 45 in Appendix A-4. 23. Q 5 2.0 cfs. so 5 4.50%. Find normal depth using Equation 7-2 solved by trial and error. Find cross sectional areas and wetted perimeters using Figure 7-3. Area of 15-inch pipe 5

p11.252 2 5 1.227 ft2 4

Perimeter of 15-inch pipe 5 p11.252 5 3.927 ft

0.25

a 1ft2 2

.175

p 1ft2

1.16

R 1ft2

R

1

Dn 1ft2

.151

.415

Q 1cfs2

2

0.50

.458

1.71

.268

.283

4.0

3

0.35

.281

1.39

.202

.344

2.0  (OK)

Trial

2/3

1.0

Therefore, Dn 5 0.35 ft    (Answer) Note: Check this answer using Chart 36 in Appendix A-4.

92690_ch7_ptg01_p058-066.indd 64

11/12/12 9:31 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    65

24. Find elevation using Manning’s Equation separately for channel and overbanks. Solve by trial and error. Left Overbank:

n 5 0.060    (From Appendix A-1)



1.49 1/2 s 5 0.8236 n o

Channel:

n 5 0.0425    (From Appendix A-1)



1.49 1/2 s 5 1.163 n o

Right Overbank: same as left overbank To solve Manning’s Equation, find a and p by scaling distances on the cross section (drawn to scale). Computations are shown in Table 2. Elevation 5 235.6    (Answer) Channel R.O.B. L.O.B. p R Q a p R Q Trial Elev. D a p R Q a 1ft2 1ft2 (ft2) (ft) (ft) (cfs) (ft2) (ft) (ft) (cfs) (ft2) (ft) (ft) (cfs) 1

230.0 3.7 –





85 –







2

232.0 5.7 3

6

.50 2 73.5 20 3.68 204 10 10.2 .98

3

234.0 7.7 24.8 16.8 1.47 26 104.5 20 5.23 366 41 20.8 1.97 53 445

4

236.0 9.7 65

26.5 2.45 97 135.5 20 6.78 565 96 32.5 2.95 163 825

5

235.6 9.3 55

25.5 2.16 76 129.3 20 6.47 522 84 30.5 2.75 136 734  (OK)

  85

8 214

© Cengage Learning 2014

– 42.5 19 2.24

TOTAL Q (cfs)

TABLE 2  Summary of computations of normal depth for the stream in Problem 24. 25. Find elevation using Manning’s Equation separately for channel and overbanks. Solve by trial and error. Left Overbank:

n 5 0.070



1.49 1/2 s 5 1.72 n o

Channel:

n 5 0.060



1.49 1/2 s 5 2.00 n o

Right Overbank:

n 5 0.135



1.49 1/2 s 5 0.890 n o

To solve Manning’s Equation, find a and p by scaling distances on the cross section (drawn to exaggerated scale). Computations are shown in Table 3. Graph is shown in Figure 2. Elevation 5 1208.80 1Dn 5 7.0 ft2    (Answer)

92690_ch7_ptg01_p058-066.indd 65

11/12/12 9:31 AM

66    CHAPTER 7 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

1 4.0 2 5.0 3 6.0 4 7.0 5 8.0

– – – – 12.5 25 .500 14 49 49 1.00 84 110 73 1.51 145 192 96 2.00 524

72 98 126 154 182

28 30 30 30 30

2.57 3.27 4.20 5.13 6.07

270 432 656 917 1212

– – 65 170 285

– – – – – – 102 .637 43 110 1.55 202 118 2.42 457

TOTAL Q (cfs)   270   446   783 1264 2193

© Cengage Learning 2014

L.O.B. Channel R.O.B. Trial D a p R Q a p R Q a p R Q (ft) (ft) (ft) (ft) (cfs) (ft) (ft) (ft) (cfs) (ft) (ft) (ft) (cfs)

TABLE 3  Summary of computations of normal depth for the stream in Problem 25.

10.0

Depth (ft)

8.0 6.0 4.0

500

1000 1500 Discharge (cfs)

2000

2500

© Cengage Learning 2014

2.0

FIGURE 2  Stream rating curve for Problem 25.

92690_ch7_ptg01_p058-066.indd 66

11/12/12 9:31 AM

C h a p t e r

8 Varied Flow in Channels

1. Q 5 225 cfs, so 5 0.50%. Find normal depth using Equation 7-2 solved by trial and error. Find Fraude number using Equation 6-4. 1.49 1/2 1.49 s 5 1.0052 1/2 5 7.02 n o .015

1

Dn 1ft2

2.0

a 1ft2 2

12.0

p 1ft2

10.0

R 1ft2

1.20

1.13

Q 1cfs2

2

3.0

18.0

12.0

1.50

1.31

166

3

4.0

24.0

14.0

1.71

1.43

242

4

3.8

22.8

13.6

1.68

1.41

226  (OK)

Trial

R2/3

  95

Therefore, Dn 5 3.8 ft Note: Check this result using Chart 5 in Appendix A-3. v5 F5

Q 226 5 5 9.9 ft/s a 22.8 v "gD

5

9.9 "132.22 13.82

5 0.89

Flow is subcritical 1F , 12    (Answer)

2. Q 5 225 cfs, so 5 1.0%. Find normal depth using Equation 7-2 solved by trial and error. Find Fraude number using Equation 6-4. 1.49 1/2 1.49 s 5 1.0052 1/2 5 9.93 n o .015

67

92690_ch8_ptg01_p067-074.indd 67

11/12/12 9:33 AM

68      CHAPTER 8 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

1

Dn 1ft2

2.0

a 1ft2 2

12.0

p 1ft2

10.0

R 1ft2

1.20

1.13

Q 1cfs2

2

3.0

18.0

12.0

1.50

1.31

234

3

2.9

17.4

11.8

1.47

1.30

224  (OK)

Trial

R2/3

135

Therefore, Dn 5 2.9 ft (Note: Check this result using Chart 5 in Appendix A-3.) v5 F5

Q 224 5 5 12.87 ft/s a 17.4 v "gD

5

12.87 "132.22 12.92

5 1.33

Flow is supercritical 1F . 12    (Answer)

3. Q 5 50 cfs, so 5 1.0%. Find normal depth using Equation 7-2 solved by trial and error. Find Fraude number using Equation 6-4. 1.49 1/2 1.49 s 5 1.0052 1/2 5 5.96 n o .025

1

Dn 1ft2

1.0

a 1ft2 2

6.0

p 1ft2

2

2.0

16.0

12.94

3

1.3

Trial

8.47

8.58

9.81

R 1ft2

.708 1.24 .874

R2/3 .795 1.15 .914

Q 1cfs2   28

110   47  (OK)

Therefore, Dn 5 1.3 ft v5

Q 47 5 5 5.5 ft/s a 8.58

Dh 5 F5

a 8.58 5 5 0.933 ft T 9.2 v

"gDh

5

5.5 "132.22 1.9332

5 1.00

Flow is critical 1F 5 12    (Answer)

4. Q 5 800 cfs. First, determine if flow is subcritical or supercritical. Dc 5 4.27 ft    (Equation 6-3) Dn 5 6.0 ft    (Equation 7-2, trial and error) Flow is subcritical 1Dn . Dc 2. Therefore, control section is at downstream end of channel reach. Set cross section locations at 200-ft intervals. Assume channel bottom elevation of 100.00 ft at Station 0 1 0. See Table 4. See Figure 3.    (Answer)

92690_ch8_ptg01_p067-074.indd 68

11/12/12 9:33 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      69

5. Q 5 200 cfs. First, determine if flow is subcritical or supercritical. Dn 5 2.8 ft

(Chart 21, Appendix A-3)

Dc 5 2.25 ft

(Chart 21, Appendix A-3)

Flow is subcritical 1Dn . Dc 2. Therefore, control section is at the downstream end of the channel reach. Set cross section locations at 100-ft intervals. See Table 5.

See Figure 4.    (Answer) Note: If the cross sections had been set at 200-ft intervals, the velocity would have varied by more than 20%. 6. First, determine whether the flow in the emergency spillway channel is subcritical or super-­ critical. For Q 5 50 cfs, Dc 5 0.67 ft and Dn 5 1.7 ft. For Q 5 300 cfs, Dc 5 2.25 ft and Dn 5 2.4 ft. Therefore, subcritical. Use Equation 7-2 and Equation 8-5 to find values of Dr. Dn (ft)

Q (cfs)

Dr (ft)

0.5

  47

1.03

1.0

142

2.23

1.5

270

3.46

7. First, determine whether the flow in the emergency spillway channel is subcritical or super-­ critical. For Q 5 50 cfs, Dc 5 0.67 ft and Dn 5 0.56 ft. For Q 5 200 cfs, Dc 5 1.7 ft and Dn 5 1.3 ft. Therefore, supercritical. Use Equation 6-2 and Equation 8-6 to find values of Dr. Dc (ft)

Q (cfs)

Dr (ft)

0.5

  32

0.75

1.0

  91

1.50

1.5

167

2.25

2.0

257

3.00

8. First, determine whether the flow in the emergency spillway channel is subcritical or super­critical. For Q 5 50 cfs, Dc 5 0.74 ft and Dn 5 1.4 ft. For Q 5 200 cfs, Dc 5 2.1 ft and Dn 5 2.9 ft. Therefore, subcritical. Use Equation 7-2 and Equation 8-5 to find values of Dr.

92690_ch8_ptg01_p067-074.indd 69

11/12/12 9:33 AM

92690_ch8_ptg01_p067-074.indd 70

8.0 8.0 7.8 7.77 7.54 7.53 7.30 7.10 6.90 6.73 6.58 6.46 6.36 6.28

108.0 108.4 108.2 108.17 108.34 108.33 108.50 108.70 108.90 109.13 109.38 109.66 109.96 110.28

  010

  210

  210

  210

  410

  410

  610

  810

1010

1210

1410

1610

1810

2010

© Cengage Learning 2014

(3) D (ft)

(2) Elev. (ft)

(1) Station

100.5

101.8

103.4

105.3

107.7

110.4

113.6

116.8

120.5

120.6

124.3

124.8

128

128

(4) a (ft2)

7.96

7.86

7.74

7.60

7.43

7.25

7.04

6.85

6.64

6.63

6.44

6.41

6.25

6.25

(5) v (ft/s)

0.98

0.96

0.93

0.90

0.86

0.82

0.77

0.73

0.68

0.68

0.64

0.64

0.61

0.61

(6) v2/2g (ft)

111.26

110.92

110.59

110.28

109.99

109.72

109.47

109.23

109.01

109.02

108.81

108.84

109.01

108.61

(7) H (ft)

3.52

3.54

3.58

3.61

3.66

3.70

3.76

3.82

3.88

3.88

3.94

3.95

4.0

4.0

(8) R (ft)

5.35

5.40

5.46

5.54

5.63

5.73

5.85

5.96

6.09

6.09

6.22

6.24

6.35

6.35

(9) R4/3

.0017

.0017

.0016

.0015

.0014

.0013

.0012

.0012

.001

.001

.001

.001

.0009

.0009

(10) s

.00170

.00165

.00155

.00145

.00135

.00125

.0012

.0011

.001

.001

.001

.001

.0009



(11) s

200

200

200

200

200

200

200

200

200

200

200

200

200



(12) Dist (ft)

0.34

0.33

0.31

0.29

0.27

0.25

0.24

0.22

0.20

0.20

0.20

0.20

0.18



(13) hf (ft)

0

0

0

0

0

0

0

0

0

0

0

0

0



(14) he (ft)

111.26

110.92

110.5

110.2

109.9

109.7

109.4

109.23

109.0

109.0

108.8

103.8

103.7

108.6

(15) H (ft)

70      CHAPTER 8 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

TABLE 4  Computation of backwater profile for Problem 4.

11/12/12 9:33 AM

92690_ch8_ptg01_p067-074.indd 71

© Cengage Learning 2014

Datum 98 ft 20 + 0

18 + 0

16 + 0

12 + 0

10 + 0

Channel Profile Scale: Horiz. 1″ = 300′ Vert. 1″ = 3′

14 + 0

8+0

om

el Bott

Chann

6+0

h Line

l Dept

Critica

h Line

l Dept

Norma

Water Surface

4+0

2+0

Elev. 100.0

0+0

8.0′

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      71

FIGURE 3

11/12/12 9:33 AM

92690_ch8_ptg01_p067-074.indd 72

5.00 4.60 4.55 4.10 3.85 3.65 3.68 3.23 3.33 3.10 3.06 2.84 2.89

205.00 205.10 205.05 205.10 205.35 205.15 205.18 205.28 205.33 205.60 205.56 205.84 205.89

010

110

110

210

310

310

310

410

410

510

510

610

610

© Cengage Learning 2014

(3) D (ft)

(2) Elev. (ft)

(1) Station

39.8

38.85

43.2

44.0

48.8

47.8

56.52

55.85

60.45

66.42

77.81

79.12

90.0

(4) a (ft2)

5.02

5.15

4.63

4.54

4.10

4.19

3.54

3.58

3.31

3.01

2.57

2.53

2.22

(5) v (ft/s)

.39

.41

.33

.32

.26

.27

.19

.20

.17

.14

.103

.099

.077

(6) v2/2g (ft)

206.28

206.25

205.89

205.92

205.59

205.55

205.37

205.35

205.52

205.24

205.15

205.20

205.08

(7) H (ft)

1.90

1.88

1.99

2.01

2.13

2.11

2.31

2.30

2.40

2.52

2.74

2.77

2.96

(8) R (ft)

2.36

2.31

2.51

2.54

2.74

2.70

3.05

3.03

3.21

3.43

3.84

3.89

4.26

(9) R4/3

.0043

.0047

.0035

.0033

.0025

.0026

.0017

.0017

.0014

.0011

.00070

.00067



(10) s

.0039

.0041

.003

.029

.0021

.0022

.0014

.0014

.00125

.0009

.00070

.00067



(11) s

100

100

100

100

100

100

100

100

100

100

100

100



(12) Dist (ft)

0.39

0.41

0.30

0.29

0.21

0.22

0.14

0.14

0.13

0.09

0.07

0.07



(13) hf (ft)

0

0

0

0

0

0

0

0

0

0

0

0



(14) he (ft)

206.28

206.30

205.89

205.88

205.59

205.60

205.38

205.38

205.37

205.24

205.15

205.15

205.08

(15) H (ft)

72      CHAPTER 8 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

TABLE 5  Computation of backwater profile for Problem 5.

