50 Problems

1. Divergence of a product: Given that ๐œ‘ is a scalar field and ๐ฏ a vector field, show that div(๐œ‘๐ฏ) = (grad๐œ‘) โ‹… ๐ฏ + ๐œ‘ div

Views 189 Downloads 1 File size 746KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

1. Divergence of a product: Given that ๐œ‘ is a scalar field and ๐ฏ a vector field, show that div(๐œ‘๐ฏ) = (grad๐œ‘) โ‹… ๐ฏ + ๐œ‘ div ๐ฏ grad(๐œ‘๐ฏ) = (๐œ‘๐‘ฃ ๐‘– ),๐‘— ๐  ๐‘– โŠ— ๐ ๐‘— = ๐œ‘,๐‘— ๐‘ฃ ๐‘– ๐  ๐‘– โŠ— ๐ ๐‘— + ๐œ‘๐‘ฃ ๐‘– ,๐‘— ๐  ๐‘– โŠ— ๐ ๐‘— = ๐ฏ โŠ— (grad ๐œ‘) + ๐œ‘ grad ๐ฏ Now, div(๐œ‘๐ฏ) = tr(grad(๐œ‘๐ฏ)). Taking the trace of the above, we have: div(๐œ‘๐ฏ) = ๐ฏ โ‹… (grad ๐œ‘) + ๐œ‘ div ๐ฏ

2. Show that grad(๐ฎ ยท ๐ฏ) = (grad ๐ฎ)T ๐ฏ + (grad ๐ฏ)T ๐ฎ ๐ฎ ยท ๐ฏ = ๐‘ข๐‘– ๐‘ฃ๐‘– is a scalar sum of components. grad(๐ฎ ยท ๐ฏ) = (๐‘ข๐‘– ๐‘ฃ๐‘– ),๐‘— ๐ ๐‘— = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘– ๐ ๐‘— + ๐‘ข๐‘– ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘— Now grad ๐ฎ = ๐‘ข๐‘– ,๐‘— ๐  ๐‘– โŠ— ๐ ๐‘— swapping the bases, we have that, (grad ๐ฎ)T = ๐‘ข๐‘– ,๐‘— (๐ ๐‘— โŠ— ๐  ๐‘– ). Writing ๐ฏ = ๐‘ฃ๐‘˜ ๐  ๐‘˜ , we have that, (grad ๐ฎ)T ๐ฏ = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘˜ (๐ ๐‘— โŠ— ๐  ๐‘– )๐  ๐‘˜ = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘˜ ๐ ๐‘— ๐›ฟ๐‘–๐‘˜ = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘– ๐ ๐‘—

It is easy to similarly show that ๐‘ข๐‘– ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘— = (grad ๐ฏ)T ๐ฎ. Clearly, grad(๐ฎ ยท ๐ฏ) = (๐‘ข๐‘– ๐‘ฃ๐‘– ),๐‘— ๐ ๐‘— = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘– ๐ ๐‘— + ๐‘ข๐‘– ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘— = (grad ๐ฎ)T ๐ฏ + (grad ๐ฏ)T ๐ฎ As required.

3. Show that grad(๐ฎ ร— ๐ฏ) = (๐ฎ ร—)grad ๐ฏ โˆ’ (๐ฏ ร—)grad ๐ฎ ๐ฎ ร— ๐ฏ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ๐  ๐‘– Recall that the gradient of this vector is the tensor, grad(๐ฎ ร— ๐ฏ) = (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ),๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘™ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ,๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™ = โˆ’๐œ– ๐‘–๐‘˜๐‘— ๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘™ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ,๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™ = โˆ’ (๐ฏ ร—)grad ๐ฎ + (๐ฎ ร—)grad ๐ฏ

4. Show that div (๐ฎ ร— ๐ฏ) = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ We already have the expression for grad(๐ฎ ร— ๐ฏ) above; remember that div (๐ฎ ร— ๐ฏ) = tr[grad(๐ฎ ร— ๐ฏ)] = โˆ’๐œ– ๐‘–๐‘˜๐‘— ๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ ๐  ๐‘– โ‹… ๐  ๐‘™ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ,๐‘™ ๐  ๐‘– โ‹… ๐  ๐‘™

= โˆ’๐œ– ๐‘–๐‘˜๐‘— ๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ ๐›ฟ๐‘–๐‘™ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ,๐‘™ ๐›ฟ๐‘–๐‘™ = โˆ’๐œ– ๐‘–๐‘˜๐‘— ๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ,๐‘– = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

5. Given a scalar point function ๐œ™ and a vector field ๐ฏ, show that curl (๐œ™๐ฏ) = ๐œ™ curl ๐ฏ + (grad ๐œ™) ร— ๐ฏ. curl (๐œ™๐ฏ) = ๐œ– ๐‘–๐‘—๐‘˜ (๐œ™๐‘ฃ๐‘˜ ),๐‘— ๐  ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ (๐œ™,๐‘— ๐‘ฃ๐‘˜ + ๐œ™๐‘ฃ๐‘˜ ,๐‘— )๐  ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐‘ฃ๐‘˜ ๐  ๐‘– + ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘ฃ๐‘˜ ,๐‘— ๐  ๐‘– = (โˆ‡๐œ™) ร— ๐ฏ + ๐œ™ curl ๐ฏ

6. Show that div (๐ฎ โŠ— ๐ฏ) = (div ๐ฏ)๐ฎ + (grad ๐ฎ)๐ฏ ๐ฎ โŠ— ๐ฏ is the tensor, ๐‘ข๐‘– ๐‘ฃ ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— . The gradient of this is the third order tensor, grad (๐ฎ โŠ— ๐ฏ) = (๐‘ข๐‘– ๐‘ฃ ๐‘— ),๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— โŠ— ๐  ๐‘˜ And by divergence, we mean the contraction of the last basis vector: div (๐ฎ โŠ— ๐ฏ) = (๐‘ข๐‘– ๐‘ฃ ๐‘— )๐‘˜ (๐  ๐‘– โŠ— ๐  ๐‘— )๐  ๐‘˜ = (๐‘ข๐‘– ๐‘ฃ ๐‘— )๐‘˜ ๐  ๐‘– ๐›ฟ๐‘—๐‘˜ = (๐‘ข๐‘– ๐‘ฃ ๐‘— )๐‘— ๐  ๐‘– = ๐‘ข ๐‘– ,๐‘— ๐‘ฃ ๐‘— ๐  ๐‘– + ๐‘ข ๐‘– ๐‘ฃ ๐‘— ,๐‘— ๐  ๐‘–

= (grad ๐ฎ)๐ฏ + (div ๐ฏ)๐ฎ

7. For a scalar field ๐œ™ and a tensor field ๐“ show that grad (๐œ™๐“) = ๐œ™grad ๐“ + ๐“ โŠ— grad๐œ™. Also show that div (๐œ™๐“) = ๐œ™ div ๐“ + ๐“grad๐œ™ grad(๐œ™๐“) = (๐œ™๐‘‡ ๐‘–๐‘— ),๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— โŠ— ๐  ๐‘˜ = (๐œ™,๐‘˜ ๐‘‡ ๐‘–๐‘— + ๐œ™๐‘‡ ๐‘–๐‘— ,๐‘˜ )๐  ๐‘– โŠ— ๐  ๐‘— โŠ— ๐  ๐‘˜ = ๐“ โŠ— grad๐œ™ + ๐œ™grad ๐“ Furthermore, we can contract the last two bases and obtain, div(๐œ™๐“) = (๐œ™,๐‘˜ ๐‘‡ ๐‘–๐‘— + ๐œ™๐‘‡ ๐‘–๐‘— ,๐‘˜ )๐  ๐‘– โŠ— ๐  ๐‘— โ‹… ๐  ๐‘˜ = (๐œ™,๐‘˜ ๐‘‡ ๐‘–๐‘— + ๐œ™๐‘‡ ๐‘–๐‘— ,๐‘˜ )๐  ๐‘– ๐›ฟ๐‘—๐‘˜ = ๐‘‡ ๐‘–๐‘˜ ๐œ™,๐‘˜ ๐  ๐‘– + ๐œ™๐‘‡ ๐‘–๐‘˜ ,๐‘˜ ๐  ๐‘– = ๐“grad๐œ™ + ๐œ™ div ๐“

8. For two arbitrary vectors, ๐ฎ and ๐ฏ, show that grad(๐ฎ ร— ๐ฏ) = (๐ฎ ร—)grad๐ฏ โˆ’ (๐ฏ ร—)grad๐ฎ grad(๐ฎ ร— ๐ฏ) = (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ),๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™

= (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ,๐‘™ )๐  ๐‘– โŠ— ๐  ๐‘™ = (๐‘ข๐‘— ,๐‘™ ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ + ๐‘ฃ๐‘˜ ,๐‘™ ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— )๐  ๐‘– โŠ— ๐  ๐‘™ = โˆ’(๐ฏ ร—)grad๐ฎ + (๐ฎ ร—)grad๐ฏ

9. For a vector field ๐ฎ, show that grad(๐ฎ ร—) is a third ranked tensor. Hence or otherwise show that div(๐ฎ ร—) = โˆ’curl ๐ฎ. The secondโ€“order tensor (๐ฎ ร—) is defined as ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐  ๐‘– โŠ— ๐  ๐‘˜ . Taking the covariant derivative with an independent base, we have grad(๐ฎ ร—) = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ,๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘˜ โŠ— ๐  ๐‘™ This gives a third order tensor as we have seen. Contracting on the last two bases, div(๐ฎ ร—) = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ,๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘˜ โ‹… ๐  ๐‘™ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ,๐‘™ ๐  ๐‘– ๐›ฟ๐‘˜๐‘™ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ,๐‘˜ ๐  ๐‘– = โˆ’curl ๐ฎ

10.

Show that div (๐œ™๐Ÿ) = grad ๐œ™

Note that ๐œ™๐Ÿ = (๐œ™๐‘”๐›ผ๐›ฝ )๐  ๐›ผ โŠ— ๐  ๐›ฝ . Also note that

grad ๐œ™๐Ÿ = (๐œ™๐‘”๐›ผ๐›ฝ ),๐‘– ๐  ๐›ผ โŠ— ๐  ๐›ฝ โŠ— ๐  ๐‘– The divergence of this third order tensor is the contraction of the last two bases: div (๐œ™๐Ÿ) = tr(grad ๐œ™๐Ÿ) = (๐œ™๐‘”๐›ผ๐›ฝ ),๐‘– (๐  ๐›ผ โŠ— ๐  ๐›ฝ )๐  ๐‘– = (๐œ™๐‘”๐›ผ๐›ฝ ),๐‘– ๐  ๐›ผ ๐‘”๐›ฝ๐‘– = ๐œ™,๐‘– ๐‘”๐›ผ๐›ฝ ๐‘”๐›ฝ๐‘– ๐  ๐›ผ = ๐œ™,๐‘– ๐›ฟ๐›ผ๐‘– ๐  ๐›ผ = ๐œ™,๐‘– ๐  ๐‘– = grad ๐œ™

11.

Show that curl (๐œ™๐Ÿ) = ( grad ๐œ™) ร—

Note that ๐œ™๐Ÿ = (๐œ™๐‘”๐›ผ๐›ฝ )๐  ๐›ผ โŠ— ๐  ๐›ฝ , and that curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ so that, curl (๐œ™๐Ÿ) = ๐œ– ๐‘–๐‘—๐‘˜ (๐œ™๐‘”๐›ผ๐‘˜ ),๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ (๐œ™,๐‘— ๐‘”๐›ผ๐‘˜ )๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐  ๐‘– โŠ— ๐  ๐‘˜ = ( grad ๐œ™) ร—

12.

Show that curl (๐ฏ ร—) = (div ๐ฏ)๐Ÿ โˆ’ grad ๐ฏ (๐ฏ ร—) = ๐œ– ๐›ผ๐›ฝ๐‘˜ ๐‘ฃ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐‘˜ curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ

so that curl (๐ฏ ร—) = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐›ผ๐›ฝ๐‘˜ ๐‘ฃ๐›ฝ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ

= (๐‘”๐‘–๐›ผ ๐‘” ๐‘—๐›ฝ โˆ’ ๐‘”๐‘–๐›ฝ ๐‘” ๐‘—๐›ผ ) ๐‘ฃ๐›ฝ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐‘ฃ ๐‘— ,๐‘— ๐  ๐›ผ โŠ— ๐  ๐›ผ โˆ’ ๐‘ฃ ๐‘– ,๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— = (div ๐ฏ)๐Ÿ โˆ’ grad ๐ฏ

13.

Show that div (๐ฎ ร— ๐ฏ) = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ div (๐ฎ ร— ๐ฏ) = (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ),๐‘–

Noting that the tensor ๐œ– ๐‘–๐‘—๐‘˜ behaves as a constant under a covariant differentiation, we can write, div (๐ฎ ร— ๐ฏ) = (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ),๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ,๐‘– = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

14.

Given a scalar point function ๐œ™ and a vector field ๐ฏ, show that curl (๐œ™๐ฏ) = ๐œ™ curl ๐ฏ + (โˆ‡๐œ™) ร— ๐ฏ. curl (๐œ™๐ฏ) = ๐œ– ๐‘–๐‘—๐‘˜ (๐œ™๐‘ฃ๐‘˜ ),๐‘— ๐  ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ (๐œ™,๐‘— ๐‘ฃ๐‘˜ + ๐œ™๐‘ฃ๐‘˜ ,๐‘— )๐  ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐‘ฃ๐‘˜ ๐  ๐‘– + ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘ฃ๐‘˜ ,๐‘— ๐  ๐‘–

= (โˆ‡๐œ™) ร— ๐ฏ + ๐œ™ curl ๐ฏ

15.

Show that curl (grad ๐œ™) = ๐จ

For any tensor ๐ฏ = ๐‘ฃ๐›ผ ๐  ๐›ผ curl ๐ฏ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘— ๐  ๐‘– Let ๐ฏ = grad ๐œ™. Clearly, in this case, ๐‘ฃ๐‘˜ = ๐œ™,๐‘˜ so that ๐‘ฃ๐‘˜ ,๐‘— = ๐œ™,๐‘˜๐‘— . It therefore follows that, curl (grad ๐œ™) = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘˜๐‘— ๐  ๐‘– = ๐ŸŽ. The contraction of symmetric tensors with unsymmetric led to this conclusion. Note that this presupposes that the order of differentiation in the scalar field is immaterial. This will be true only if the scalar field is continuous โ€“ a proposition we have assumed in the above.