11/12/12 9:33 AM

92690_ch8_ptg01_p067-074.indd 73

© Cengage Learning 2014

Datum 198 ft 6+0

5+0

4+0

2+0

Channel Profile Scale: Horiz. 1″ = 100′ Vert. 1″ = 2′

3+0

ottom

nel B

Chan

al De pth L ine Critic al De pth L ine

Norm

1+0

Elev. 200.0

0+0

5.0′

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      73

FIGURE 4

11/12/12 9:33 AM

74      CHAPTER 8 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Dn (ft)

Q (cfs)

Dr (ft)

0.5

18

0.67

1.0

27

1.08

2.0

95

2.18

9. First, determine whether the flow in the emergency spillway channel is subcritical or super­- critical. For Q 5 50 cfs, Dc 5 0.74 ft and Dn 5 0.6 ft. For Q 5 200 cfs, Dc 5 2.1 ft and Dn 5 1.4 ft. Therefore, supercritical. Use Equation 6-2 and Equation 8-6 to find values of Dr. Dc (ft)

Q (cfs)

Dr (ft)

0.5

  20

0.71

1.0

  61

1.40

2.0

190

2.71

10. Q 5 525.0 cfs, Dn 5 0.6 ft. Find D1 and D2 using Equation 8-7 and Equation 6-4. D2 must match the sequent depth of 3.20 ft. Trial

D1 (ft)

a1 (ft2)

v1 (fts)

F1

D2 (ft)

1

0.5

10.0

52.5

13.1

4.4

2

1.0

20.0

26.3

4.6

2.8

3

0.75

15.0

35.0

7.1

3.4

4

0.83

16.6

31.6

6.1

3.2  (OK)

Therefore, the initial depth is 0.83 ft and the sequent depth is 3.2 ft. The height of the jump is 2.37 ft. The location of the jump is 3.0 ft left of Point A.    (Answer)

92690_ch8_ptg01_p067-074.indd 74

11/12/12 9:33 AM

C h a p t e r

9 Culvert Hydraulics

1. Q 5 20 cfs HW 5 1.48 D

(Appendix B-1, Chart 2, Scale 1)

HW 5 11.482 12.02 HW 5 2.96 ft

HW 5 3.0 ft    (Answer) 2. Q 5 45 cfs HW 5 1.76 D

(Appendix B-1, Chart 2, Scale 3)

HW 5 11.762 12.52

HW 5 4.4 ft    (Answer) 3. Q 5 285 cfs, twin 48-inch pipes Consider

Q 5 143 cfs for a single 48-inch pipe. 2

HW 5 2.0 D

(Appendix B-1, Chart 2, Scale 1)

HW 5 12.02 14.02

HW 5 8.00 ft    (Answer)

75

92690_ch9_ptg01_p075-080.indd 75

11/12/12 9:45 AM

76      CHAPTER 9 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

4. Q 5 125 cfs Q 125 5 5 20.83 cfs/ft B 6 HW 5 1.32 D

(Appendix B-1, Chart 1, Scale 1)

HW 5 11.322 13.02

HW 5 3.96 ft    (Answer) 5. Q 5 225 cfs ke 5 0.5

(Appendix B-3)

H 5 1.40 ft

(Appendix B-2, Chart 8)

Dc 5 2.9 ft

(Appendix A-3, Chart 7)

TWr 5

Dc 1 D 2.9 1 4.0 5 5 3.45 ft 2 2

Since TWr . TW, use TWr to find headwater depth. HW 5 TWr 1 H 2 Ls HW 5 3.45 1 1.40 2 1802 1.0062 HW 5 4.37 ft    (Answer)

6. Q 5 1620 cfs, triple 5r 3 12r box culvert Consider

Q 5 540 cfs for a single 5r 3 12r box culvert 3

ke 5 0.4

(Appendix B-3)

H 5 2.1 ft

(Appendix B-2, Chart 8)

Dc 5 4.0 ft

(Appendix A-3, Chart 10)

TWr 5

Dc 1 D 4.0 1 5.0 5 5 4.5 ft 2 2

Since TWr . TW, use TWr to find headwater depth. HW 5 TWr 1 H 2 Ls HW 5 4.5 1 2.1 2 11052 1.00752 HW 5 5.81 ft    (Answer) 7. Q 5 200 cfs Assume inlet control HW 5 1.52 D

(Appendix B-1, Chart 1)

HW 5 11.522 15.02 HW 5 7.6 ft

92690_ch9_ptg01_p075-080.indd 76

11/12/12 9:45 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      77

Assume outlet control ke 5 0.5

(Appendix B-3)

H 5 3.7 ft

(Appendix B-2, Chart 9)

Dc 5 4.0 ft

(Appendix A-4, Chart 47)

TWr 5 4.0 1 5.0 5 4.5 ft         2 Since TWr . TW, use TWr to find headwater depth. HW 5 TWr 1 H 2 Lso HW 5 4.5 1 3.7 2 12502 1.00552 HW 5 6.8 ft

Since 7.6 ft . 6.8 ft, culvert operates under inlet control, HW 5 7.6 ft    (Answer) 8. Q 5 25 cfs, twin 18-inch pipe Consider

Q 5 12.5 cfs for a single 18-inch pipe. 2

ke 5 0.5

(Appendix B-3)

H 5 1.7 ft

(Appendix B-2, Chart 9)

Dc 5 1.3 ft

(Appendix A-4, Chart 37)

TWr 5

Dc 1 D 1.3 1 1.5 5 5 1.4 ft 2 2

Since TWr , TW, use TW to find headwater depth. HW 5 TW 1 H 2 Ls HW 5 3.33 1 1.7 2 1502 1.00882 HW 5 4.59 ft    (Answer) 9. Assume inlet control Q 65 5 5 13 cfs/ft B 5

(Appendix B-1, Chart 1)

HW 5 0.90    (Scale (1)) D HW 5 1.902 132 5 2.7 ft

Now, assume outlet control

92690_ch9_ptg01_p075-080.indd 77

n 5 0.012

(concrete culvert)

ke 5 0.4

(Appendix B-3)

H 5 0.52 ft

(Appendix B-2, Chart 8)

11/12/12 9:45 AM

78      CHAPTER 9 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Next find TWr and compare to TW. Dc 5 1.7 ft Therefore, TWr 5

(Appendix A-3, Chart 4) Dc 1 D 1.7 1 3 5 5 2.35 ft 2 2

Since TWr . TW, use TWr to find headwater depth. HW 5 TWr 1 H 2 Lso    (Equation 9-2b) 5 2.35 1 0.52 2 0.11 5 2.76 ft Since 2.76 . 2.7, the culvert operates under outlet control and the headwater depth is 2.76 ft    (Answer) 10. Since tailwater is at the downstream crown, the culvert must operate under outlet control. n 5 0.012

(concrete culvert)

ke 5 0.4

(Appendix B-3)

H 5 1.71 ft

(Appendix B-2, Chart 9)

HW 5 TW 1 H 2 Lso 5 4.00 1 1.71 2 0.25 5 5.46 ft    (Answer) 11. Q 5 20 cfs HW 5 1.4 D

(Appendix B-1, Chart 7, Entrance Type A)

HW 5 11.42 12.02

HW 5 2.8 ft    (Answer) Note: Headwater is 0.2 ft lower than the culvert in problem 1. 12. Assume inlet control. HW 5 1.03 ft D

(Appendix B-1, Chart 2, Scale (3))

HW 5 11.032 15.02 5 5.15 ft Now, assume outlet control. n 5 0.012 ke 5 0.5 H 5 1.42 ft

(concrete culvert) (Appendix B-3) (Appendix B-2, Chart 9)

Next find TWr and compare to TW. Dc 5 3.3 ft Therefore, TWr 5

92690_ch9_ptg01_p075-080.indd 78

(Appendix A-4, Chart 47) Dc 1 D 3.3 1 5 5 5 4.15 ft 2 2

11/12/12 9:45 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      79

Since TWr . TW, use TWr to find headwater elevation. HW 5 TWr 1 H 2 Lso 5 4.15 1 1.42 2 11002 1.0062 5 4.97 ft

    (Answer)

Since 5.15 ft . 4.97 ft, the culvert operates under inlet control, HW 5 5.15 ft    (Answer) 13. Q 5 285 cfs, beveled entrance. Consider

Q 5 143 cfs for a single 48-inch pipe. 2

HW 5 1.8 D

(Appendix B-1, Chart 7, Entrance Type A)

HW 5 11.82 14.02

HW 5 7.2 ft    (Answer) Note: Headwater is 0.8 ft lower than the culvert in problem 3. 14. Q 5 140 cfs, 60-inch CMP Assume inlet control HW 5 1.17 D

(Appendix B-1, Chart 5, Scale 3)

HW 5 11.172 15.02 HW 5 5.85 ft

Assume outlet control ke 5 0.9 n 5 0.024 H 5 2.55 ft

(Appendix B-2, Chart 11)

TWr 5 4.15 ft

(same as problem 12)

Since TWr . TW, use TWr to find headwater depth. HW 5 TWr 1 H 2 Lso HW 5 4.15 1 2.55 2 11002 1.0062 HW 5 6.1 ft

Since 6.1 ft . 5.85 ft, culvert operates under outlet control, HW 5 6.1 ft    (Answer) Note: Compared to problem 12, the use of a CMP resulted in higher HW and outlet control instead of inlet control.

92690_ch9_ptg01_p075-080.indd 79

11/12/12 9:45 AM

80      CHAPTER 9 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

15. In this problem, we must first find TW by finding normal depth in the downstream channel by the use of Manning’s Equation. 1.49 1/2 s 5 1.904 n o

1

D 1ft2

2.0

a 1ft2 2

28

2

3.0

3

3.5

4

3.45

Trial

20.6

R 1ft2

1.36

1.23

Q 1cfs2

51

27

1.89

1.53

148

64.75

30

2.16

1.67

206

  29.8

2.12

1.65

199  (OK)

  63.3

p 1ft2

R2/3

  65

TW 5 3.45 ft Now, assume inlet control. Q 200 5 5 25 cfs/ft B 8

(Appendix B-1, Chart 1)

HW 5 1.05    (Scale (1)) D HW 5 11.052 14.02 5 4.2 ft

Now, assume outlet control. n 5 0.012

(concrete culvert)

ke 5 0.4

(Appendix B-3)

H 5 0.94 ft

(Appendix B-2, Chart 8)

Next, find TWr and compare to TW. (Appendix A-3, Chart 7)

Dc 5 2.75 ft Therefore, TWr 5

Dc 1 D 2.75 1 4 5 5 3.38 ft 2 2

Since TW . TWr, use TW to find headwater elevation. HW 5 TW 1 H 2 Lso 5 3.45 1 0.94 2 1602 1.0022 5 4.27 ft

Since 4.27 ft . 4.2 ft, the culvert operates under outlet control, HW 5 4.27 ft    (Answer)

92690_ch9_ptg01_p075-080.indd 80

11/12/12 9:45 AM

C h a p t e r

10 Fundamental Hydrology

1. a)  A 5 45.0 acres b)  A 5 182,000 m2 2. a)  A 5 1.03 acres b) A 5 4170 m2 3. a)  11.4 acres b)  46,100 m2 4. a)  1.40 acres b)  5650 m2 5. For delineation, see Figure 5. A 5 55.0 acres. 6. For delineation, see Figure 6. A 5 128 acres. 7. For delineation, see Figure 7. A 5 1,670 acres. 8. For delineation, see Figure 8.

Watershed A: A 5 675 acres.



Watershed B: A 5 233 acres.



81

92690_ch10_ptg01_p081-096.indd 81

11/12/12 10:27 AM

82      CHAPTER 10 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

ROA D

eK

cre

11 00

1100

BM K AN

E

974

RD

RO AD

Point of Analysis

1000

1100

Gravel Pit

140 0 120 0

15 0

13 0

0

0

WOODS

14 00

Basin Divide 89

S T A T E 0

0 15 14 00

P R E S E R V E 1300 1400

TOPOGRAPHIC MAP SCALE: 1" = 500' CONTOUR INTERVAL 20'

© Cengage Learning 2014

SI

FIGURE 5  Catchment area delineation for Problem 5.

92690_ch10_ptg01_p081-096.indd 82

11/12/12 10:27 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      83

TOPOGRAPHIC MAP SCALE: 1" = 500' CONTOUR INTERVAL 5'

Basin Divide

© Cengage Learning 2014

Point of Analysis

FIGURE 6  Catchment area delineation for Problem 6.

92690_ch10_ptg01_p081-096.indd 83

11/12/12 10:27 AM

84      CHAPTER 10 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Point of Analysis

TOPOGRAPHIC MAP SCALE: 1" = 2000' CONTOUR INTERVAL 20'

© Cengage Learning 2014

Basin Divide

FIGURE 7  Watershed area delineation for Problem 7.

92690_ch10_ptg01_p081-096.indd 84

11/12/12 10:28 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      85

Point of Analysis A

Basin Divide

Point of Analysis B

TOPOGRAPHIC MAP SCALE: 1" = 2000' CONTOUR INTERVAL 20'

© Cengage Learning 2014

Basin Divide

FIGURE 8  Watershed area delineations for Problem 8.

92690_ch10_ptg01_p081-096.indd 85

11/12/12 10:28 AM

86      CHAPTER 10 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

9. For hydraulic path, see Figure 9. Overland flow: L 5 100 ft, s 5 1.5%. t1 5 14.5 min

(Appendix C-2)

Shallow concentrated flow: L 5 515 ft, s 5 4.2%. v 5 3.3 ft/s t2 5

(Figure 10-9, unpaved)

L 515 5 5 156 s 5 2.6 min v 3.3

Stream flow: L 5 930 ft, s 5 2.8%. 12′

n = 0.032 6′

a5

© Cengage Learning 2014

3′

112 1 62 132 5 27 ft2 2

p 5 14.4 ft R5

a 27 5 5 1.875 ft p 14.4

v5

1.49 2/3 1/2 R s n

v5

1.49 11.8752 2/3 1.0282 1/2 n

v 5 11.8 ft/s t3 5

L 930 5 5 79 s 5 1.3 min v 11.8

tc 5 t1 1 t2 1 t3 tc 5 14.5 1 2.6 1 1.3 tc 5 18.4 min.    (Answer)

92690_ch10_ptg01_p081-096.indd 86

11/12/12 10:28 AM

Basin Divide

Point of Analysis

Scale: 1" = 200'

© Cengage Learning 2014

Contour Interval 2'

FIGURE 9  Hydraulic path for watershed in Problem 9.

92690_ch10_ptg01_p081-096.indd 87

11/12/12 10:28 AM

88      CHAPTER 10 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

10. For hydraulic path, see Figure 10. Overland flow: L 5 100 ft, s 5 6%. t1 5 10.5  min 

(Appendix C-2)

Shallow concentrated flow: L 5 200 ft, s 5 7%. v 5 4.3 ft/s t2 5

(Figure 10-9, unpaved)

L 200 5 5 47 s 5 0.8 min v 4.3

Gutter flow: L 5 210 ft, s 5 5.5%. v 5 4.8 ft/s t3 5

(Figure 10-9, paved)

L 210 5 5 44 s 5 0.7  min  v 4.8

tc 5 t1 1 t2 1 t3 tc 5 10.5 1 0.8 1 0.7 tc 5 12 min.    (Answer) 11. For hydraulic path, see Figure 11. Overland flow: L 5 100 ft, s 5 10%. t1 5 9.5 min

(Appendix C-2)

Shallow concentrated flow: L 5 750 ft, s 5 15%. v 5 6.25 ft/s t2 5

(Figure 10-9, unpaved)

L 750 5 5 120 s 5 2.0 min v 6.25

Stream flow: L 5 1,750 ft, s 5 19%. a5

112 1 62 132 5 27 ft2 2

p 5 14.4 ft R5

a 27 5 5 1.875 ft p 14.4

v5

1.49 2/3 1/2 R s n

v5

1.49 (1.875)2/3 (.19)1/2 .032

v 5 31 ft/s t3 5

L 1750 5 5 56 s 5 0.94 min v 31

tc 5 t1 1 t2 1 t3 tc 5 9.5 1 2.0 1 0.94 tc 5 12.4 min.    (Answer)

92690_ch10_ptg01_p081-096.indd 88

11/12/12 10:28 AM

TOPOGRAPHIC MAP Scale: 1" = 100' (1:1200) Contour interval 2'

Inlet (point of analysis)

© Cengage Learning 2014

Basin divide

FIGURE 10  Hydraulic path for watershed in Problem 10.

92690_ch10_ptg01_p081-096.indd 89

11/12/12 10:28 AM

90      CHAPTER 10 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

ROA D

eK

cre

11 00

1100

BM K AN

E

974

RD

RO AD

Point of Analysis

1000

1100

Gravel Pit

140 0 120 0

15 0

13 0

0

0

WOODS

14 00

Remotest Point 89

S T A T E 0

0 15 14 00

P R E S E R V E 1300 1400

TOPOGRAPHIC MAP SCALE: 1" = 500' CONTOUR INTERVAL 20'

© Cengage Learning 2014

SI

FIGURE 11  Hydraulic path for watershed in Problem 11.