16.

Show that curl (grad ๐ฏ) = ๐ŸŽ

For any tensor ๐“ = T๐›ผ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ curl ๐“ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ

Let ๐“ = grad ๐ฏ. Clearly, in this case, T๐›ผ๐›ฝ = ๐‘ฃ๐›ผ ,๐›ฝ so that ๐‘‡๐›ผ๐‘˜ ,๐‘— = ๐‘ฃ๐›ผ ,๐‘˜๐‘— . It therefore follows that, curl (grad ๐ฏ) = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐›ผ ,๐‘˜๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐ŸŽ. The contraction of symmetric tensors with unsymmetric led to this conclusion. Note that this presupposes that the order of differentiation in the vector field is immaterial. This will be true only if the vector field is continuous โ€“ a proposition we have assumed in the above.

17.

Show that curl (grad ๐ฏ)T = grad(curl ๐ฏ)

From previous derivation, we can see that, curl ๐“ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ . Clearly, curl ๐“ T = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘˜๐›ผ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ so that curl (grad ๐ฏ)T = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐›ผ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ . But curl ๐ฏ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘— ๐  ๐‘– . The gradient of this is, grad(curl ๐ฏ) = (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘— ),๐›ผ ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘—๐›ผ ๐  ๐‘– โŠ— ๐  ๐›ผ = curl (grad ๐ฏ)T

18.

Show that div (grad ๐œ™ ร— grad ฮธ) = 0 grad ๐œ™ ร— grad ฮธ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐œƒ,๐‘˜ ๐  ๐‘–

The gradient of this vector is the tensor, grad(grad ๐œ™ ร— grad ๐œƒ) = (๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐œƒ,๐‘˜ ),๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘™ + ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™ The trace of the above result is the divergence we are seeking: div (grad ๐œ™ ร— grad ฮธ) = tr[grad(grad ๐œ™ ร— grad ๐œƒ)] = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐  ๐‘– โ‹… ๐  ๐‘™ + ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐  ๐‘– โ‹… ๐  ๐‘™ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐›ฟ๐‘–๐‘™ + ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐›ฟ๐‘–๐‘™ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘—๐‘– ๐œƒ,๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐œƒ,๐‘˜๐‘– = 0 Each term vanishing on account of the contraction of a symmetric tensor with an antisymmetric.

19.

Show that curl curl ๐ฏ = grad(div ๐ฏ) โˆ’ grad2 ๐ฏ

Let ๐ฐ = curl ๐ฏ โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘— ๐  ๐‘– . But curl ๐ฐ โ‰ก ๐œ– ๐›ผ๐›ฝ๐›พ ๐‘ค๐›พ ,๐›ฝ ๐  ๐›ผ . Upon inspection, we find that ๐‘ค๐›พ = ๐‘”๐›พ๐‘– ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘— so that curl ๐ฐ โ‰ก ๐œ– ๐›ผ๐›ฝ๐›พ (๐‘”๐›พ๐‘– ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘— ),๐›ฝ ๐  ๐›ผ = ๐‘”๐›พ๐‘– ๐œ– ๐›ผ๐›ฝ๐›พ ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘—๐›ฝ ๐  ๐›ผ Now, it can be shown (see below) that ๐‘”๐›พ๐‘– ๐œ– ๐›ผ๐›ฝ๐›พ ๐œ– ๐‘–๐‘—๐‘˜ = ๐‘”๐›ผ๐‘— ๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜ ๐‘”๐›ฝ๐‘— so that,

curl ๐ฐ = (๐‘”๐›ผ๐‘— ๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜ ๐‘”๐›ฝ๐‘— )๐‘ฃ๐‘˜ ,๐‘—๐›ฝ ๐  ๐›ผ = ๐‘ฃ ๐›ฝ ,๐‘—๐›ฝ ๐ ๐‘— โˆ’ ๐‘ฃ ๐›ผ ,๐‘—๐‘— ๐  ๐›ผ = grad(div ๐ฏ) โˆ’ grad2 ๐ฏ

20.

Show that ๐‘”๐›พ๐‘– ๐œ– ๐›ผ๐›ฝ๐›พ ๐œ– ๐‘–๐‘—๐‘˜ = ๐‘”๐›ผ๐‘— ๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜ ๐‘”๐›ฝ๐‘—

Note that ๐‘”๐›พ๐‘– ๐œ– ๐›ผ๐›ฝ๐›พ ๐œ– ๐‘–๐‘—๐‘˜

๐‘”๐‘–๐›ผ = ๐‘”๐›พ๐‘– | ๐‘” ๐‘—๐›ผ ๐‘”๐‘˜๐›ผ ๐›ฟ๐›พ๐›ผ

= | ๐‘” ๐‘—๐›ผ

๐›ฝ

๐›ฟ๐›พ

๐‘”๐‘–๐›ฝ ๐‘” ๐‘—๐›ฝ ๐‘”๐‘˜๐›ฝ

๐‘”๐›พ๐‘– ๐‘”๐‘–๐›ผ ๐‘”๐‘–๐›พ ๐‘” ๐‘—๐›พ | = | ๐‘” ๐‘—๐›ผ ๐‘”๐‘˜๐›พ ๐‘”๐‘˜๐›ผ

๐‘”๐›พ๐‘– ๐‘”๐‘–๐›ฝ ๐‘” ๐‘—๐›ฝ ๐‘”๐‘˜๐›ฝ

๐‘”๐›พ๐‘– ๐‘”๐‘–๐›พ ๐‘” ๐‘—๐›พ | ๐‘”๐‘˜๐›พ

๐›พ

๐›ฟ๐›พ

๐‘” ๐‘—๐›ฝ ๐‘” ๐‘—๐›พ | ๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐›ฝ ๐‘”๐‘˜๐›พ ๐‘—๐›ฝ ๐‘—๐›ผ ๐‘—๐›ผ ๐‘” ๐‘—๐›พ ๐‘” ๐‘—๐›ฝ ๐‘” ๐‘—๐›พ ๐›ฝ ๐‘” ๐›พ ๐‘” ๐›ผ ๐‘” = ๐›ฟ๐›พ | ๐‘˜๐›ฝ | โˆ’ ๐›ฟ๐›พ | ๐‘˜๐›ผ | + ๐›ฟ๐›พ | ๐‘˜๐›ผ | ๐‘” ๐‘”๐‘˜๐›พ ๐‘” ๐‘”๐‘˜๐›พ ๐‘” ๐‘”๐‘˜๐›ฝ ๐‘” ๐‘—๐›ฝ ๐‘” ๐‘—๐›ผ ๐‘” ๐‘—๐›ผ ๐‘” ๐‘—๐›ฝ ๐‘” ๐‘—๐›ผ ๐‘” ๐‘—๐›ฝ ๐‘” ๐‘—๐›ผ ๐‘” ๐‘—๐›ฝ = | ๐‘˜๐›ฝ | โˆ’ | ๐‘˜๐›ผ | + 3 | ๐‘˜๐›ผ | = | ๐‘˜๐›ผ | ๐‘˜๐›ผ ๐‘˜๐›ฝ ๐‘˜๐›ฝ ๐‘˜๐›ฝ ๐‘” ๐‘” ๐‘” ๐‘” ๐‘” ๐‘” ๐‘” ๐‘” = ๐‘”๐›ผ๐‘— ๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜ ๐‘”๐›ฝ๐‘—

21.

๐€ Given that ๐œ‘(๐‘ก) = |๐€(๐‘ก)|, Show that ๐œ‘ฬ‡ (๐‘ก) = |๐€(๐‘ก)| : ๐€ฬ‡

๐œ‘2 โ‰ก ๐€: ๐€ Now, ๐‘‘ ๐‘‘๐œ‘ ๐‘‘๐€ ๐‘‘๐€ ๐‘‘๐€ (๐œ‘2 ) = 2๐œ‘ = : ๐€ + ๐€: = 2๐€: ๐‘‘๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ก as inner product is commutative. We can therefore write that ๐‘‘๐œ‘ ๐€ ๐‘‘๐€ ๐€ = : = : ๐€ฬ‡ ๐‘‘๐‘ก ๐œ‘ ๐‘‘๐‘ก |๐€(๐‘ก)| as required. Given a tensor field ๐“, obtain the vector ๐ฐ โ‰ก ๐“ T ๐’— and show that its divergence is ๐“: (โˆ‡๐ฏ) + ๐ฏ โ‹… div ๐“

22.

The divergence of ๐’˜ is the scalar sum , (๐‘ป๐’‹๐’Š ๐’—๐’‹ ),๐’Š . Expanding the product covariant derivative we obtain, div (๐“ T ๐ฏ) = (๐‘‡๐‘—๐‘– ๐‘ฃ ๐‘— ),๐’Š = ๐‘‡๐‘—๐‘– ,๐‘– ๐‘ฃ ๐‘— + ๐‘‡๐‘—๐‘– ๐‘ฃ ๐‘— ,๐‘– = (div ๐“) โ‹… ๐ฏ + tr(๐“ T grad ๐ฏ) = (div ๐“) โ‹… ๐ฏ + ๐“: (grad ๐ฏ)

Recall that scalar product of two vectors is commutative so that div (๐“ T ๐ฏ) = ๐“: (grad ๐ฏ) + ๐ฏ โ‹… div ๐“ For a second-order tensor ๐“ define curl ๐“ โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ show that for any constant vector ๐’‚, (curl ๐“) ๐’‚ = curl (๐“ T ๐’‚)

23.

Express vector ๐’‚ in the invariant form with covariant components as ๐’‚ = ๐‘Ž๐›ฝ ๐  ๐›ฝ . It follows that (curl ๐“) ๐’‚ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— (๐  ๐‘– โŠ— ๐  ๐›ผ )๐’‚ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐‘Ž๐›ฝ (๐  ๐‘– โŠ— ๐  ๐›ผ )๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐‘Ž๐›ฝ ๐  ๐‘– ๐›ฟ๐›ฝ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ (๐‘‡๐›ผ๐‘˜ ),๐‘— ๐  ๐‘– ๐‘Ž๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ (๐‘‡๐›ผ๐‘˜ ๐‘Ž๐›ผ ),๐‘— ๐  ๐‘– The last equality resulting from the fact that vector ๐’‚ is a constant vector. Clearly, (curl ๐“) ๐’‚ = curl (๐“ T ๐’‚)

For any two vectors ๐ฎ and ๐ฏ, show that curl (๐ฎ โŠ— ๐ฏ) = [(grad ๐ฎ)๐ฏ ร—]๐‘‡ + (curl ๐ฏ) โŠ— ๐’– where ๐ฏ ร— is the skew tensor ๐œ– ๐‘–๐‘˜๐‘— ๐‘ฃ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— .

24.

Recall that the curl of a tensor ๐‘ป is defined by curl ๐‘ป โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ . Clearly therefore, curl (๐’– โŠ— ๐’—) = ๐œ– ๐‘–๐‘—๐‘˜ (๐‘ข๐›ผ ๐‘ฃ๐‘˜ ),๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ (๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐‘˜ + ๐‘ข๐›ผ ๐‘ฃ๐‘˜ ,๐‘— ) ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐›ผ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐›ผ ๐‘ฃ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ๐  ๐‘– ) โŠ— (๐‘ข๐›ผ ,๐‘— ๐  ๐›ผ ) + (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘— ๐  ๐‘– ) โŠ— (๐‘ข๐›ผ ๐  ๐›ผ ) = (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— )(๐‘ข๐›ผ ,๐›ฝ ๐  ๐›ฝ โŠ— ๐  ๐›ผ ) + (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ๐‘˜ ,๐‘— ๐  ๐‘– ) โŠ— (๐‘ข๐›ผ ๐  ๐›ผ ) = โˆ’(๐ฏ ร—)(grad ๐ฎ)๐‘ป + (curl ๐ฏ) โŠ— ๐ฎ = [(grad ๐ฎ)๐ฏ ร—]๐‘ป + (curl ๐ฏ) โŠ— ๐ฎ upon noting that the vector cross is a skew tensor.

25.

Show that curl (๐ฎ ร— ๐ฏ) = div(๐ฎ โŠ— ๐ฏ โˆ’ ๐ฏ โŠ— ๐ฎ)

The vector ๐ฐ โ‰ก ๐ฎ ร— ๐ฏ = ๐‘ค๐’Œ ๐  ๐’Œ = ๐œ–๐‘˜๐›ผ๐›ฝ ๐‘ข๐›ผ ๐‘ฃ ๐›ฝ ๐  ๐’Œ and curl ๐ฐ = ๐๐’Š๐’‹๐’Œ ๐‘ค๐‘˜ ,๐‘— ๐  ๐‘– . Therefore, curl (๐ฎ ร— ๐ฏ) = ๐๐’Š๐’‹๐’Œ ๐‘ค๐‘˜ ,๐‘— ๐  ๐‘– = ๐๐’Š๐’‹๐’Œ ๐œ–๐‘˜๐›ผ๐›ฝ (๐‘ข๐›ผ ๐‘ฃ ๐›ฝ ),๐‘— ๐  ๐‘–

๐‘—

๐‘—

๐‘—

๐‘—

= (๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ โˆ’ ๐›ฟ๐›ฝ๐‘– ๐›ฟ๐›ผ ) (๐‘ข๐›ผ ๐‘ฃ ๐›ฝ ),๐‘— ๐  ๐‘– = (๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ โˆ’ ๐›ฟ๐›ฝ๐‘– ๐›ฟ๐›ผ ) (๐‘ข๐›ผ ,๐‘— ๐‘ฃ ๐›ฝ + ๐‘ข๐›ผ ๐‘ฃ ๐›ฝ ,๐‘— )๐  ๐‘– = [๐‘ข๐‘– ,๐‘— ๐‘ฃ ๐‘— + ๐‘ข๐‘– ๐‘ฃ ๐‘— ,๐‘— โˆ’ (๐‘ข ๐‘— ,๐‘— ๐‘ฃ ๐‘– + ๐‘ข ๐‘— ๐‘ฃ ๐‘– ,๐‘— )]๐  ๐‘– = [(๐‘ข๐‘– ๐‘ฃ ๐‘— ),๐‘— โˆ’ (๐‘ข ๐‘— ๐‘ฃ ๐‘– ),๐‘— ]๐  ๐‘– = div(๐ฎ โŠ— ๐ฏ โˆ’ ๐ฏ โŠ— ๐ฎ) since div(๐ฎ โŠ— ๐ฏ) = (๐‘ข๐‘– ๐‘ฃ ๐‘— ),๐›ผ ๐  ๐‘– โŠ— ๐  ๐‘— โ‹… ๐  ๐›ผ = (๐‘ข๐‘– ๐‘ฃ ๐‘— ),๐‘— ๐  ๐‘– .