92690_ch10_ptg01_p081-096.indd 90

11/12/12 10:28 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      91

12. For hydraulic path, see Figure 12. Overland flow: L 5 100 ft, s 5 1.8 %. t1 5 13.0 min

(Appendix C-2)

Shallow concentrated flow: L 5 1400 ft, s 5 15.6%. v 5 6.25 ft/s t2 5

(Figure 10-9, unpaved)

L 1400 5 5 224 s 5 3.7 min v 6.25

Gutter flow: L 5 850 ft, s 5 2.0%. v 5 2.9 ft/s t3 5

(Figure 10-9, paved)

L 850 5 5 293 s 5 4.9 min v 2.9

Shallow concentrated flow: L 5 1200 ft, s 5 2.3%. v 5 2.4 ft/s t4 5

(Figure 10-9, unpaved)

L 1200 5 5 500 s 5 8.3 min v 2.4

Stream flow: L 5 580 ft, s 5 1.7%. a5

112 1 62 132 5 27 ft2 2

p 5 14.4 ft R5

a 27 5 5 1.875 ft p 14.4

v5

1.49 2/3 1/2 R s n

v5

1.49 11.8752 2/3 1.0172 1/2 .032

v 5 9.2 ft/s t5 5

L 580 5 5 63 s 5 1.1 min v 9.2

tc 5 t1 1 t2 1 t3 1 t4 1 t5 tc 5 13.0 1 3.7 1 4.9 1 8.3 1 1.1 tc 5 31.0 min.    (Answer)

92690_ch10_ptg01_p081-096.indd 91

11/12/12 10:28 AM

92      CHAPTER 10 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

TOPOGRAPHIC MAP SCALE: 1" = 500' CONTOUR INTERVAL 5'

Point of Analysis

Basin Divide

Remotest Point

ulic

dra

Hy © Cengage Learning 2014

Path

FIGURE 12  Hydraulic path for watershed in Problem 12.

92690_ch10_ptg01_p081-096.indd 92

11/12/12 10:28 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      93

13. For hydraulic path, see Figure 13.

Remotest Point

Point of Analysis

TOPOGRAPHIC MAP SCALE: 1" = 2000' CONTOUR INTERVAL 20'

© Cengage Learning 2014

Basin Divide

FIGURE 13  Hydraulic path for watershed in Problem 13.

92690_ch10_ptg01_p081-096.indd 93

11/12/12 10:28 AM

94      CHAPTER 10 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

14. For resultant hydrograph, see Figure 14. Peak 5 56 cfs. 100

Runoff (cfs)

75

Resultant Hydrograph

50

0 0

2

4

6 8 Time (hours)

10

12

© Cengage Learning 2014

25

FIGURE 14  Resultant hydrograph for Problem 14. 15. For resultant hydrograph, see Figure 15. Peak 5 70 cfs. 100

Runoff (cfs)

75

Resultant Hydrograph

50

0 0

4

8

12 16 Time (hours)

20

24

© Cengage Learning 2014

25

FIGURE 15  Resultant hydrograph for Problem 15.

92690_ch10_ptg01_p081-096.indd 94

11/12/12 10:28 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      95

16. Determine the volume of the runoff by measuring the area under the hydrograph. 18.02 136002 11502 5 2.16 3 106 ft3    (Answer) Volume 5 2 To compute the depth of rainfall excess, use the following equation: Volume 5 Depth 3 Area 3 43560 Depth 5 Depth 5

Volume 1Area2 1435602 2.16 3 106 11652 1435602

Depth 5 0.30 ft 5 3.6 inches    (Answer) 17. Determine the volume of runoff by measuring area under the hydrograph. Volume 5 2.70 3 106 ft3    (Answer) To compute depth of rainfall excess, use the following equation: Volume 5 Depth 3 Area 3 43560 Depth 5 Depth 5

Volume 1Area2 1435602 2.70 3 106 12502 1435602

Depth 5 0.248 ft 5 3.0 inches    (Answer)

Time (h) 0 1 2 3 4 5 6 7 8 9 10 11 12

Hydrograph 1 (cfs)

Hydrograph 2 (cfs)

Hydrograph 3 (cfs)

Hydrograph 4 (cfs)

Sum of Four Hydrographs (cfs)

0 0 0 0 14 50 39 19 12 8 6 5 4

0 0 0 0 0 56 200 156 76 48 32 24 20

0 0 0 0 0 0 42 150 117 57 36 24 18

0 0 0 0 0 0 0 14 50 39 19 12 8

0 0 0 0 14 106 281 339 255 152 93 65 50

© Cengage Learning 2014

18. Using one hour as the unit time, there are four components of rainfall excess having depths of 0.5, 2.0, 1.5 and 0.5 inches, respectively. Using a lag of 2.5 hours, the unit hydrographs are listed in Table 6. The derived hydrograph is shown in the last column of Table 6. The peak runoff is 339 cfs.

TABLE 6  Derived Hydrograph for Problem 18.

92690_ch10_ptg01_p081-096.indd 95

11/12/12 10:28 AM

96      CHAPTER 10 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

19. Using two hours as the unit time, there are three components of rainfall excess having depths of 1.5, 1.0, and 0.5 inches, respectively. Using a lag of 2.5 hours, the unit hydrographs are listed in Table 7. The derived hydrograph is shown in the last column of Table 7. The peak runoff is 217 cfs. Hydrograph 1 (cfs)

Hydrograph 2 (cfs)

Hydrograph 3 (cfs)

Sum of  Three Hydrographs (cfs)

0 0 0 0 42 150 117 57 36 24 18 15 12

0 0 0 0 0 28 100 78 38 24 16 12 10

0 0 0 0 0 0 0 14 50 39 19 12 8

0 0 0 0 42 178 217 139 124 87 53 39 30

0 1 2 3 4 5 6 7 8 9 10 11 12

© Cengage Learning 2014

Time (h)

TABLE 7  Derived Hydrograph for Problem 19. 20. For resultant hydrograph, see Figure 16. Peak runoff for Watershed A is 63 cfs and for ­Watershed B is 42 cfs. Peak runoff for the combined (resultant) watersheds is 90 cfs. (Answer) Note: Peak runoff values were scaled from the hydrographs. Also, the peak resultant runoff is less than the arithmetic sum of the peak runoffs for Watersheds A and B.

100

Watershed A 50

Watershed B

5

10 Time (h)

© Cengage Learning 2014

Runoff (cfs)

Resultant Watershed

FIGURE 16  Runoff hydrographs for Problem 20.

92690_ch10_ptg01_p081-096.indd 96

11/12/12 10:28 AM

C h a p t e r

11 Runoff Calculations

1. Assume 25-year storm or lower. First choose c-values for individual cover conditions using Appendix C-1 or Table 11-1. Impervious: c 5 0.90 Grass: c 5 .30 Woods: c 5 0.20 Convert all area units to acres. Impervious

0.12 acres

Grass

0.45 acres

Wooded

1.21 acres

c5

1.122 1.902 1 1.452 1.302 1 11.212 1.202 5 0.27    (Answer) 1.78

2. Assume 25-year storm or lower. First choose c-values for individual cover conditions using Appendix C-1 or Table 11-1. Downtown business area: c 5 0.95 Residential (attached multi-units): c 5 0.78 Cemetery: c 5 0.20 Compute weighted average: c5

18.52 1.952 1 115.02 1.782 1 13.22 1.202 5 0.76    (Answer) 26.7

97

92690_ch11_ptg01_p097-125.indd 97

11/12/12 10:32 AM

98      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

3. Assume 25-year storm or lower. First choose c-values for individual cover conditions using Appendix C-1 or Table 11-1. Houses (use impervious): c 5 0.95 Driveways (use impervious): c 5 0.95 Lawns-sandy soil: c 5 0.086 Road (use impervious): c 5 0.95 Compute areas in acres: 8(25)(40) 5 0.184 acres 43560

Houses: Area 5

Driveways: Area 5 Lawns: Area 5 Road: Area 5

8(20)(35) 5 0.129 acres 43560

8(75)(35) 5 0.482 acres 43560

(15)(600) 5 0.207 acres 43560

Compute weighted average: c5

1.1842 1.952 1 1.1292 1.952 1 1.4822 1.0862 1 1.2072 1.952 5 0.46    (Answer) 1.163

4. Overland: average grass, L 5 80 ft, s 5 2.5% t1 5 11 min.

(Appendix C-2)

Shallow concentrated flow: L 5 450 ft, s 5 4.8% v 5 3.5 ft/s t2 5

(Figure 10-9, “unpaved”)

L 450 5 5 129 sec. 5 2.1 min. v 3.5

Gutter flow: L 5 200 ft, s 5 1.9% v 5 2.8 ft/s t3 5

(Figure 10-9, “paved”)

L 200 5 5 71.4 sec. 5 1.2 min. v 2.8

tc 5 t1 1 t2 1 t3 tc 5 11 1 2.1 1 1.2 tc 5 14 min.    (Answer)

92690_ch11_ptg01_p097-125.indd 98

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      99

5. Overland: average grass, L 5 100 ft, s 5 3.5% t1 5 11.5 min.

(Appendix C-2)

Shallow concentrated flow: L 5 200 ft, s 5 3.5% v 5 3.0 ft/s

(Figure 10-9, “unpaved”)

200 5 66.7 sec. 5 1.1 min. 3.0

t2 5

Swale flow: L 5 500 ft, s 5 2.0% Find v using Manning’s Equation assuming full bank flow. a 5 4.0 ft2 p 5 16.1 ft R5

4.0 5 0.248 ft 16.1

v5

1.49 (.248)2/3(.020)1/2 .025

v 5 3.33 ft/s t3 5

500 5 150 sec. 5 2.5 min. 3.33

tc 5 t1 1 t2 1 t3 tc 5 11.5 1 1.1 1 2.5 tc 5 15.1 min. tc 5 15 min.    (Answer) 6. Overland flow: average grass, L 5 100 ft, s 5 1.6% n 5 0.24

(Table 11-3)

P2 5 2.0 in. Tt 5 Tt 5

0.0071nL2

(Appendix D-3) 0.8

P20.5s0.4



(Equation 11-9)

.007 5 1.242 11002 6 0.8 12.02 .5 1.0162 .4

Tt 5 0.33 hour.

Shallow concentrated flow: L 5 680 ft, s 5 3.2% v 5 2.9 ft/s t2 5

92690_ch11_ptg01_p097-125.indd 99

(Figure 10-9, unpaved)

L 680 5 5 234 sec. 5 3.9 min. 5 0.065 h. v 2.9

11/12/12 10:32 AM

100      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Stream flow: L 5 2950 ft, so 5 0.61%

4′

n = 0.035

12′

© Cengage Learning 2014

20′

Find v using Manning’s Equation assuming full bank flow. 120 1 122 4 5 64 ft2 2

a5

P 5 23 ft R5

a 64 5 5 2.78 ft P 23

v5

1.49 2/3 1/2 R so n

v5

1.49 12.782 2/3 1.00612 1/2 .035

v 5 6.58 ft/s t3 5

L 2950 5 5 448 sec. 5 7.5 min. 5 0.125 h. v 6.58

tc 5 t1 1 t2 1 t3 tc 5 .33 1 .065 1 .125 tc 5 0.52 hour    (Answer) 7. Overland: woods (light underbrush), L 5 100 ft, s 5 3.0% n 5 0.40

(Table 11-3)

P2 5 3.5 in. Tt 5

(Appendix D-3)

0.007 3 1.402 11002 4

0.8

(3.5)0.5 (.030)0.4

Tt 5 0.29 hour

Shallow concentrated flow: L 5 1,200 ft, s 5 4.0% v 5 3.0 ft/s t2 5

(Figure 10-9, “unpaved”)

200 5 66.7 sec. 5 0.019 hour 3.0

Stream flow: L 5 1,500 ft, s 5 0.75% Find v using Manning’s Equation assuming full bank flow. a 5 64 ft2 p 5 23 ft

92690_ch11_ptg01_p097-125.indd 100

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      101

R 5 2.78 ft v5

1.49 (2.78)2/3(.0075)1/2 .035

v 5 7.29 ft/s t3 5

1500 5 206 sec. 5 0.057 hour 7.29

tc 5 t1 1 t2 1 t3 tc 5 0.29 1 0.019 1 0.057 tc 5 0.366 hour tc 5 0.37 hour    (Answer) 8. i 5 5.0 in/h.

(Appendix C-3, IDF for NJ)

9. i 5 1.6 in/h.

(Appendix C-3, IDF for Orange Co.)

10. i 5 1.3 in/h.

(Appendix C-3, IDF for Atlanta)

11. First, find tc. Overland flow: average grass, L 5 100 ft, s 5 5.0% t1 5 10.5  min.

(Appendix C-2)

Shallow concentrated flow: L 5 50 ft, s 5 7.0% v 5 4.25 ft/s t2 5

(Figure 10-9, unpaved)

L 50 5 5 11.8 sec. 5 0.2 min. v 4.25

tc 5 t1 1 t2 tc 5 10.5 1 0.2 tc 5 10.7 min. Next, find composite c. Impervious: c 5 0.90 Grass: c 5 0.30 Woods: c 5 0.20 c5

1.062 1.92 1 16.52 1.32 1 17.52 1.22 14.06

c 5 0.25

Next, find rainfall intensity. i 5 5.25 in/h.

92690_ch11_ptg01_p097-125.indd 101

(Appendix C-3, IDF for Phoenix, P1 5 1.75 in)

11/12/12 10:32 AM

102      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Then, (Equation 11-2)

Qp 5 Aci Qp 5 114.062 1.252 15.252

Qp 5 18 cfs    (Answer) Qp 5 0.53 m3/s    (Answer) 12. tc 5 10.7 min.

(see Problem 11)

Find composite c. Impervious: c 5 0.95 Grass: c 5 0.35 Woods: c 5 0.25 c5

1.062 1.952 1 16.52 1.352 1 17.52 1.252 14.06

c 5 0.30

i 5 6.8 in/h.

(Appendix C-3, IDF for Phoenix, P1 5 2.25 in.)

Qp 5 Aci

(Equation 11-2)

Qp 5 (14.06)(.30)(6.8) Qp 5 29 cfs    (Answer) Qp 5 0.83 m3/s    (Answer) 13. Compute composite CN. Bartley Loam: Hyd. Soil Group C Parker Loam: Hyd. Soil Group B

(Appendix D-2)

Percentage of each hyd. soil group: 45 3 100 5 64.3% 70 25 3 100 5 35.7% B:  70

C: 

CN (Appendix D-1) Cover

B (35.7%)

C (64.3%)

Impervious

98

98

98

Residential (1/3-acre)

72

81

  77.8

Wooded (fair)

60

73

  68.4

Grass (fair)

69

79

  75.4

 CN 

Product

Cover Impervious

Area (acres) 2.0

Interpolated CN

98

  196

Residential

20

  77.8

1556

Wooded

28

  68.4

1915

Grass

20

  75.4

1508

70

92690_ch11_ptg01_p097-125.indd 102

5175

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      103

5175 5 73.9 70 CN 5 74    (Answer) Weighted CN 5

14.