26.

Given a scalar point function ๐œ™ and a second-order tensor field ๐“, show that curl (๐œ™๐“) = ๐œ™ curl ๐“ + ((โˆ‡๐œ™) ร—)๐“ T where [(โˆ‡๐œ™) ร—] is the skew tensor ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐  ๐‘– โŠ— ๐  ๐‘˜ curl (๐œ™๐‘ป) โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ (๐œ™๐‘‡๐›ผ๐‘˜ ),๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ (๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ + ๐œ™๐‘‡๐›ผ๐‘˜ ,๐‘— ) ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐›ผ + ๐œ™๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = (๐œ– ๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐  ๐‘– โŠ— ๐  ๐‘˜ ) (๐‘‡๐›ผ๐›ฝ ๐  ๐›ฝ โŠ— ๐  ๐›ผ ) + ๐œ™๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ™ curl ๐“ + ((โˆ‡๐œ™) ร—)๐“ T

27.

For a second-order tensor field ๐‘ป, show that div(curl ๐“) = curl(div ๐“ T )

Define the second order tensor ๐‘† as ๐‘– curl ๐“ โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐‘†.๐›ผ ๐ ๐‘– โŠ— ๐ ๐›ผ ๐‘– The gradient of ๐‘บ is ๐‘†.๐›ผ ,๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ โŠ— ๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘—๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ โŠ— ๐  ๐›ฝ

Clearly, div(curl ๐‘ป) = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘—๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ โ‹… ๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘—๐›ฝ ๐  ๐‘– ๐‘”๐›ผ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ฝ ๐‘˜ ,๐‘—๐›ฝ ๐  ๐‘– = curl(div ๐“ T )

28.

Show that if ๐‹ defined in the space spanned by orthogonal coordinates ๐’™๐’Š , then ๐๐‹

๐› ๐Ÿ (๐’™๐’Š ๐‹) = ๐Ÿ ๐๐’™๐’Š + ๐’™๐’Š ๐› ๐Ÿ ๐‹ . By definition, โˆ‡2 (๐‘ฅ ๐‘– ๐œ‘) = ๐‘” ๐‘—๐‘˜ (๐‘ฅ ๐‘– ๐œ‘),๐‘—๐‘˜ . Expanding, we have ๐‘” ๐‘—๐‘˜ (๐‘ฅ ๐‘– ๐œ‘),๐‘—๐‘˜ = ๐‘” ๐‘—๐‘˜ (๐‘ฅ ๐‘– ,๐‘— ๐œ‘ + ๐‘ฅ ๐‘– ๐œ‘,๐‘— ),๐‘˜ = ๐‘” ๐‘—๐‘˜ (๐›ฟ๐‘—๐‘– ๐œ‘ + ๐‘ฅ ๐‘– ๐œ‘,๐‘— )

,๐‘˜

= ๐‘” ๐‘—๐‘˜ (๐›ฟ๐‘—๐‘– ๐œ‘,๐‘˜ + ๐‘ฅ ๐‘– ,๐‘˜ ๐œ‘,๐‘— + ๐‘ฅ ๐‘– ๐œ‘,๐‘—๐‘˜ ) = ๐‘” ๐‘—๐‘˜ (๐›ฟ๐‘—๐‘– ๐œ‘,๐‘˜ + ๐›ฟ๐‘˜๐‘– ๐œ‘,๐‘— + ๐‘ฅ ๐‘– ๐œ‘,๐‘—๐‘˜ ) = ๐‘”๐‘–๐‘˜ ๐œ‘,๐‘˜ + ๐‘”๐‘–๐‘— ๐œ‘,๐‘— + ๐‘ฅ ๐‘– ๐‘” ๐‘—๐‘˜ ๐œ‘,๐‘—๐‘˜

When the coordinates are orthogonal, this becomes, 2 ๐œ•ฮฆ + ๐‘ฅ ๐‘– โˆ‡2 ฮฆ 2 ๐‘– (โ„Ž๐‘– ) ๐œ•๐‘ฅ where we have suspended the summation rule and โ„Ž๐‘– is the square root of the appropriate metric tensor component.

29.

In Cartesian coordinates, If the volume ๐‘‰ is enclosed by the surface ๐‘†, the position vector ๐’“ = ๐‘ฅ ๐‘– ๐  ๐‘– and ๐’ is the external unit normal to each surface element, 1

show that โˆซ๐‘† โˆ‡(๐’“ โ‹… ๐’“) โ‹… ๐’๐‘‘๐‘† equals the volume contained in ๐‘‰. 6 ๐’“ โ‹… ๐’“ = ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ๐  ๐‘– โ‹… ๐  ๐‘— = ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ๐‘”๐‘–๐‘— By the Divergence Theorem,

โˆซโˆ‡(๐’“ โ‹… ๐’“) โ‹… ๐’๐‘‘๐‘† = โˆซ โˆ‡ โ‹… [โˆ‡(๐’“ โ‹… ๐’“)]๐‘‘๐‘‰ = โˆซ ๐œ•๐‘™ [๐œ•๐‘˜ (๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ๐‘”๐‘–๐‘— )] ๐  ๐‘™ โ‹… ๐  ๐‘˜ ๐‘‘๐‘‰ ๐‘†

๐‘‰

๐‘‰

= โˆซ ๐œ•๐‘™ [๐‘”๐‘–๐‘— (๐‘ฅ ๐‘– ,๐‘˜ ๐‘ฅ ๐‘— + ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ,๐‘˜ )] ๐  ๐‘™ โ‹… ๐  ๐‘˜ ๐‘‘๐‘‰ ๐‘‰ ๐‘—

= โˆซ ๐‘”๐‘–๐‘— ๐‘”๐‘™๐‘˜ (๐›ฟ๐‘˜๐‘– ๐‘ฅ ๐‘— + ๐‘ฅ ๐‘– ๐›ฟ๐‘˜ ),๐‘™ ๐‘‘๐‘‰ = โˆซ 2๐‘”๐‘–๐‘˜ ๐‘”๐‘™๐‘˜ ๐‘ฅ ๐‘– ,๐‘™ ๐‘‘๐‘‰ = โˆซ 2๐›ฟ๐‘–๐‘™ ๐›ฟ๐‘™๐‘– ๐‘‘๐‘‰ ๐‘‰

๐‘‰

๐‘‰

= 6 โˆซ ๐‘‘๐‘‰ ๐‘‰

30.

For any Euclidean coordinate system, show that ๐๐ข๐ฏ ๐ฎ ร— ๐ฏ = ๐ฏ ๐œ๐ฎ๐ซ๐ฅ ๐ฎ โˆ’ ๐ฎ ๐œ๐ฎ๐ซ๐ฅ ๐ฏ

Given the contravariant vector ๐‘ข๐‘– and ๐‘ฃ ๐‘– with their associated vectors ๐‘ข๐‘– and ๐‘ฃ๐‘– , the contravariant component of the above cross product is ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ .The required divergence is simply the contraction of the covariant ๐‘ฅ ๐‘– derivative of this quantity: (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ),๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘—,๐‘– ๐‘ฃ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜,๐‘– where we have treated the tensor ๐œ€ ๐‘–๐‘—๐‘˜ as a constant under the covariant derivative.

Cyclically rearranging the RHS we obtain, (๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘— ๐‘ฃ๐‘˜ ),๐‘– = ๐‘ฃ๐‘˜ ๐œ– ๐‘˜๐‘–๐‘— ๐‘ข๐‘—,๐‘– + ๐‘ข๐‘— ๐œ– ๐‘—๐‘˜๐‘– ๐‘ฃ๐‘˜,๐‘– = ๐‘ฃ๐‘˜ ๐œ– ๐‘˜๐‘–๐‘— ๐‘ข๐‘—,๐‘– + ๐‘ข๐‘— ๐œ– ๐‘—๐‘–๐‘˜ ๐‘ฃ๐‘˜,๐‘– where we have used the anti-symmetric property of the tensor ๐œ– ๐‘–๐‘—๐‘˜ . The last expression shows clearly that div ๐ฎ ร— ๐ฏ = ๐ฏ curl ๐ฎ โˆ’ ๐ฎ curl ๐ฏ as required.

31.

For a general tensor field ๐‘ป show that, curl(curl ๐‘ป) = [โˆ‡2 (tr ๐‘ป) โˆ’ T

div(div ๐‘ป)]๐‘ฐ + grad(div ๐‘ป) + (grad(div ๐‘ป)) โˆ’ grad(grad (tr๐‘ป)) โˆ’ โˆ‡2 ๐‘ปT curl ๐‘ป = ๐๐›ผ๐‘ ๐‘ก ๐‘‡๐›ฝ๐‘ก ,๐‘  ๐  ๐›ผ โŠ— ๐  ๐›ฝ = ๐‘† ๐›ผ.๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ curl ๐‘บ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘† ๐›ผ.๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ so that curl ๐‘บ = curl(curl ๐‘ป) = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐›ผ๐‘ ๐‘ก ๐‘‡๐‘˜๐‘ก ,๐‘ ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ

๐‘”๐‘–๐›ผ ๐‘”๐‘–๐‘  ๐‘”๐‘–๐‘ก = | ๐‘” ๐‘—๐›ผ ๐‘” ๐‘—๐‘  ๐‘” ๐‘—๐‘ก | ๐‘‡๐‘˜๐‘ก ,๐‘ ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ ๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐‘  ๐‘”๐‘˜๐‘ก ๐‘”๐‘–๐›ผ (๐‘” ๐‘—๐‘  ๐‘”๐‘˜๐‘ก โˆ’ ๐‘” ๐‘—๐‘ก ๐‘”๐‘˜๐‘  ) + ๐‘”๐‘–๐‘  (๐‘” ๐‘—๐‘ก ๐‘”๐‘˜๐›ผ โˆ’ ๐‘” ๐‘—๐›ผ ๐‘”๐‘˜๐‘ก ) =[ ] ๐‘‡๐‘˜๐‘ก ,๐‘ ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ ๐‘–๐‘ก ๐‘—๐›ผ ๐‘˜๐‘  ๐‘—๐‘  ๐‘˜๐›ผ +๐‘” (๐‘” ๐‘” โˆ’ ๐‘” ๐‘” ) ๐‘—๐›ผ ๐‘ก ๐‘  = [๐‘” ๐‘—๐‘  ๐‘‡ ๐‘ก.๐‘ก ,๐‘ ๐‘— โˆ’ ๐‘‡..๐‘ ๐‘— ,๐‘ ๐‘— ](๐  ๐›ผ โŠ— ๐  ๐›ผ ) + [๐‘‡ ๐›ผ๐‘— .. ,๐‘ ๐‘— โˆ’ ๐‘” ๐‘‡ .๐‘ก ,๐‘ ๐‘— ](๐  โŠ— ๐  ๐›ผ ) ๐‘ก + [๐‘” ๐‘—๐›ผ ๐‘‡ .๐‘ก๐‘ . ,๐‘ ๐‘— โˆ’ ๐‘” ๐‘—๐‘  ๐‘‡ ๐›ผ. .๐‘ก ,๐‘ ๐‘— ](๐  โŠ— ๐  ๐›ผ ) T

= [โˆ‡2 (tr ๐‘ป) โˆ’ div(div ๐‘ป)]๐‘ฐ + (grad(div ๐‘ป)) โˆ’ grad(grad (tr๐“)) + (grad(div ๐“)) โˆ’ โˆ‡2 ๐“ T

32.

When ๐“ is symmetric, show that tr(curl ๐“) vanishes. curl ๐“ = ๐๐‘–๐‘—๐‘˜ ๐‘‡๐›ฝ๐‘˜ ,๐‘— ๐  ๐‘– โŠ— ๐  ๐›ฝ tr(curl ๐“) = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ฝ๐‘˜ ,๐‘— ๐  ๐‘– โ‹… ๐  ๐›ฝ ๐›ฝ

= ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐›ฝ๐‘˜ ,๐‘— ๐›ฟ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘–๐‘˜ ,๐‘—

which obviously vanishes on account of the symmetry and antisymmetry in ๐‘– and ๐‘˜. In this case, curl(curl ๐“) = [โˆ‡2 (tr ๐“) โˆ’ div(div ๐“)]๐Ÿ โˆ’ grad(grad (tr๐‘ป)) + 2(grad(div ๐‘ป)) โˆ’ โˆ‡2 ๐“ T

as (grad(div ๐“)) = grad(div ๐“) if the order of differentiation is immaterial and ๐“ is symmetric. For a scalar function ๐›ท and a vector ๐’—๐’Š show that the divergence of the vector ๐’—๐’Š ๐šฝ is equal to, ๐ฏ โ‹… ๐›๐›ท + ๐›ท ๐‘‘๐‘–๐‘ฃ ๐ฏ

33.

(๐‘ฃ ๐‘– ฮฆ),๐‘– = ฮฆ๐‘ฃ ๐‘– ,๐‘– + ๐‘ฃ ๐‘– ฮฆ,i Hence the result.

34.