Hyd. Soil Group Maplecrest

B

Hamel

C

Vinsad Alluvial land

C C

(Appendix D-2)

Percentage of each hyd. soil group: 120 3 100 5 57.4% 209 89 3 100 5 42.6% C:  209

B: 

Cover

B (57.4%)

C (42.6%)

Impervious

98

98

98

Wooded

60

73

  65.5

Disturbed soil

86

91

  88.1

Brush (poor)

67

77

  71.3

 CN 

Product

Cover Impervious

Area (acres)

Interpolated CN

   1.0

98

   98

Wooded

100

  65.5

  6550

Disturbed soil

  23

  88.1

  2026

Brush

  85

  71.3

  6061

209 Weighted CN 5

14735

14735 5 70.5 209

CN 5 71    (Answer) 15. P 5 5.7 in. Q 5 2.7 in. 16. P 5 4.3 in. Q 5 1.3 in. 17. P 5 12.0 in

(Appendix D-3) (Figure 11-9)    (Answer) (Appendix D-3) (Figure 11-9)    (Answer) (Appendix D-3)

Q 5 6.7 in

(Figure 11-9)

Rainfall distribution Type III

(Appendix D-4)

Ia 5 1.268

(Table 11-2)

92690_ch11_ptg01_p097-125.indd 103

11/12/12 10:32 AM

104      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Then,

Ia 1.268 5 5 0.11 P 12

qu 5 160 csm/in

(Appendix D-5, Chart 4)

qp 5 quAmQ

(Equation 11-10)

qp 5 11602 11.2502 16.72

qp 5 1340 cfs    (Answer) 18. P 5 0.8 in.

(Appendix D-3)

Q 5 4.25 in.

(Figure 11-9)

Rainfall distribution Type II

(Appendix D-4)

Ia 5 0.941 in.

(Table 11-2)

Then,

Ia .941 5 5 0.12 P 8.0

qu 5 195 csm/in.

(Appendix D-5, Chart 3)

qp 5 qu Am Q

(Equation 11-10)

qp 5 11952 11.4132 14.252

qp 5 1170 cfs    (Answer) 19. Drainage area is measured on Figure 17. A 5 1.14 acres Cover conditions are found on Figure 17 as follows: Impervious

0.33 acres

Lawn

0.81 acres

Choose c-value for each cover condition. Impervious: c 5 0.90 Lawn: c 5 0.30 c5

1.332 1.92 1 1.812 1.32 5 0.47 1.14

Time of concentration: Hydraulic path is delineated in Figure 17. Overland flow: L 5 100 ft, s 5 1.5% t1 5 13.5 min.

92690_ch11_ptg01_p097-125.indd 104

(Appendix C-2)

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      105

Basin divide

© Cengage Learning 2014

Inlet (point of analysis)

FIGURE 17  Hydraulic path for watershed in Problem 19.

92690_ch11_ptg01_p097-125.indd 105

11/12/12 10:32 AM

106      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Shallow concentrated flow: L 5 15 ft, s 5 10% v 5 5.1 ft/s L 15 5 2.9  sec 5 0.05 min. t2 5 5 v 5.1

(Figure 10-9, unpaved)

Gutter flow: L 5 450 ft, s 5 0.56% v 5 1.5 ft/s L 450 5 300 sec 5 5.0 min. t3 5 5 v 1.5

(Figure 10-9, paved)

Therefore, tc 5 t1 1 t2 1 t3 tc 5 13.5 1 0.05 1 5.0 tc 5 18.6  min. i 5 2.7 in/h

(Chart 5, Appendix C-3)

Qp 5 Aci

(Equation 11-2)

Qp 5 11.142 1.472 12.72

Qp 5 1.45 cfs    (Answer) 20. Step 1: Watershed area is measured in Figure 18. Am 5 0.711 s.m. Step 2: Find composite CN. Hydrologic soil group: C Cover conditions:

Impervious (roads, houses): 2.0 acres



Woods: 453 acres

Cover Impervious Woods Weighted CN 5

Area (acres)

CN

Product

2.0

98

196

453

73

33069





33265

33265 5 73.1 455

CN 5 73 Step 3: Find Q. P 5 4.5 in

(Appendix D-3)

Q 5 1.9 in

(Figure 11-9)

92690_ch11_ptg01_p097-125.indd 106

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      107

Watershed divide

Point of analysis

Project location

SCALE: 1" = 2000' CONTOUR INTERVAL 20'

© Cengage Learning 2014

PENNSYLVANIA

FIGURE 18  Hydraulic path for watershed in Problem 20.

92690_ch11_ptg01_p097-125.indd 107

11/12/12 10:32 AM

108      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Step 4: Find time of concentration, tc. Hydraulic path is delineated in Figure 18. Overland flow: L 5 100 ft, s 5 10% n 5 0.40

(Table 11-3)

P2 5 2.7 in

(Appendix D-3)

Tt 5 Tt 5

0.0071nL2 0.8 P20.5s0.4



(Equation 11-9)

0.007 5 1.42 11002 6 0.8

2.70.5.100.4

Tt 5 0.20 h Shallow concentrated flow: L 5 1900 ft, s 5 9% v 5 4.8 ft/s t2 5

(Figure 10-9, unpaved)

L 1900 5 5 396 sec 5 6.6 min 5 0.11 h v 4.8

Stream flow: L 5 6800 ft, so 5 1.76%

4′

n = 0.035

12′

3 20 1 12 4 4 5 64 ft2 2



a5



p 5 23 ft



R5

a 64 5 5 2.78 ft p 23



v5

1.49 2/3 1/2 R s n



v5



v 5 11.2 ft/s



t3 5

92690_ch11_ptg01_p097-125.indd 108

© Cengage Learning 2014

20′

1.49 12.782 2/3 1.01762 1/2 .035 L 6800 5 5 607  sec  5 0.17 h v 11.2

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      109

Therefore, tc 5 t1 1 t2 1 t3 tc 5 0.20 1 0.11 1 0.17 tc 5 0.48 h Step 5: Find qu Rainfall distribution Type II

(Appendix D-4)

Ia 5 0.740 in

(Table 11-2)

Then,

Ia .740 5 5 0.16 P 4.5

qu 5 520 csm/in

(Appendix D-5, Chart 3)

Step 6: Compute qp. qp 5 qu Am Q

(Equation 11-10)

qp 5 15202 1.7112 11.92

qp 5 700 cfs    (Answer) 21. Watershed area is measured on Figure 19. Am 5 0.0184 s.m. Hydrologic soil group: B Cover condition: wooded CN 5 60

(Appendix D-1)

P 5 4.0 in

(Appendix D-3)

Q 5 0.75 in

(Figure 11-9)

Time of concentration: Hydraulic path is delineated in Figure 19. Overland flow: L 5 100 ft, s 5 4% n 5 0.40

(Table 11-3)

P2 5 1.8 in

(Given)

Tt 5

92690_ch11_ptg01_p097-125.indd 109

0.007 1nL2 0.8 P21/2s0.4



(Equation 11-9)

11/12/12 10:32 AM

110      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Basin divide

© Cengage Learning 2014

Point of analysis

FIGURE 19  Hydraulic path for watershed in Problem 21.

92690_ch11_ptg01_p097-125.indd 110

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      111

Tt 5

10.0072 5 1.42 11002 6 0.8 11.82 0.5 1.042 0.4

Tt 5 0.36 hour

Shallow concentrated flow: L 5 470 ft, s 5 14% v 5 6.0 ft/s t2 5

(Figure 10-9, unpaved)

L 470 5 5 78  sec  5 .022 h v 6

Stream flow: L 5 720 ft, s0 5 9%

4′

n = 0.035

12′

a5

© Cengage Learning 2014

20′

3 20 1 12 4 4 5 64 ft2 2

p 5 23 ft R5

a 64 5 5 2.78 ft P 23

v5

1.49 2/3 1/2 R s n

v5

1.49 12.782 2/3 1.092 1/2 .035

v 5 25 ft/s t3 5

L 720 5 5 29  sec  5 .008 h v 25

Therefore, tc 5 t1 1 t2 1 t3 tc 5 .36 1 .022 1 .008 tc 5 0.39 h Rainfall distribution Type I

(Appendix D-4)

Ia 5 1.333 in

(Table 11-2)

92690_ch11_ptg01_p097-125.indd 111

11/12/12 10:32 AM

112      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Ia 1.333 5 5 0.33 P 4.0 qu 5 165 csm/in

(Appendix D-5, Chart 1)

qp 5 qu Am Q

(Equation 11-10)

Then, 

qp 5 11652 1.01842 1.752

qp 5 2.3 cfs    (Answer) 22. Drainage area was determined in Problem 3, Chapter 10. A 5 11.4 acres c 5 0.20 Time of concentration: Hydraulic path is delineated in Figure 9. Overland: L 5 100 ft, s 5 1.5%

t1 5 14.5  min.

(Appendix C-2)

Shallow concentrated flow: L 5 515 ft, s 5 4.2%

v 5 3.3 ft/s



t2 5

(Figure 10-9)

L 515 5 5 156  sec  5 2.6  min. v 3.3

Stream flow: L 5 930 ft, so 5 2.8%

3′

n = 0.032

6′

3 12 1 6 4 3 5 27 ft2 2



a5



P 5 14.4 ft



R5



a 27 5 5 1.875 ft P 14.4 1.49 2/3 1/2 v5 R s n 1.49 (1.875)2/3 1.0282 1/2 .032



v5



v 5 11.8 ft/s



© Cengage Learning 2014

12′

92690_ch11_ptg01_p097-125.indd 112

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      113

L 930 5 5 79  sec  5 1.3  min. v 11.8



t3 5



tc 5 t1 1 t2 1 t3



tc 5 14.5 1 2.6 1 1.3



tc 5 18.4  min.



i 5 4.6 in/h

(Appendix C-3)



Qp 5 Aci

(Equation 11-2)



Qp 5 111.42 1.202 14.62



Qp 5 10.5 cfs.    (Answer)

23. Step 1: Watershed area is measured in Figure 20. Am 5 1.29 s.m. Step 2: Find composite CN. First, determine the percentage of each hydrologic soil group.

B—65% C—25% D—10%

Next, determine the area of each cover condition from the topograhic map.

Impervious (roads, houses): 6.6 acres



Woods: 819 acres



 ext determine CN for each cover condition by interpolating among B, C, and D values N using Appendix D-1. CN Cover

Interpolated CN

B (65%)

C (25%)

D (10%)

Impervious

98

98

98

98

Woods

60

73

79

65.15

Finally, create a table as follows: Cover Impervious Woods

Area (acres) 6.6 819 825.6

Weighted CN 5

CN

Product

98

   647

65.15

53358 54005

54005 5 65.4 825.6

CN 5 65

92690_ch11_ptg01_p097-125.indd 113

11/12/12 10:32 AM

114      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Watershed divide

Point of analysis

Poject location

SCALE: 1" = 2000' CONTOUR INTERVAL 20'

© Cengage Learning 2014

NEW YORK

FIGURE 20  Hydraulic path for watershed in Problem 23.

92690_ch11_ptg01_p097-125.indd 114

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      115

Step 3: Find Q P 5 5.0 in

(Appendix D-3)

Q 5 1.65 in

(Figure 11-9)

Step 4: Find time of concentration, tc. Hydraulic path is delineated in Figure 20. Overland flow: L 5 100 ft, s 5 4.0% n 5 0.40

(Table 11-3)

P2 5 2.7 in.

(Appendix D-3)

Tt 5 Tt 5

0.007 1nL2 0.8 P20.5s0.4



(Equation 11-9)

.007 5 1.42 11002 6 0.8

12.72 0.5 1.042 0.4

Tt 5 0.30 h

Shallow concentrated flow: L 5 2300 ft, s 5 2.7% v 5 2.4 ft/s t2 5

(Figure 10-9, unpaved)

L 2300 5 5 958  sec  5 0.27 h v 2.4

Stream flow: L 5 9000 ft, so 5 3.4%

4′

n = 0.035

12′

3 20 1 12 4 4 5 64 ft2 2



a5



p 5 23 ft



R5

a 64 5 5 2.78 ft P 23



v5

1.49 2/3 1/2 R s n



v5



v 5 15.5 ft/s



t3 5

92690_ch11_ptg01_p097-125.indd 115

© Cengage Learning 2014

20′

1.49 12.782 2/3 1.0342 1/2 .035 L 9000 5 5 581  sec  5 0.61 h v 15.5

11/12/12 10:32 AM

116      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Therefore, tc 5 t1 1 t2 1 t3 tc 5 .30 1 .27 1 .16 tc 5 0.73 h Step 5: Find qu Rainfall distribution Type II

(Appendix D-4)



(Table 11-2)

Ia 5 1.077 in

Then,

Ia 1.077 5 5 0.22 P 5.0

qu 5 380 csm/in

(Appendix D-5, Chart 3)

Step 6: Compute qp. qp 5 qu Am Q

(Equation 11-10)

qp 5 13802 11.292 11.652

qp 5 809 cfs    (Answer) 24. Drainage area was determined in Problem 4, Chapter 10. A 5 1.40 acres Cover conditions are found on Figure 10 as follows:

Impervious

0.31 acres



Lawns

0.88 acres



Woods

0.21 acres

Choose c-values for each cover condition. Impervious: c 5 0.90 Lawn: c 5 0.35 Woods: c 5 0.25 c5

1.312 1.902 1 1.882 1.352 1 1.212 1.252 5 0.46 1.40

Time of concentration: Hydraulic path is delineated in Figure 10. Overland flow: L 5 100 ft, s 5 6% t1 5 10.5 min.

92690_ch11_ptg01_p097-125.indd 116

(Appendix C-2)

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      117

Shallow concentrated flow: L 5 200 ft, s 5 7% v 5 4.3 ft/s t2 5

(Figure 10-9, unpaved)

L 200 5 5 47  sec  5 0.8  min. v 4.3

Gutter flow: L 5 210 ft, s 5 5.5% v 5 4.8 ft/s t3 5

(Figure 10-9, paved)

L 210 5 5 44  sec  5 0.7  min v 4.8

Therefore, tc 5 t1 1 t2 1 t3 tc 5 10.5 1 0.8 1 0.7 tc 5 12  min  i 5 2.5 in/h

(Appendix C-3)

Qp 5 Aci

(Equation 11-2)

Qp 5 11.42 1.462 12.52

Qp 5 1.6 cfs    (Answer) 25.

P 5 8.0 in

(Appendix D-3)

Q 5 5.2 in

(Figure 11-9)

Ia 5 0.632

(Table 11-2)

Then, 

Ia .632 5 5 0.079 P 8.0

Rainfall distribution Type II

(Appendix D-4)

Find unit hydrograph from Appendix D-6 for: Rainfall Type II tc 5 1.5 h Ia /P 5 0.10 Tt 5 0 The unit hydrograph is found on Chart 5, line 1 of Appendix D-6 and is reproduced in Table 3 as columns 1 and 2. q 5 qt Am Q

(Equation 11-11)

q 5 qt 1.8922 15.22

q 5 4.64 qt

Each q value becomes a value in the third column in Table 8 and is the desired hydrograph and answer to the problem.

92690_ch11_ptg01_p097-125.indd 117

11/12/12 10:32 AM

(1) Hydrograph Time (h)

(2) Unit Discharge (csm/in)

(3) Hydrograph Ordinate (cfs)

11.0 11.3 11.6 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.3 14.6 15.0 15.5 16.0 16.5 17.0 17.5 18.0 19.0 20.0

9 11 15 21 25 31 41 58 82 112 147 184 216 255 275 236 198 159 129 98 76 57 43 35 30 25 23 21 18 16

42 51 70 97 116 144 190 269 380 520 682 853 1002 1183 1276 1095 918 738 598 455 353 264 199 162 139 116 107 97 83 74

© Cengage Learning 2014

118      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

TABLE 8  Runoff hydrograph for Problem 25.