Show that curl ๐ฎ ร— ๐ฏ = (๐ฏ โˆ™ ๐›๐ฎ) + (๐ฎ โ‹… div ๐ฏ) โˆ’ (๐ฏ โ‹… div ๐ฎ) โˆ’ (๐ฎ โˆ™ ๐› ๐ฏ)

Taking the associated (covariant) vector of the expression for the cross product in the last example, it is straightforward to see that the LHS in indicial notation is, ๐œ– ๐‘™๐‘š๐‘– (๐œ–๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ),๐‘š

Expanding in the usual way, noting the relation between the alternating tensors and the Kronecker deltas, ๐‘™๐‘š๐‘– ๐œ– ๐‘™๐‘š๐‘– (๐œ€๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ),๐‘š = ๐›ฟ๐‘—๐‘˜๐‘– (๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š ) ๐‘™๐‘š ๐›ฟ๐‘—๐‘˜ (๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜

๐›ฟ๐‘—๐‘™

๐›ฟ๐‘—๐‘š

๐‘— ๐‘˜ ๐‘— ๐‘˜ =| ๐‘™ | (๐‘ข ๐‘ฃ โˆ’ ๐‘ข ๐‘ฃ ,๐‘š ) ,๐‘š ๐‘š ๐›ฟ๐‘˜ ๐›ฟ๐‘˜ = (๐›ฟ๐‘—๐‘™ ๐›ฟ๐‘˜๐‘š โˆ’ ๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘—๐‘š )(๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š )

=

๐‘— ๐‘˜

โˆ’๐‘ข ๐‘ฃ

,๐‘š )

= ๐›ฟ๐‘—๐‘™ ๐›ฟ๐‘˜๐‘š ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐›ฟ๐‘—๐‘™ ๐›ฟ๐‘˜๐‘š ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š + ๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘—๐‘š ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘—๐‘š ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š = ๐‘ข๐‘™ ,๐‘š ๐‘ฃ ๐‘š โˆ’ ๐‘ข๐‘š ,๐‘š ๐‘ฃ ๐‘™ + ๐‘ข๐‘™ ๐‘ฃ ๐‘š ,๐‘š โˆ’ ๐‘ข๐‘š ๐‘ฃ ๐‘™ ,๐‘š Which is the result we seek in indicial notation.

35.

. In Cartesian coordinates let ๐‘ฅ denote the magnitude of the position vector ๐ซ = ๐’™๐’‹

๐Ÿ

๐’™๐’Š ๐’™๐’‹

๐Ÿ

๐Ÿ

๐‘ฅ๐‘– ๐ž๐‘– . Show that (a) ๐‘ฅ,๐’‹ = ๐’™ , (b) ๐‘ฅ,๐’Š๐’‹ = ๐’™ ๐›ฟ๐’Š๐’‹ โˆ’ (๐’™)๐Ÿ‘, (c) ๐‘ฅ,๐’Š๐’Š = ๐’™, (d) If ๐‘ผ = ๐’™, then ๐‘ผ,๐’Š๐’‹ = โˆ’๐œน๐’Š๐’‹ ๐’™๐Ÿ‘

+

๐Ÿ‘๐’™๐’Š ๐’™๐’‹ ๐’™๐Ÿ“

๐ซ

2

๐‘ผ,๐’Š๐’Š = ๐ŸŽ and div (๐‘ฅ) = ๐‘ฅ.

(๐‘Ž ) ๐‘ฅ = โˆš๐‘ฅ๐‘– ๐‘ฅ๐‘–

๐œ•โˆš๐‘ฅ๐‘– ๐‘ฅ๐‘– ๐œ• โˆš๐‘ฅ๐‘– ๐‘ฅ๐‘– ๐œ• (๐‘ฅ๐‘– ๐‘ฅ๐‘– ) ๐‘ฅ๐‘— 1 ๐‘ฅ,๐‘— = = ร— = [๐‘ฅ๐‘– ๐›ฟ๐‘–๐‘— + ๐‘ฅ๐‘– ๐›ฟ๐‘–๐‘— ] = . ๐œ•๐‘ฅ๐‘— ๐œ• (๐‘ฅ๐‘– ๐‘ฅ๐‘– ) ๐œ•๐‘ฅ๐‘— ๐‘ฅ 2โˆš๐‘ฅ๐‘– ๐‘ฅ๐‘– ๐‘ฅ

๐œ• ๐œ•โˆš๐‘ฅ๐‘– ๐‘ฅ๐‘– ๐œ• ๐‘ฅ๐‘– (๐‘) ๐‘ฅ,๐‘–๐‘— = ( )= ( )= ๐œ•๐‘ฅ๐‘— ๐œ•๐‘ฅ๐‘– ๐œ•๐‘ฅ๐‘— ๐‘ฅ ๐‘ฅ๐‘– ๐‘ฅ๐‘— 1 = ๐›ฟ๐‘–๐‘— โˆ’ (๐‘ฅ )3 ๐‘ฅ 1 ๐‘ฅ๐‘– ๐‘ฅ๐‘– 3 (๐‘ฅ )2 2 (๐‘ ) ๐‘ฅ,๐‘–๐‘– = ๐›ฟ๐‘–๐‘– โˆ’ = โˆ’ = . (๐‘ฅ )3 ๐‘ฅ (๐‘ฅ )3 ๐‘ฅ ๐‘ฅ 1

๐œ•๐‘ฅ๐‘– ๐œ•๐‘ฅ ๐‘ฅ๐‘– ๐‘ฅ๐‘— โˆ’ ๐‘ฅ๐‘– ๐œ•๐‘ฅ๐‘— ๐œ•๐‘ฅ๐‘— ๐‘ฅ๐›ฟ๐‘–๐‘— โˆ’ ๐‘ฅ = (๐‘ฅ )2 (๐‘ฅ )2

(๐‘‘ ) ๐‘ˆ = so that ๐‘ฅ 1 1 ๐œ• ๐‘ฅ ๐œ• ๐‘ฅ ๐œ•๐‘ฅ ๐‘ฅ๐‘— 1 1 ๐‘ˆ,๐‘— = = ร— = โˆ’ 2 ๐‘ฅ๐‘— = โˆ’ 3 ๐œ•๐‘ฅ๐‘— ๐œ•๐‘ฅ ๐œ•๐‘ฅ๐‘— ๐‘ฅ ๐‘ฅ ๐‘ฅ Consequently,

๐œ• ๐œ• (โˆ’๐‘ฅ 2 )) + ๐‘ฅ๐‘– (๐‘ฅ 3 ) ๐‘ฅ3 ( ๐œ•๐‘ฅ๐‘— ๐œ•๐‘ฅ๐‘—

๐œ• ๐œ• ๐‘ฅ๐‘– ( ) ๐‘ˆ,๐‘–๐‘— = ๐‘ˆ,๐‘– = โˆ’ ( )= ๐œ•๐‘ฅ๐‘— ๐œ•๐‘ฅ๐‘— ๐‘ฅ 3 ๐‘ฅ6 ๐œ•(๐‘ฅ 3 ) ๐œ•๐‘ฅ 3 ๐‘ฅ (โˆ’๐›ฟ๐‘–๐‘— ) + ๐‘ฅ๐‘– ( ) โˆ’๐‘ฅ 3 ๐›ฟ + ๐‘ฅ (3๐‘ฅ 2 ๐‘ฅ๐‘— ) ๐œ•๐‘ฅ ๐œ•๐‘ฅ๐‘— โˆ’๐›ฟ๐‘–๐‘— 3๐‘ฅ๐‘– ๐‘ฅ๐‘— ๐‘–๐‘— ๐‘– ๐‘ฅ = = = 3 + 5 ๐‘ฅ6 ๐‘ฅ6 ๐‘ฅ ๐‘ฅ โˆ’๐›ฟ๐‘–๐‘– 3๐‘ฅ๐‘– ๐‘ฅ๐‘– โˆ’3 3๐‘ฅ 2 ๐‘ˆ,๐‘–๐‘– = 3 + 5 = 3 + 5 = 0. ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ๐‘— ๐ซ 1 1 3 ๐œ• 1 ๐‘‘๐‘ฅ div ( ) = ( ) ,๐‘— = ๐‘ฅ๐‘— ,๐‘— + ( ) = + ๐‘ฅ๐‘— ( ( ) ) ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ ,๐‘— ๐‘ฅ ๐œ•๐‘ฅ ๐‘ฅ ๐‘‘๐‘ฅ๐‘— 3 1 ๐‘ฅ๐’‹ 3 ๐‘ฅ๐‘— ๐‘ฅ๐‘— 3 1 2 = + ๐‘ฅ๐‘— [โˆ’ ( 2 ) ] = โˆ’ 3 = โˆ’ = ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ฅ

36.