92690_ch11_ptg01_p097-125.indd 118

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      119

26. P 5 6.0 in

(Appendix D-3)

Rainfall distribution Type II

(Appendix D-4)

Determine appropriate unit hydrographs for sub-areas 1, 2, and 3 and use them to derive hydrographs at the point of analysis. Parameters are as follows: SubArea

tc (h)

1

1.0

.439 5 .07 6.0

0.26

2

2.0

0.26

3

0.6

1.175 5 .20 6.0 .817 5 .14 6.0

Ia/P

Tc (h)

0.00

Unit hydrographs are found in Appendix D-6 as follows: Sub- Area

Chart

Line

1 2

3 6

4 4

3

2

1

Values of unit hydrograph ordinates are shown in Table 9 as columns 2, 4, and 6. Values of derived hydrograph ordinates are found by multiplying by the quantity q 5 Am Q and are reproduced in columns 3, 5, and 7 of Table 9. Values of  Am Q for each sub-area follow. Values of Q are obtained from Figure 11-9. SubArea 1 2 3

Am 1s.m.2

1.012 0.761 0.550

Q 1in2 4.0 2.2 2.9

AmQ 1s.m. 2 in2 4.048 1.674 1.595

The answer to the problem is the hydrograph shown in column 8 of Table 9 which is com­ puted by adding values in columns 3, 5, and 7 for each time value in column 1.

92690_ch11_ptg01_p097-125.indd 119

11/12/12 10:32 AM

120      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

(1)

(2) (3) Sub-Area 1

(4) (5) Sub-Area 2

(6)

(7) Sub-Area 3

   9   12   16   22   24   28   35   48   70 105 152 205 256 323 310 254 193 146 113   81   61   46   36   31   27   24   22   20   18   16

6 7 9 12 14 15 18 21 27 35 45 59 76 117 159 191 211 208 196 163 128 95 68 51 40 33 28 25 20 18

17 23 32 57 94 170 308 467 529 507 402 297 226 140 96 74 61 53 47 41 36 32 29 26 23 21 20 19 16 14

(8)

11.0 11.3 11.6 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.3 14.6 15.0 15.5 16.0 16.5 17.0 17.5 18.0 19.0 20.0

36 49 65 89 97 113 142 194 283 425 615 830 1036 1308 1255 1028 781 591 457 328 247 186 146 125 109 97 89 81 73 65

10 12 15 20 23 25 30 35 45 59 75 99 127 196 266 320 353 348 328 273 214 159 114 85 67 55 47 42 33 30

27 37 51 91 150 271 491 745 844 809 641 474 360 223 153 118 97 85 75 65 57 51 46 41 37 33 32 30 26 22

73 98 131 200 270 409 663 974 1172 1293 1331 1403 1523 1727 1674 1466 1231 1024 860 666 518 396 306 251 213 185 168 153 132 117

© Cengage Learning 2014

HydroUnit Hydrograph Unit Hydrograph Unit Hydrograph Hydrograph Time Discharges Ordinates Discharges Ordinates Discharges Ordinates graph (csm/in) (cfs) (csm/in) (cfs) (csm/in) (cfs) (h) (cfs)

TABLE 9  Runoff hydrographs for sub-areas for Problem 26.

92690_ch11_ptg01_p097-125.indd 120

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      121

27. P 5 5.4 in

(Appendix D-3)

Rainfall distribution Type II

(Appendix D-4)

Determine appropriate unit hydrographs for sub-areas 1, 2 and 3 and use them to derive hydrographs at the points of analysis. Parameters are as follows: SubArea

tc (h)

1

0.50

.857 5 .16 5.4

0.75

2

1.0

.381 5 .07 5.4

0.75

3

1.50

1.333 5 .25 5.4

0.00

Ia/P

Tc (h)

Unit hydrographs are found in Appendix D-6 as follows: Sub- Area

Chart

Line

1 2

2 3

 7  7

3

5

13

Values of the unit hydrograph ordinates are shown in Table 10 as columns 2, 4 and 6. Values of the derived hydrograph ordinates are found by multiplying the quantity q 5 Am Q and are reproduced in columns 3, 5 and 7 of Table 10. Values of AmQ for each sub-area follow. Values of Q are obtained from Figure 11-9. SubArea 1 2 3

Am 1s.m.2

0.786 1.255 0.923

Q 1in2

2.35 3.60 1.55

AmQ 1s.m. 2 in2 1.847 4.518 1.431

The answer to the problem is the hydrograph shown in column 8 of Table 10 which is computed by adding values in columns 3, 5 and 7 for each value in column 1.

92690_ch11_ptg01_p097-125.indd 121

11/12/12 10:32 AM

122      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

(1)

(2) (3) Sub-Area 1

(4) (5) Sub-Area 2

(6)

(7) Sub-Area 3

(8)

11.0

9

17

7

32

0

0

49

11.3

11

20

8

36

0

0

56

11.6 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.3 14.6 15.0 15.5 16.0 16.5 17.0 17.5 18.0 19.0 20.0

14 19 21 24 27 31 37 49 74 118 182 319 374 328 244 169 117 76 56 43 35 31 28 25 22 21 18 16

26 35 39 44 50 57 68 91 137 218 336 589 691 606 451 312 216 140 103 79 65 57 52 46 41 39 33 30

11 14 16 17 19 21 25 30 38 53 76 146 228 284 293 256 208 143 99 66 46 36 31 27 24 22 19 17

50 63 72 77 86 95 113 136 172 239 343 660 1030 1283 1324 1157 940 646 447 298 208 163 140 122 108 99 86 77

0 0 0 1 6 15 31 53 80 112 144 193 225 208 186 157 134 108 89 70 56 48 42 37 34 31 28 25

0 0 0 1 9 21 44 76 114 160 206 276 322 298 266 225 192 155 127 100 80 69 60 53 49 44 40 36

76 98 111 122 145 173 225 303 423 617 885 1525 2043 2187 2041 1694 1348 941 677 477 353 289 252 221 198 182 159 143

© Cengage Learning 2014

Hydrograph Unit Hydrograph Unit Hydrograph Unit Hydrograph HydroTime Discharges Ordinates Discharges Ordinates Discharges Ordinates graph (h) (cfs) (csm/in) (cfs) (csm/in) (cfs) (csm/in) (cfs)

TABLE 10  Runoff hydrographs for sub-areas for Problem 27.

92690_ch11_ptg01_p097-125.indd 122

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      123

28. Drainage area was found in Problem 5, Chapter 10. A 5 55.0 acres. Cover conditions are shown in Figure 10-28 to be woods. Choose c-value for woods: c 5 0.20 Time of concentration was found in Problem 11, Chapter 10. tc 5 12.4 min i 5 6.6 in/h

(Figure C-3, Chart 3)

Qp 5 Aci

(Equation 11-2)

Qp 5 155.02 1.202 16.62 Qp 5 72.6 cfs

Qp 5 73 cfs    (Answer) 29. Drainage area was found in Problem 6, Chapter 10. A 5 128 acres. Cover conditions are found on Figure 10-29 as follows: Impervious 1.2 acres Lawn

30 acres

Woods

96.8 acres

Choose c-value for each cover condition. Impervious c 5 0.90 Lawn

c 5 0.30

Woods

c 5 0.20

c5

11.22 1.92 1 1302 1.32 1 196.82 1.22 5 0.23 128

Time of concentration was found in Problem 12, Chapter 10. tc 5 31.0 min i 5 3.7 in/h

(Figure C-3, Chart 4)

Qp 5 Aci

(Equation 11-2)

Qp 5 11282 1.232 13.72 Qp 5 108.9 cfs

Qp 5 110 cfs    (Answer) 30. Watershed area was found in Problem 7, Chapter 10. A 5 1,670 acres Am 5

92690_ch11_ptg01_p097-125.indd 123

1670 5 2.61 s.m. 640

11/12/12 10:32 AM

124      CHAPTER 11 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Cover conditions are found on Figure 10-30 as follows: Impervious 10 acres Woods

1,660 acres

Choose CN-value for each cover condition. Soil type: Jonesville Hydrologic soil group: B Impervious CN 5 98 Woods CN 5

CN 5 60

1102 1982 1 116602 1602 5 60.2 1670

(Use 60)

P 5 5.3 in

(Appendix D-3, Map 1)

Q 5 1.5 in

(Figure 11-9)

Time of concentration: Hydraulic path was delineated in Problem 13, Chapter 10. Overland flow: L 5 100 ft

s 5 2.0%

(estimated)



n 5 0.24

(estimated)



P2 5 2.6 in Tt 5 Tt 5

0.007 1nL2 0.8 1P2 2 0.5s0.4



(.007) 5 1.242 11002 6 .8

12.62 .5 1.022 .4

(Appendix D-3, Map 1) (Equation 11-9)

5 0.26 h

t1 5 0.26 h

Shallow concentrated flow: L 5 2100 ft, s 5 7.6%. v 5 4.4 ft/s t2 5

(Figure 10-9, unpaved)

L 2100 5 5 477 s 5 0.13 h v 4.4

Stream flow: L 5 12,000 ft, s 5 4.3%. a 5

3 12 1 6 4 132 5 27 ft2 2

p 5 14.4 ft R 5

a 27 5 5 1.875 ft p 14.4

v 5

1.49 2/3 1/2 R s n

92690_ch11_ptg01_p097-125.indd 124

11/12/12 10:32 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL      125

v 5

1.49 11.8752 2/3 1.0432 1/2 .032

v 5 14.7 ft/s t3 5

L 12000 5 5 816 s 5 0.23 h. v 14.7

tc 5 t1 1 t2 1 t3 tc 5 0.26 1 0.13 1 0.23 tc 5 0.62 h. Rainfall distribution Type II Ia 5 1.333 in

(Appendix D-4) (Table 11-2)

Ia 1.333 5 5 0.25 P 5.3 qu 5 410 csm/in

(Appendix D-5, Chart 3)

qp 5 qu Am Q qp 5 14102 12.612 11.52 qp 5 1605 cfs

qp 5 1600 cfs.    (Answer)

92690_ch11_ptg01_p097-125.indd 125

11/12/12 10:32 AM

C h a p t e r

12 Storm Sewer Design

1. First, determine outfall velocity. v 5 9.0 ft/s

(Appendix A-4, Chart 39)

9.0 ft/s exceeds all permissible velocities shown in Appendix A-2. Therefore, a protective lining is required. Next, determine stone size. TW 5 Normal depth 5 1.35r

(Appendix A-4, Chart 39)

.02 1Q/D0 2 4/3 TW

d50 5

(Equation 12-1)

.02 120/2.02 4/3 1.35

d50 5

d50 5 0.32 ft 5 3.8 in use 4-inch stone    (Answer) Next, determine apron length, La. Since TW 5 1.35 ft, which is greater than 1/2 D0, use Equation 12-2. La 5

3Q D03/2

La 5

132 1202

(Equation 12-2)

12.02 3/2

La 5 21.2 ft

use La 5 22 ft    (Answer) Next, since there is no channel downstream of the outfall, determine apron width, W. Since TW . 1/2 D0, use Equation 12-4. 126

92690_ch12_ptg01_p126-139.indd 126

11/12/12 10:42 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    127

W 5 3 D0 1 0.4 La W 5 3 12.02 1 .4 1222 W 5 14.8 ft use W 5 15 ft    (Answer) 2. First, determine outfall velocity. v 5 9.2 ft/s

(Appendix A-4, Chart 47)

9.2 ft/s exceeds all permissible velocities shown in Appendix A-2. Therefore, a protective lining is required. Next, determine stone size. TW 5 Normal depth 5 2.1 ft d50 5 d50 5

.02 1Q/D0 2 4/3 TW

(Appendix A-4, Chart 47) (Equation 12-1)

.02 185/52 4/3 2.1

d50 5 0.42 ft 5 5.0 in use 6s stone    (Answer) Next, determine apron length, La. Since TW 5 2.1 ft which is less than 1/2 D0, use Equation 12-3. La 5 La 5

1.80 1 7D0 D03/2

(Equation 12-3)

1.80 1 172 152 53/2

La 5 35.2 ft

use La 5 35 ft    (Answer) Finally, since a channel exists downstream of the outflow, the riprap will line the channel. It will cover the bottom and extend up the sides to a vertical height of 3.1 ft, which is TW plus 1-foot freeboard.

3. First, determine outfall velocity. v 5 9.5 ft/s

(Appendix A-4, Chart 9)

9.5 ft/s exceeds all permissible velocities shown in Appendix A-2. Therefore, a protective lining is required.

92690_ch12_ptg01_p126-139.indd 127

11/12/12 10:42 AM

128    CHAPTER 12 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Next, determine stone size. a5

Q v

a5

215 9.5

(Equation 4-3)

a 5 22.63 ft2 TW 5

22.63 8

TW 5 2.83 ft

Therefore, .02 1Q/D0 2 4/3 TW

d50 5

(Equation 12-1)

.02 1215/82 4/3 2.83

d50 5

d50 5 0.56 ft 5 6.8 in use 8s stone    (Answer)

Next, determine apron length, La. Since TW 5 2.83 ft, which is greater than 1/2 D0, use Equation 12-2. La 5 La 5

3Q D03/2

(Equation 12-2)

312152 83/2

La 5 28.5 ft use La 5 30 ft    (Answer) Finally, since a channel exists downstream of the outfall, the riprap will line the channel. It will cover the bottom and extend up the sides to a vertical height of 3.83 ft, which is TW plus 1-foot freeboard. 4.    v 5 13 ft/s

(Appendix A-4, Chart 45)

Exceeds permissible velocity

(Appendix A-2)

D 5 1.6 ft

(Appendix A-4, Chart 45)

92690_ch12_ptg01_p126-139.indd 128

11/12/12 10:42 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    129

Therefore, TW 5 1.6 ft d50 5 d50 5

.02 1Q/D0 2 4/3 TW

(Equation 12-1)

.02 175/42 4/3 5 0.62 ft 5 7.5 in 1.6

use 8s stone    (Answer) TW , 1/2 D0 La 5

1.80 1 7D0 D03/2

(Equation 12-3)

1.80 1 7142 5 28.2 ft 43/2 use La 5 28 ft    (Answer)

La 5

W 5 3D0 1 La W 5 3142 1 28 5 40 ft    (Answer) 5. See Figure 21. 6. See Figure 22. 7. Drainage area delineations and hydraulic paths are shown on Figure 23.

Composite c-value results are shown in Table 11. Time of concentration: Drainage Basin

1

tc 5 6 min (by inspection)



2

Overland:  L 5 100 ft s 5 13%





t1 5 9 min 





















92690_ch12_ptg01_p126-139.indd 129

Shallow Conc.:  L 5 160 ft s 5 8% t2 5 0.6 min. Gutter:  L 5 350 ft s 5 2.3% t3 5 1.9 min tc 5 9 1 0.6 1 1.9 5 11.5 min 

11/12/12 10:42 AM

92690_ch12_ptg01_p126-139.indd 130

FIGURE 21  Storm sewer computation for Problem 5.

© Cengage Learning 2014

  85   50 125   30 130   65 140 108   25   50   45

2.5 2.1 1.1 2.4 1.0 2.8 3.5 1.0 2.2 3.0 1.0

12 12 12 12 15 12 12 12 12 15 18

  6.3   6.0   4.1   6.3   7.0   6.7   7.5   3.9   6.0 12.5 12.0

6.1 6.4 4.2 7.2 5.8 6.6 7.2 4.5 8.0 10.1 —

.23 .13 .50 .07 .37 .16 .32 .40 .05 .08 —

Pipe Segment

1.4 1.9 1.0 2.5 4.2 1.5 1.6 1.4 4.3 8.3 8.3

A—Increm. Area (acres) 3.6 3.6 3.2 3.2 3.2 5.3 4.1 5.3 4.3 3.1 3.1

C—Runoff Coefficient 16 16.2 18.5 19.0 19.1 6.0 12 6.0 10 19.5 19.6

(4)

A.c—Increm.   .40   .52   .32   .79 1.31   .28   .38   .26   .99 2.68 2.68

(5)

A.c—Cummul.

.40 .12 .32 .47 — .28 .10 .26 .73 — —

(6)

tc—Time of Conc. (min.)

.62 .34 .28 .26 — .89 .65 .90 .66 — —

(7)

i—Rainfall Intensity (in/h)

  .65   .34 1.16 1.79 —   .31   .15   .29 1.10 — —

(8) Qp—Peak Runoff (cfs)

2 5 4 5 10 7 10 9 10 11 12

(9)

Pipe Length (ft)

1 2 3 4 5 6 7 8 9 10 11

(10)

Slope (%)

To

(11)

Size (in)

From

(14)

(13)

(12)

Capacity (full) (cfs)

(3)

0.3 0.1 —

Velocity (fps) (Design Flow)

(2)

7.0 6.2 —

Travel Time in Pipe (min.)

(1)

© Cengage Learning 2014

  5.5   6.9 12.5

12 15 21

Pipe Segment

1.8 0.9 0.5

(2)

A—Increm. Area (acres) 140   30   75

(3)

C—Runoff Coefficient 3.2 6.1 8.4

(4)

A.c—Increm. 5.6 5.5 5.5

(5)

A.c—Cummul. 18.0 18.3 18.4

(6)

tc—Time of Conc. (min.)

0.57 1.10 1.52

(7)

i—Rainfall Intensity (in/h)

0.57 0.53 0.42

(8) Qp—Peak Runoff (cfs)

0.46 0.62 0.80

(9)

Pipe Length (ft)

1.24   .86   .52

(10)

Slope (%)

2 3 4

(11)

Size (in)

1 2 3

(12)

Capacity (full) (cfs)

To

(13)

Velocity (fps) (Design Flow)

From

(14)

Travel Time in Pipe (min.)

(1)

130    CHAPTER 12 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

FIGURE 22  Storm sewer computation for Problem 6.

11/12/12 10:42 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    131

Plan of Proposed Storm Sewer

SCALE: 1" = 100'

CONTOUR INTERVAL 2'

7 6

5 4 3

© Cengage Learning 2014

1

2

FIGURE 23  Drainage areas and hydraulic paths used for Problem 7.

92690_ch12_ptg01_p126-139.indd 131

11/12/12 10:42 AM

Drainage Basin No.

Total Area (Acres)

Imperv. Area (Acres)

Lawn Area (Acres)

Wooded Area (Acres)

c

1 2 3 4 5 6

0.17 1.50 2.05 0.14 — 0.54

.10 .25 .30 .14 — .19

.04 .50 .45 — — .33

.03 .75 1.30 — — .02

0.64 0.35 0.32 0.90 — 0.51

© Cengage Learning 2014

132    CHAPTER 12 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

TABLE 11  Summary of composite c computations for Problem 7. Drainage Basin

3

Overland:  L 5 100 ft  s 5 11%





t1 5 9.3 min 





















tc 5 9.3 1 2.0 1 0.6 5 11.9 min 



4

tc 5 6 min  (by inspection)



5

N.A.



6

tc , 11.9 min  (by inspection)

Shallow flow:  L 5 450 ft  s 5 5.8%  v 5 3.8 ft/s t2 5 2.0 min  Gutter:  L 5 90 ft  s 5 1.7%  v 5 2.65 ft/s t3 5 0.6 min 

Design computations shown in Figure 24. 8. System layout is shown at a larger scale in Figure 25. Drainage areas are delineated in Figure 26. Profiles are shown in Figure 27. Notice that Manholes 5 and 6 were added to connect roof drains from the building. Also, notice Manholes 16 and 17 were added to reduce the pipe slope and therefore the velocity of flow. Composite c-values are computed in Table 12.

92690_ch12_ptg01_p126-139.indd 132

11/12/12 10:42 AM

.20 .21 .13 .16 .30 — 3.7 7.8 5.4 3.4 14 8.0 4.9 6.3 12.5 3.9 28 13.0 12 12 18 12 18 18 © Cengage Learning 2014

Pipe Segment

1.5 2.5 1.0 1.0 6.0 1.2

(2)

A—Increm. Area (acres)

45 100 42 32 255 45

(3)

C—Runoff Coefficient

0.86 3.4 8.3 1.0 9.2 10.8

(4)

A.c—Increm.

7.8 6.5 6.4 7.8 6.4 6.3

(5)

A.c—Cummul.

6.0 11.5 11.9 6.0 12.0 12.3

(6)

tc—Time of Conc. (min.)

.11 .53 1.30 .13 1.43 1.71

(7)

i—Rainfall Intensity (in/h)

.11 .53 .66 .13 — .28

(8)

Qp—Peak Runoff (cfs)

.64 .35 .32 .90 — .51

(9)

Pipe Length (ft)

.17 1.50 2.05 .14 — .54

(10)

Slope (%)

3 3 5 5 6 7

(11)

Size (in)

1 2 3 4 5 6

(12)

Capacity (full) (cfs)

To

(13)

Velocity (fps) (Design Flow)

From

(14)

Travel Time in Pipe (min.)

(1)

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    133

FIGURE 24  Storm sewer computations for Problem 7.

92690_ch12_ptg01_p126-139.indd 133

11/12/12 10:42 AM

134    CHAPTER 12 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Proposed Storm Sewer Layout SCALE: 1" = 100'

PARKING ROAD

1 2 3

7 9

PARKING

10

4 6

11 12

RO

AD

5

8

13

14

15 16

17 © Cengage Learning 2014

18

FIGURE 25  Storm sewer layout for Problem 8.

92690_ch12_ptg01_p126-139.indd 134

11/12/12 10:42 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    135

© Cengage Learning 2014

Site Plan SCALE: 1" = 200' CONTOUR INTERVAL 2'

FIGURE 26  Drainage areas used for Problem 8.

92690_ch12_ptg01_p126-139.indd 135

11/12/12 10:42 AM

136    CHAPTER 12 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Profiles SCALE: Horiz. 1" = 100' Vert. 1" = 10'

INLET 4

390

INLET 1 INLET 2 INLET 3

400

MH 12

MH 6

380

370

HW 18

350

© Cengage Learning 2014

MH 17

INLET 15 MH 16

360

INLET 14

INLET 12

INLET 13

370

INLET 11

380

INLET 7 INLET 8 INLET 9

390

FIGURE 27  Storm sewer profiles used in Problem 8.

92690_ch12_ptg01_p126-139.indd 136

11/12/12 10:42 AM

Drainage Basin No.

Total Area (Acres)

Imperv. Area (Acres)

Lawn Area (Acres)

Wooded Area (Acres)

c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.51 0.19 0.06 0.43 0.47 0.36 1.48 0.12 0.05 1.21 0.52 — 0.56 0.46 0.08 — —

.24 .07 .06 .36 .47 .36 .35 .05 .05 .10 .40 — .03 .30 .08 — —

.08 .08 — .07 — — .14 .07 — .17 .12 — .53 .16 — — —

.19 .04 — — — — .99 — — .94 — — — — — — —

0.59 0.54 0.95 0.85 0.95 0.95 0.42 0.58 0.95 0.32 0.80 — 0.35 0.73 0.95 — —

© Cengage Learning 2014

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    137

TABLE 12  Summary of composite c computations for Problem 8.

Key times of concentration are computed below: Inlet 1: Overland flow:  L 5 100 ft  s 5 18%



t1 5 8.7 min 

(Appendix C-2)

Shallow conc. flow:  L 5 45 ft s 5 18%

t2 5 0.1 min 

Gutter flow:  L 5 270 ft  s 5 4%  v 5 4.1 ft/s

(Figure 10-9)

t3 5 1.1 min 

tc 5 8.7 1 0.1 1 1.1 5 9.9 min  Inlet 7: Overland flow:  L 5 100 ft  s 5 8.0%

92690_ch12_ptg01_p126-139.indd 137



t1 5 9.8 min 

(Appendix C-2)

11/12/12 10:43 AM

138    CHAPTER 12 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Shallow flow:  L 5 350 ft  s 5 11%  v 5 5.3 ft/s

t2 5 1.1 min 

Sheet flow:  L 5 200 ft  s 5 4.2%  v 5 4.2 ft/s

(Figure 10-9)

t3 5 0.8 min 

Gutter flow:  L 5 50 ft  s 5 6%  v 5 5.0 ft/s

(Figure 10-9)

(Figure 10-9)

t4 5 0.2 min 

tc 5 9.8 1 1.1 1 0.8 1 0.2 5 11.9 min  Inlet 10: Overland flow:  L 5 100 ft  s 5 11%

t1 5 9.2 min 

Shallow flow:  L 5 300 ft  s 5 16%  v 5 6.5 ft/s

(Figure 10-9)

t2 5 0.8 min 

Gutter flow:  L 5 200 ft  s 5 4%  v 5 4.1 ft/s

(Appendix C-2)

(Figure 10-9)

t3 5 0.8 min 

tc 5 9.2 1 0.8 1 0.8 5 10.8 min  Hydraulic design is shown in Figure 28. To finish this design, an outfall apron at headwall 18 would be designed.

92690_ch12_ptg01_p126-139.indd 138

11/12/12 10:43 AM

92690_ch12_ptg01_p126-139.indd 139

© Cengage Learning 2014

2.1 2.8 3.3 5.9 3.8 11.3 4.3 4.8 5.1 2.6 10.4 21.2 22.6 22.2 24.5 24.5 24.5

15 20 70 155 255 40 20 20 75 105 100 115 25 70 15 85 25

Pipe Length (ft)

7.1 7.1 7.1 7.1 8.5 7.0 6.9 6.9 6.9 6.8 6.7 6.7 6.7 6.6 6.6 6.6 6.6

2.0 2.0 3.0 8.0 1.0 1.0 2.0 2.0 4.0 1.0 4.0 3.0 4.0 4.0 4.0 6.0 1.0

12 12 12 12 12 18 12 12 12 12 15 21 21 21 21 21 24

5.7 5.7 7.0 12.5 3.9 12.0 5.7 5.7 8.0 3.9 14.5 30 35 35 35 42 25

6.7 7.0 8.3 14 5.8 7.4 7.8 7.9 10 5.2 13 13 15 15 16 18 9

.04 .05 .14 .18 .73 .09 .04 .04 .13 .34 .13 .15 .03 .08 .02 .08 —

(10)

Slope (%)

9.9 9.9 10.0 10.1 6.0 10.3 11.9 11.9 12.0 12.1 12.5 12.6 12.7 12.8 12.8 12.9 12.9

(11)

Size (in)

.30 .40 .46 .83 .45 1.62 .62 .69 .74 .39 1.55 3.17 3.37 3.71 3.79 3.79 3.79

(14)

(13)

(12)

Capacity (full) (cfs)

.30 .10 .06 .37 .45 .34 .62 .07 .05 .39 .42 — .20 .34 .08 — —

A—Increm. Area (acres)

Pipe Segment

(9)

Velocity (fps) (Design Flow)

.59 .54 .95 .85 .95 .95 .42 .58 .95 .32 .80 — .35 .73 .95 — —

(3)

C—Runoff Coefficient

(2)

Travel Time in Pipe (min.)

.51 .19 .06 .43 .47 .36 1.48 .12 .05 1.21 .52 — .56 .46 .08 — —

(4)

A.c—Increm.

2 3 4 6 6 12 8 9 11 11 12 13 14 15 16 17 18

(5)

A.c—Cumul.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(6)

tc—Time of Conc. (min.)

To

(7)

i—Rainfall Intensity (in/h)

From

(8) Qp—Peak Runoff (cfs)

(1)

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    139

FIGURE 28  Storm sewer computations for Problem 8.

11/12/12 10:43 AM

C h a p t e r

13 Culvert Design

1. See Figure 26. Cost for solution A: Culvert 55 LF @ $2000/LF 5  $110,000 Channel 50 LF @ 250/LF 5  

12,500

TOTAL 5  $122,500 Cost for solution B: Culvert 50 LF @ $2000/LF 5  $100,000 Channel 90 LF @ 250/LF 5  

22,500

TOTAL 5  $122,500 S  ince costs are equal, solution A may be preferred because it alters fewer linear feet of stream channel. 2. a)  Circular concrete pipe

Assume n 5 0.012



Trial 1:  60s RCP culvert





Assume inlet control.







HW/D 5 4.4













HW 5 14.42 152 5 22 ft



Trial 2:  Twin 60s RCP culvert





Assume inlet control.







HW/D 5 1.64













HW 5 11.642 152 5 8.2 ft

(Appendix B-1, Chart 2)

Headwater elev. 5 80 1 22 5 102  (exceeds A.H.E.)

Headwater elev. 5 80 1 8.2 5 88.2  (exceeds A.H.E.)

140

92690_ch13_ptg01_p140-149.indd 140

11/12/12 10:44 AM

30′

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    141

Proposed road

A

Plan SCALE: 1" = 20'

Exis

ting

strea m

© Cengage Learning 2014

B

FIGURE 29  Alternate culvert layouts for use in Problem 1.

92690_ch13_ptg01_p140-149.indd 141

11/12/12 10:44 AM

142    CHAPTER 13 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL



Trial 3:  Triple 60s RCP culvert





Assume inlet control.







HW/D 5 1.1

















HW 5 11.12 152 5 5.5

Assume outlet control.







Dc 5 3.0 ft

(Appendix A-4, Chart 47)













TW 5 4.1 ft

(use TW)







TWr 5 13 1 52/2 5 4.0 ft ke 5 0.5

(Appendix B-3)







H 5 1.35 ft

(Appendix B-2, Chart 9)







Headwater elev. 5 79.60 1 4.1 1 1.35 5 85.05  (does not exceed A.H.E.)

Headwater elev. 5 80 1 5.5 5 85.5  (does not exceed A.H.E)

Therefore, culvert operates under inlet control and upstream water level is 85.50, which does not exceed A.H.E. Culvert:  Triple 60s RCP. b)  Concrete Box Culvert

Assume n 5 0.012



Trial 1:  5r 3 10r box





Assume inlet control.







Q 420 5 5 42 cfs/ft B 10







HW/D 5 1.25













HW 5 11.252 152 5 6.25 ft



Trial 2:  5r 3 12r box





Assume inlet control.







Q 420 5 5 35 cfs/ft B 12







HW/D 5 1.07

















HW 5 11.072 152 5 5.35 ft

Assume outlet control.







Dc 5 3.3 ft







TWr 5 13.3 1 52/2 5 4.15 ft

92690_ch13_ptg01_p140-149.indd 142

(Appendix B-1, Chart 1)

Headwater elev. 5 80.00 1 6.25 5 85.25  (exceeds A.H.E.)

Headwater elev. 5 80.00 1 5.35 5 85.35  (does not exceed A.H.E.) (Appendix A-3, Chart 10)

11/12/12 10:44 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    143

1use TWr2







TW 5 4.1 ft







ke 5 0.4

(Appendix B-3)







H 5 1.18 ft

(Appendix B-2, Chart 8)







Headwater elev. 5 79.60 1 4.15 1 1.18 5 84.93  (does not exceed A.H.E.)

Therefore, culvert operates under inlet control and upstream water level is 85.35, which does not exceed A.H.E. Culvert: 5r 3 12r box Choice of culvert:  Both culverts have the correct height. The triple pipe culvert requires about 18 ft width while the box culvert requires only about 14 ft width (outside dimen­sions). However, the triple pipe culvert probably is less expensive and easier to install. 3. A.H.E 5 7.5 ft so 5 0.19%







(measured by scale)







(measured by scale)

approximate max. height of culvert opening is 5.5 ft. This leaves 2.0 ft clearance to the finished grade to account for culvert and road thickness. a)  Circular concrete pipe

Assume n 5 0.012.



Trial 1:  Twin 60s RCP culvert





Assume inlet control 750 5 375 cfs 2







Use Q 5







HW/D 5 3.6









HW 5 13.62 15.02 5 18.0 ft  (exceeds A.H.E.)

Trial 2:  Triple 60s RCP culvert





Assume inlet control 750 5 250 cfs 3







Use Q 5







HW/D 5 2.0









HW 5 12.02 15.02 5 10.0 ft  (exceeds A.H.E.)

Trial 3:  Quadruple 60s RCP culvert





Assume inlet control 750 5 188 cfs 4







Use Q 5







HW/D 5 1.43







HW 5 11.432 15.02 5 7.15 ft  (less than A.H.E.) (OK)

92690_ch13_ptg01_p140-149.indd 143

11/12/12 10:44 AM

144    CHAPTER 13 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL





Assume outlet control







Dc 5 4.0 ft







TWr 5







TW 5 4.0 ft

(use TWr)







Ke 5 0.5

(Appendix B-3)







L 5 120 ft

(measured by scale)







H 5 2.8 ft

(Appendix B-2, Chart 9)







HW 5 TWr 1 H 2 Lso













HW 5 4.5 1 2.8 2 11202 1.00192

4.0 1 5.0 5 4.5 ft 2

HW 5 7.07 ft

Therefore, culvert operates under inlet control. HW 5 7.15 ft which does not exceed A.H.E. Culvert: Quadruple 60s RCP b)  Concrete box culvert

Assume n 5 0.012



Trial 1:  5r 3 10r box





Assume inlet control







Q 750 5 5 75 cfs/ft B 10







HW/D 5 2.4









HW 5 12.42 15.02 5 12.0 ft  (exceeds A.H.E.)

Trial 2:  5r 3 12r box





Assume inlet control







Q 750 5 5 62.5 cfs/ft B 12







HW/D 5 1.9









HW 5 11.92 15.02 5 9.5 ft  (exceeds A.H.E.)

Trial 3: 5r 3 15r box





Assume inlet control







Q 750 5 5 50 cfs/ft B 15







HW/D 5 1.47







HW 5 11.472 15.02 5 7.35 ft  (less than A.H.E.) (OK)

92690_ch13_ptg01_p140-149.indd 144

11/12/12 10:44 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    145





Assume outlet control







Dc 5 4.3 ft







TWr 5







TW 5 4.0 ft

(use TWr)







Ke 5 0.4

(Appendix B-3)







L 5 120 ft

(measured by scale)







H 5 2.45 ft

(Appendix B-2, Chart 9)







HW 5 TWr 1 H 2 Lso













HW 5 4.65 1 2.45 2 11202 1.00192

4.3 1 5.0 5 4.65 ft 2

HW 5 6.88 ft

(less than A.H.E.) (OK)

Therefore, culvert operates under inlet control. HW 5 7.35 ft which does not exceed A.H.E. Culvert: 5r 3 15r box Choice of culvert: Both culverts have the correct height. The quadruple pipe culvert requires about 24 feet width while the box culvert requires only about 17 feet width (outside dimensions). However, the pipe culvert is probably less expensive and easier to install. 4. Evaluate adequacy:

Assume inlet control.



Q 860 5 5 43 cfs/ft B 20



HW/D 5 1.79



HW 5 11.792 142 5 7.16 ft



Headwater elev. 5 179.0 1 7.16 5 186.16  (exceeds A.H.E.)



Therefore, existing culvert is inadequate.

Design replacement culvert.

Trial 1: 5r 3 20r box culvert 1n 5 0.0122

Assume inlet control.







Q 860 5 5 43 cfs/ft B 20







HW/D 5 1.25













HW 5 11.252 152 5 6.25 ft



92690_ch13_ptg01_p140-149.indd 145

(Appendix B-1, Chart 1)

Headwater elev. 5 179.0 1 6.25 5 185.25  (exceeds A.H.E.)

11/12/12 10:45 AM

146    CHAPTER 13 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL



Trial 2:  Twin 5r 3 12r box culvert





Assume inlet control.







Q 430 5 5 35.8 cfs/ft B 12







HW/D 5 1.09

















HW 5 11.092 152 5 5.45 ft

Assume outlet control.







Dc 5 3.4 ft

(Appendix 4-3, Chart 10)













TW 5 3.9 ft

(use TWr)







TWr 5 13.4 1 52/2 5 4.2 ft ke 5 0.4

(Appendix B-3)







H 5 1.22 ft

(Appendix B-2, Chart 8)







Headwater elev. = 177.4 1 4.2 1 1.22 5 182.82  (does not exceed A.H.E.)

Headwater elev. 5 179.0 1 5.45 5 184.45  (does not exceed A.H.E.)

Therefore, culvert operates under inlet control and upstream water level is 184.45, which does not exceed A.H.E. Culvert: Twin 5r 3 12r box in same location as existing. Outlet apron:



a 5 1122 13.92 5 46.8 ft2



d50 5



d50 5



d50 5 0.61 ft 5 7.26 in



use d50 5 8 in



La 5



La 5



La 5 31 ft



use 31 ft



v5

Q 430 5 5 9.2 ft/s   (exceeds permissible velocities in Appendix A-2) a 46.8 .02 1Q/D0 2 4/3 TW

(Equation 12-1)

.02 1430/122 4/3 3.9

3Q D03/2

(Equation 12-2)

314302 123/2

Riprap to line channel to vertical height of 4.9 ft, which is TW plus 1-foot freeboard.

92690_ch13_ptg01_p140-149.indd 146

11/12/12 10:45 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    147

5. Evaluate adequacy of existing triple 30s RCP.

Assume outlet control since tailwater is above downstream culvert crown.



ke 5 0.5



H 5 3.2 ft



TW 5 3.25 ft



Headwater elev. 5 316.75 1 3.25 1 3.2 5 323.2  (exceeds A.H.E.)



(Appendix B-3) (Appendix B-2, Chart 9)

Design replacement culvert.

Trial 1:  2.5r 3 10r box culvert





Assume outlet control.





ke 5 0.4

(Appendix B-3)





H 5 0.90 ft

(Appendix B-2, Chart 8)





TW 5 3.25 ft





Headwater elev. 5 316.75 1 3.25 1 0.9 5 320.9  (does not exceed A.H.E.)

Therefore, culvert operates under outlet control and upstream water level is 320.9, which does not exceed A.H.E. Culvert: 2.5r 3 10r box culvert. Outlet apron:

v5

Q a



v5

152 5 6.08 ft/s  (exceeds permissible velocities in Appendix A-2) 25



d50 5



d50 5

.02 1Q/D0 2 4/3 TW

(Equation 12-1)

.02 1152/102 4/3 2.5

Note: When TW is greater than the culvert height, use culvert height as TW in Equation 10-1.

d50 5 0.30 ft 5 3.6 in



use d50 5 4 in



La 5



La 5



La 5 14 ft



use La 5 15 ft

3Q D03/2 311522

(Equation 12-2)

103/2

Riprap to line channel to vertical height of 4.25 ft, which is TW plus 1-foot freeboard.

92690_ch13_ptg01_p140-149.indd 147

11/12/12 10:45 AM

148    CHAPTER 13 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

6. Trial 1:  3r 3 10r box culvert

Assume outlet control since downstream water level is at downstream crown.



ke 5 0.4



H 5 3.20 ft



TW 5 3.0 ft



Headwater elev. 5 209.6 1 3.00 1 3.20 5 215.8



A.H.E. 5 213.40 1 0.20 5 213.60



Therefore, u/s elev. exceeds A.H.E.



(Appendix B-3) (Appendix B-2, Chart 8)

Trial 2:  3r 3 12r box culvert

ke 5 0.4

H 5 2.10 ft

TW 5 3.0 ft



Headwater elev. 5 209.6 1 3.00 1 2.10 5 214.7  (exceeds A.H.E.)

Trial 3:  3r 3 14r box culvert

ke 5 0.4



H 5 1.60 ft



TW 5 3.0 ft



Headwater elev. 5 209.6 1 3.00 1 1.60 5 214.2 (exceeds A.H.E.)

Trial 4:  3r 3 18r box culvert

ke 5 0.4



H 5 0.91 ft



TW 5 3.0 ft



u/s elev. 5 209.6 1 3.00 1 0.91 5 213.51  (does not exceed A.H.E.)

Therefore, culvert is 3r 3 18r box. Outlet protection: Q 340 5 5 6.30 ft/s  (exceeds permissible velocities in Appendix A-2) a 54



v5



d50 5

.02 1Q/D2 4/3 TW



d50 5

.02 1340/182 4/3 3.0

92690_ch13_ptg01_p140-149.indd 148

(Equation 12-1)

11/12/12 10:45 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    149



d50 5 0.34 ft 5 4.0 in



use d50 5 4 in



La 5



La 5



La 5 13.4 ft



use La 5 15 ft

3Q D03/2 313402

(Equation 12-2)

183/2

Riprap to line channel to vertical height of 4.0 ft, which is TW plus 1-foot freeboard.

92690_ch13_ptg01_p140-149.indd 149

11/12/12 10:45 AM

C h a p t e r

14 Stormwater Detention

1. Use the orifice equation, Equation 5-3, where c 5 0.62. Remember that the head is the water level above the center of the orifice. Assume the orifice is discharging freely. See table below. 60 Orifice Elevation (ft)

H (ft)

Q (cfs)

200

0

0

201

0.75

0.85

202

1.75

1.29

203

2.75

1.62

204

3.75

1.89

205

4.75

2.13

2. Use Equation 5-4 for a broad crested weir with a breadth of 1.0 foot. For c-values, use ­Appendix A-5. See Table below. 59 Weir Elevation (ft)

H (ft)

c

100 101 102 103 104

0 1.0 2.0 3.0 4.0

— 2.98 3.30 3.32 3.32

Q (cfs) 0 14.9 46.7 86.3 133

150

92690_ch14_ptg01_p150-155.indd 150

11/12/12 10:46 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    151

3. Use Equation 5-3 for the orifice and Equation 5-4 for the broad crested weir with a breadth of 0.5 foot. At each water level considered, compute the headwater, HW, for the outflow pipe to check for submerged conditions for the orifice. 50 Orifice Elevation (ft)

Total

2.29 Weir

H (ft)

Q (cfs)

H (ft)

c

Q (cfs)

Q (cfs)

HW (ft)

100

0

0

0



0

0

0

101

0.79

0.60

0



0

0.60

*

102

1.79

0.91

0



0

0.91

*

103

2.79

1.13

0



0

1.13

*

104

3.79

1.32

0



0

1.32

*

105

3.46**

1.26

1.0

3.32

7.3

8.56

1.54

106

2.70**

1.11

2.0

3.32

20.7

21.8

3.30

* Discharge too small to find HW on the culvert chart. ** H computed by subtracting culvert headwater elevation from reservoir water surface elevation.

4. First, determine whether the emergency spillway flow will be subcritical or supercritical. For Q 5 78 cfs, for example, F 5 1.18. Therefore, flow is supercritical. Next, choose a list of Dc-values and find their corresponding Q-values using Equation 6-2. Then, using Equation 8-6, find corresponding Dr-values. Dc (ft) 0.5 1.0 1.5

Q (cfs) 21.7 66.5 132

Dr (ft) 0.72 1.41 2.07

Elevation (ft) 220.72 221.41 222.07

The Dr-values represent reservoir water levels above the emergency spillway crest and are converted to elevations by adding 220.00 ft to each value.

5. First, compute the inflow hydrograph using the given parameters. See Figure 30.

92690_ch14_ptg01_p150-155.indd 151

11/12/12 10:46 AM

152    CHAPTER 14 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

5

0.5 Time (h)

1.0

© Cengage Learning 2014

Q (cfs)

10

FIGURE 30  Inflow hydrograph for Problem 5. Next, determine a time interval for the routing and prepare a table of inflow values. Use Dt 5 3 min. Time (h)

Inflow (cfs)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

0 2.0 4.0 5.9 7.9 9.9 8.7 7.5 6.3 5.2 4.0 2.8 1.6 0.4

92690_ch14_ptg01_p150-155.indd 152

11/12/12 10:46 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    153

Next, using the given detention basin parameters, create a table of values of outflow, O, versus 2S/Dt 2 O and versus 2S/Dt 1 O. O (cfs)

2S Dt

2 O

(cfs)

0 2.5 3.5 4.2 4.9 5.5

0 8.6 18.7 40.2 61.8 83.4

2S Dt

1 O

(cfs) 0 13.6 25.7 48.6 71.6 94.4

A graph of this table is shown in Figure 31.

6 2S Δt

−O 2S Δt

+O

O (cfs)

4

50 2S Δt

− O (cfs)

100 2S Δt

+ O (cfs)

© Cengage Learning 2014

2

FIGURE 31

92690_ch14_ptg01_p150-155.indd 153

11/12/12 10:46 AM

154    CHAPTER 14 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Finally, compute the routing using the form shown in Figure 14-9. Time (h) 0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65

I1 (cfs) 0 2.0 4.0 5.9 7.9 9.9 8.7 7.5 6.3 5.2 4.0 2.8 1.6 0.4

I1 1 I2 (cfs) 2.0 6.0 9.9 13.8 17.8 18.6 16.2 13.8 11.5 9.2 6.8 4.4 2.0 —

2S Dt

2 O

(cfs) 0 1.5 5.0 10.0 17.0 27.5 38.0 45.8 50.2 52.8 53.0 50.4 46.4 40.4

2S Dt

1 O

(cfs) 0 2.0 7.5 14.9 23.8 34.8 46.1 54.2 59.6 61.7 62.0 59.8 54.8 48.4

O2 (cfs) 0 0.3 1.3 2.7 3.4 3.8 4.1 4.4 4.5 4.6 4.6 4.5 4.4 4.2

Peak inflow 5 9.9 cfs. Peak outflow 5 4.6 cfs.  (Answer) The outflow hydrograph, together with the inflow hydrograph, is shown in Figure 32. Note that the hydrograph can also be computed using application software. 6. First, compute the inflow hydrograph using the given parameters. The inflow hydrograph was computed using Intelisolve software and is shown below. Time (h)

Inflow (cfs)

Time (h)

Inflow (cfs)

11.8 11.9 12.0 12.1 12.2 12.3 12.4

0.36 1.59 3.75 6.03 8.10 8.89 8.37

12.5 12.6 12.7 12.8 12.9 13.0 13.1

7.65 6.72 5.64 4.45 3.30 2.60 2.35

92690_ch14_ptg01_p150-155.indd 154

11/12/12 10:46 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    155

10

Outflow Hydrograph

5

© Cengage Learning 2014

Q (cfs)

Inflow Hydrograph

1.0

0.5 Time (h)

FIGURE 32  Inflow and outflow hydrographs for Problem 5. Next, using the given detention basin parameters, compute the routing. The inflow and outflow hydrographs are shown in Figure 33. Peak inflow 5 8.89 cfs. Peak outflow 5 5.48 cfs.  (Answer)





10 8

Q (cfs)

Inflow 6 Outflow

4

0 0.0

2.5

5.0

7.4

9.9

12.4 14.9 Time (hr)

17.4

19.8

22.3

24.8

© Cengage Learning 2014

2

FIGURE 33  Inflow and outflow hydrographs for Problem 6.

92690_ch14_ptg01_p150-155.indd 155

11/12/12 10:46 AM

C h a p t e r

15 Detention Design

Elev. (ft)

Area (ft2)

Incr. Volume (ft3)

Cumm. Volume (ft3)

100 101 102 102.5 104 106

0 5984 12062 12470 15770 20905

    0   2992   9023   6133 21180 36675

0 2992 12015 18148 39328 76003

© Cengage Learning 2014

1. See Table 13.

TABLE 13  Summary of storage volume computations for Problem 1.

180 Weir

40 Orifice Elev. (ft) 100 101 102     102.5 104 106

H (ft)      0 .83 1.83 2.33 3.83 5.83

Q (cfs) 0 .40 .59 .66 .85 1.05

219 Weir

H (ft)

Q (cfs)

H (ft)

Q (cfs)

Total Outflow (cfs)

— — — — 1.5 3.5

— — — — 9.0 32.6

— — — — — 2.0

— — — — — 197

0 .40 .59 .66 9.0 231.0

© Cengage Learning 2014

2. See Table 14.

TABLE 14  Summary of outflow computations for Problem 2. 156

92690_ch15_ptg01_p156-169.indd 156

11/12/12 10:48 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    157

3. See Table 15 and Figure 34. Dt 5 0.25 h. To assist in computing Table 15, it may be helpful to sketch a graph of Elevation vs. Storage and Elevation vs. Outflow using the information in Tables 13 and 14. 2S 1 O Dt (cfs)

2S 2O Dt (cfs)

  .4   .6   .7 3.5 10

7.0 27.3 40.7 72.4 97

6.2 26.1 39.3 65.4 77

TABLE 15  Values of O vs.

© Cengage Learning 2014

O (cfs)

2S 2S 1 O and O vs. 2 O used in Problem 3. Dt Dt

10

–O

2S Dt

50 2S Dt

FIGURE 34  Graph of O vs.

92690_ch15_ptg01_p156-169.indd 157

+O

5

+ O, cfs;

100 2S Dt

– O, cfs

© Cengage Learning 2014

O, cfs

2S Dt

2S 2S 1 O and O vs. 2 O used in Problem 3. Dt Dt

11/12/12 10:48 AM

158    CHAPTER 15 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Time (h)

I (cfs)

I1 1 I2 (cfs)

2S 2O Dt (cfs)

0 .25 .50 .75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

1.2 1.5 2.1 3.2 11.6 22.1 9.8 4.5 3.2 2.7 2.4 2.0 1.8

2.7 3.6 5.3 14.8 33.7 31.9 14.3 7.7 5.9 5.1 4.4 3.8 —

0 2.7 6.3 11.6 26.4 54 71 71 68 65 63 61 —

2S 1O Dt (cfs)

O2 (cfs)

0 2.7 6.3 11.6 26.4 60.1 85.9 85.3 78.7 73.9 70.1 67.4 64.8

— .2 .4 .5 .6 2.0 6.5 6.5 4.8 3.8 3.2 2.8 2.6

© Cengage Learning 2014

4. See Table 16. Peak outflow is 6.5 cfs. Maximum water level elevation is determined from Table 14 to be 103.8.

TABLE 16  Summary of routing computations for Problem 4. 5. First, compute the peak runoff for existing conditions. Using Intelisolve software, the ­following values were computed. Storm

qp (cfs)

100   10

43.0 21.8

These values are now used as the maximum allowable runoff for proposed conditions. The detention basin size and outflow is chosen by trial and error. Maximum depth is chosen to be 6 feet so that the basin is not too deep. A two-stage outflow structure is chosen with an orifice as the primary stage and a weir as the second stage. The outflow structure is shown in Figure 35. The orifice diameter was given as 4 inches. (A 4-inch orifice is used for water quality control. If water quality was not part of the design, the orifice could have been much larger and the detention basin smaller.) The weir size is chosen as a 4.5-ft broad crested weir so that outflow is approximately equal to the 100-year storm runoff (43.0 cfs) at

92690_ch15_ptg01_p156-169.indd 158

11/12/12 10:48 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    159

4.5′ Weir Elev. 656

Elev. 654

© Cengage Learning 2014

4″ Orifice

Elev. 650

FIGURE 35  Outflow structure for Problem 5. elevation 656 ft which is the maximum design elevation. Outflow values are shown in the following table. 40 Orifice

4.59 Weir

Elevation (ft)

H (ft)

Q (cfs)

H (ft)

650 652 654 656

0 1.83 3.83 5.83

0 0.59 0.85 1.05

0 0 0 2

c

Q (cfs)

Total Q (cfs)

— — — 3.3

0 0 0 42

0 0.59 0.85 43

The detention basin is an open cut, grass-lined basin with bottom slope of 2 percent and side slopes of 3 horizontal to 1 vertical. After a few trials, the size is chosen as the smallest size that results in the required outflows and a maximum water level less than elevation 656 ft. The following table shows the basin size.

Elevation (ft) 650 652 654 656

92690_ch15_ptg01_p156-169.indd 159

Area (s.f.) 0 15,600 21,700 28,700

Incremental Volume (c.f.) 0 15,600 37,300 50,400



Cumulative Volume (c.f.) 0 15,600 52,900 103,300

11/12/12 10:48 AM

160    CHAPTER 15 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

Finally, rout the inflow hydrographs through the detention basin. Results of the routing are shown below.

Peak Runoff Existing Conditions (cfs) 43.0 21.8

Storm 100   10

Peak Inflow (cfs) 71.9 42.2

Detention Basin Peak Maximum Outflow Water Level (cfs) (ft) 42.2 655.92 17.2 654.76

For both the 100-year and 10-year storms, peak outflow from the detention basin is less than peak runoff under existing conditions. Also, maximum water level is less than the maximum design water level. Inflow and outflow hydrographs are shown in Figure 36. 80

Q (cfs)

60

Inflow

40 Outflow 20

0 0.0

2.4

4.9

7.3

9.8

12.2 14.6 Time (hr)

17.1

19.5

22.0

24.4

19.6

22.1

24.5

(a) 100-year storm 50

Inflow

30 20

Outflow

10 0 0.0

2.5

4.9

7.4

9.8

12.3 14.7 Time (hr)

(b) 10-year storm

17.2

© Cengage Learning 2014

Q (cfs)

40

FIGURE 36  Inflow and outflow hydrographs for Problem 5.

92690_ch15_ptg01_p156-169.indd 160

11/12/12 10:48 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    161

6. First, compute the peak runoff for existing conditions. Using Intelisolve software, the following values were computed. Storm

Qp (cfs)

100 10

15.8 11.5

These values are now used as the maximum allowable runoff for proposed conditions. The detention basin size and outflow is chosen by trial and error. Maximum depth is chosen to be 5 feet so that the basin is not too deep. A two-stage outflow structure is chosen with an orifice as the primary stage and a weir as the second stage. The outflow structure is shown in Figure 37. The orifice diameter was given as 4 inches. (A 4-inch orifice is used for water quality control. If water quality was not part of the design, the orifice could have been much larger and the detention basin smaller.) The weir size is chosen as a 4.5-ft broad crested weir so that outflow is approximately equal to the 100-year storm runoff (15.8 cfs) at elevation 405 ft which is the maximum design elevation. Outflow values are shown in the following table. 40 Orifice

4.59 Weir

Elevation (ft)

H (ft)

Q (cfs)

H (ft)

c

Q (cfs)

Total Q (cfs)

400 402 404 405

0 1.83 3.83 5.83

0 0.59 0.85 1.05

0 0 0 1

— — — 3.32

0 0 0 15

0 0.59 0.85 16

4.5′ Weir Elev. 405 Elev. 404

Elev. 400

© Cengage Learning 2014

4″ Orifice

FIGURE 37  Outlet structure for Problem 6.

92690_ch15_ptg01_p156-169.indd 161

11/12/12 10:48 AM

162    CHAPTER 15 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

The detention basin is an open cut, grass-lined basin with bottom slope of 2 percent and side slopes of 3 horizontal to 1 vertical. After a few trials, the size is chosen as the smallest size that results in the required outflows and a maximum water level less than elevation 405 ft. The following table shows the basin size.

Elevation (ft) 400 402 404 405

  Area    (s.f.) 0 4,500 6,250 7,220

Incremental Volume (c.f.) 0 4,500 10,750 13,470

Cumulative Volume (c.f.) 0 4,500 15,250 28,720

Finally, rout the inflow hydrographs through the detention basin. Results of the routing are shown below.

Storm 100 10

Peak Runoff Existing Conditions (cfs) 15.8 11.5

Detention Basin Peak Maximum Outflow Water Level (cfs) (ft) 15.7 404.98   9.6 404.58

Peak Inflow (cfs) 36.4 26.3

For both the 100-year and 10-year storms, peak outflow from the detention basin is less than peak runoff under existing conditions. Also, maximum water level is less than the maximum design water level. Inflow and outflow hydrographs are shown in Figure 38. 7. Delineation of watershed tributary to detention basin is shown in Figure 39. Use same watershed for pre-development and post-development conditions. Runoff hydrographs and routing are computed using computer software produced by Intelisolve. Compute parameters to use with software. Pre-development conditions:

1. Watershed Area:

Am 5 17.0 acres  (includes area of detention basin)

2. Curve Number: Cover Condition Impervious Lawn Wooded

Area (acres) 0.3 1.7 15

CN 98 61 60

Product      29    104     900    1033

92690_ch15_ptg01_p156-169.indd 162

11/12/12 10:48 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    163

40

Q (cfs)

30

Inflow

20 Outflow 10

0 0.0

0.2

0.5

0.7

0.9

1.1 1.4 Time (hr)

1.6

1.8

2.0

2.3

4.1

4.7

5.3

5.8

(a) 100-year storm 30 25

Q (cfs)

20

Inflow

15 10

Outflow

0 0.0

0.6

1.2

1.8

2.3

2.9 3.5 Time (hr)

(b) 10-year storm

© Cengage Learning 2014

5

FIGURE 38  Inflow and outflow hydrographs for Problem 6. Weighted CN 5

1033 5 60.8 17

CN 5 61

Note: Impervious area includes existing off-site houses.

3. 24-hour precipitation: P 5 6.0 in

92690_ch15_ptg01_p156-169.indd 163

(Appendix D-3)

11/12/12 10:48 AM

SCALE: 1" = 200' CONTOUR INTERVAL 2'

© Cengage Learning 2014

TOPOGRAPHIC MAP

FIGURE 39  Watershed delineation used in Problem 7.

92690_ch15_ptg01_p156-169.indd 164

11/12/12 10:48 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    165



4. Time of concentration: Overland flow: L 5 100 ft   s 5 12%

n 5 0.40

Tt 5 Tt 5

P2 5 2.75 in .0071nL2 P2.5 s.4

(Table 11-3) (Appendix D-3)

.8



.007 5 1.42 11002 6 .8 12.752 .5 1.122 .4

(Equation 11-5) 5 0.19 h

t1 5 0.19 h

Shallow concentrated flow: L 5 1000 ft   s 5 7% v 5 4.3 ft/s t2 5

(Figure 10-9, unpaved)

d 1000 5 5 3.9 min 5 0.06 h v 4.3

tc 5 t1 1 t2 5 .19 1 .06 tc 5 0.25 h

5. Rainfall distribution: Type II

(Appendix D-4)

Peak runoff under existing conditions is 35.1 cfs. This value is now used as the maximum allowable runoff for proposed conditions. The detention basin size and outflow is chosen by trial and error. Maximum depth is chosen to be about 4 feet so that the basin is not too deep. A two-stage outflow structure is chosen with an orifice as the primary stage and a weir as the second stage. The outflow structure is shown in Figure 40. 3′ Weir Elev. 186

12″ Orifice Elev. 182.5

© Cengage Learning 2014

Elev. 184

FIGURE 40  Outflow structure for Problem 7.

92690_ch15_ptg01_p156-169.indd 165

11/12/12 10:48 AM

166    CHAPTER 15 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

The orifice diameter was chosen to be 12 inches. The weir size was chosen as a 3-ft broad crested weir so that outflow is approximately equal to the 100-year storm runoff (35.1 cfs) at elevation 186 ft which is the maximum design elevation. Outflow values are shown in the following table. 120 Orifice

39 Weir

Elevation (ft)

H (ft)

Q (cfs)

H (ft)

c

182.5 183 184 185 186

0 0.25 1.0 2.0 3.0

0 1.9 3.8 5.3 6.6

0 0 0 1 2

— — — 3.32 3.32

Q (cfs) 0 0 0 10.0 28.2

Total Q (cfs) 0 1.9 3.8 15.3 34.8

Developed conditions:

1. Watershed area:







Am 5 17.0 acres

2. Curve Number: Cover Condition Impervious Lawn Wooded

Area (acres) 3.7 7.1 6.2

CN 98 61 60

Product 393 433 372 1168

1168 5 68.7 17 CN 5 69

Weighted CN 5

3. 24-hour precipitation:



P 5 6.0 in

(Appendix D-3)

4. Time of concentration: Overland flow: L 5 100 ft   s 5 12%

n 5 0.40 P2 5 2.75 in

(Table 11-3) (Appendix D-3)

t1 5 0.16 in (See pre-developed)

92690_ch15_ptg01_p156-169.indd 166

11/12/12 10:48 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    167



Shallow concentrated flow: L 5 500 ft   s 5 12% v 5 5.6 ft/s t2 5

(Table 10-9, unpaved)

d 500 5 5 89 sec 5 0.02 h v 5.6

Gutter flow: L 5 150 ft   s 5 1.5%



v 5 2.5 ft/s t3 5

(Table 10-9, paved)

d 150 5 5 60 sec  5 0.02 h v 2.5

Pipe flow (estimated): L 5 650 ft   s 5 4.0%



v 5 9 ft/s t4 5

(Appendix A-4, Chart 36)

d 650 5 5 72  sec  5 0.02 h v 9

tc 5 .16 1 .02 1 .02 1 .02 tc 5 0.22 h

5. Rainfall distribution: Type II

(Appendix D-4)

For hydrograph, see Figure 41. The detention basin is an open cut, grass-lined basin with bottom slope of 2 percent and side slopes of 3 horizontal to 1 vertical. After a few trials, the size is chosen as the smallest size that results in the required outflows and a maximum water level less than elevation 186 ft. The following table shows the basin size.

Elevation (ft) 182.5 183 184 185 186

92690_ch15_ptg01_p156-169.indd 167

Area (s.f.) 0 3,600 13,000 14,200 15,500

Incremental Volume (c.f.) 0 900 8,300 13,600 14,850

Cumulative Volume (c.f.) 0 900 9,200 22,800 37,650

11/12/12 10:49 AM

© Cengage Learning 2014

168    CHAPTER 15 — HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL

FIGURE 41  Grading plan showing detention basin design for Problem 7.

92690_ch15_ptg01_p156-169.indd 168

11/12/12 10:49 AM

HYDRAULICS AND HYDROLOGY FOR STORMWATER MANAGEMENT - SOLUTIONS MANUAL    169

A grading plan showing the detention basin is shown in Figure 41. Finally, rout the inflow hydrograph through the detention basin. Results of the routing are shown below.

Peak Runoff Existing Conditions (cfs) 35.1

Storm 100

Peak Inflow (cfs) 50.1

Detention Basin Peak Maximum Outflow Water Level (cfs)      (ft) 32.8 185.90

Peak outflow from the detention basin is less than peak runoff under existing conditions. Also, maximum water level is less than the maximum design water level. Inflow and outflow hydrographs are shown in Figure 42.

60 50

Inflow

Q (cfs)

40 30 20

Outflow

0 0.0

2.4

4.9

7.3

9.7

12.1 14.6 Time (hr)

17.0

19.4

21.9

24.3

© Cengage Learning 2014

10

FIGURE 42  Inflow and outflow hydrographs for Problem 7.

92690_ch15_ptg01_p156-169.indd 169

11/12/12 10:49 AM