For vectors ๐ฎ, ๐ฏ and ๐ฐ, show that (๐ฎ ร—)(๐ฏ ร—)(๐ฐ ร—) = ๐ฎ โŠ—(๐ฏ ร— ๐ฐ) โˆ’ (๐ฎ โ‹… ๐ฏ)๐ฐ ร—.

The tensor (๐ฎ ร—) = โˆ’๐œ–๐‘™๐‘š๐‘› ๐‘ข๐‘› ๐  ๐‘™ โŠ— ๐  ๐‘š similarly, (๐ฏ ร—) = โˆ’๐œ– ๐›ผ๐›ฝ๐›พ ๐‘ฃ๐›พ ๐  ๐›ผ โŠ— ๐  ๐›ฝ and (๐ฐ ร—) = โˆ’๐œ– ๐‘–๐‘—๐‘˜ ๐‘ค๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— . Clearly,

(๐ฎ ร—)(๐ฏ ร—)(๐ฐ ร—) = โˆ’๐œ–๐‘™๐‘š๐‘› ๐œ– ๐›ผ๐›ฝ๐›พ ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘› ๐‘ฃ๐›พ ๐‘ค๐‘˜ (๐  ๐›ผ โŠ— ๐  ๐›ฝ )(๐  ๐‘™ โŠ— ๐  ๐‘š )(๐  ๐‘– โŠ— ๐  ๐‘— ) = โˆ’๐œ– ๐›ผ๐›ฝ๐›พ ๐œ–๐‘™๐‘š๐‘› ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘› ๐‘ฃ๐›พ ๐‘ค๐‘˜ (๐  ๐›ผ โŠ— ๐  ๐‘— )๐›ฟ๐›ฝ๐‘™ ๐›ฟ๐‘–๐‘š = โˆ’๐œ– ๐›ผ๐‘™๐›พ ๐œ–๐‘™๐‘–๐‘› ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘› ๐‘ฃ๐›พ ๐‘ค๐‘˜ (๐  ๐›ผ โŠ— ๐  ๐‘— ) = โˆ’๐œ– ๐‘™๐›ผ๐›พ ๐œ–๐‘™๐‘›๐‘– ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘› ๐‘ฃ๐›พ ๐‘ค๐‘˜ (๐  ๐›ผ โŠ— ๐  ๐‘— ) ๐›พ

๐›พ

= โˆ’(๐›ฟ๐‘›๐›ผ ๐›ฟ๐‘– โˆ’ ๐›ฟ๐‘–๐›ผ ๐›ฟ๐‘› )๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐‘› ๐‘ฃ๐›พ ๐‘ค๐‘˜ (๐  ๐›ผ โŠ— ๐  ๐‘— ) = โˆ’๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐›ผ ๐‘ฃ๐‘– ๐‘ค๐‘˜ (๐  ๐›ผ โŠ— ๐  ๐‘— ) + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข๐›พ ๐‘ฃ๐›พ ๐‘ค๐‘˜ (๐  ๐‘– โŠ— ๐  ๐‘— ) = [๐ฎ โŠ— (๐ฏ ร— ๐ฐ) โˆ’ (๐ฎ โ‹… ๐ฏ)๐ฐ ร—]

37.

Show that [๐ฎ, ๐ฏ, ๐ฐ] = tr[(๐ฎ ร—)(๐ฏ ร—)(๐ฐ ร—)] In the above we have shown that (๐ฎ ร—)(๐ฏ ร—)(๐ฐ ร—) = [๐ฎ โŠ— (๐ฏ ร— ๐ฐ) โˆ’ (๐ฎ โ‹… ๐ฏ)๐ฐ ร—] Because the vector cross is traceless, the trace of [(๐ฎ โ‹… ๐ฏ)๐ฐ ร—] = 0. The trace of the first term, ๐ฎ โŠ— (๐ฏ ร— ๐ฐ) is obviously the same as [๐ฎ, ๐ฏ, ๐ฐ] which completes the proof.

38.

Show that (๐ฎ ร—)(๐ฏ ร—) = (๐ฎ โ‹… ๐ฏ)๐Ÿ โˆ’ ๐ฎ โŠ— ๐ฏ and that tr[(๐ฎ ร—)(๐ฏ ร—)] = 2(๐ฎ โ‹… ๐ฏ) (๐ฎ ร—)(๐ฏ ร—) = โˆ’๐œ–๐‘™๐‘š๐‘› ๐œ– ๐›ผ๐›ฝ๐›พ ๐‘ข๐‘› ๐‘ฃ๐›พ (๐  ๐›ผ โŠ— ๐  ๐›ฝ )(๐  ๐‘™ โŠ— ๐  ๐‘š ) = โˆ’๐œ–๐‘™๐‘š๐‘› ๐œ– ๐›ผ๐›ฝ๐›พ ๐‘ข๐‘› ๐‘ฃ๐›พ (๐  ๐›ผ โŠ— ๐  ๐‘š )๐›ฟ๐›ฝ๐‘™ = โˆ’๐œ–๐›ฝ๐‘š๐‘› ๐œ– ๐›ฝ๐›พ๐›ผ ๐‘ข๐‘› ๐‘ฃ๐›พ (๐  ๐›ผ โŠ— ๐  ๐‘š ) ๐›พ ๐›ผ ๐›พ = [๐›ฟ๐‘› ๐›ฟ๐‘š โˆ’ ๐›ฟ๐‘š ๐›ฟ๐‘›๐›ผ ]๐‘ข๐‘› ๐‘ฃ๐›พ (๐  ๐›ผ โŠ— ๐  ๐‘š ) = ๐‘ข๐‘› ๐‘ฃ๐‘› (๐  ๐›ผ โŠ— ๐  ๐›ผ ) โˆ’ ๐‘ข๐‘› ๐‘ฃ๐‘š (๐  ๐‘› โŠ— ๐  ๐‘š ) = (๐ฎ โ‹… ๐ฏ)๐Ÿ โˆ’ ๐ฎ โŠ— ๐ฏ

Obviously, the trace of this tensor is 2(๐ฎ โ‹… ๐ฏ)

39.

The position vector in the above example ๐’“ = ๐‘ฅ๐‘– ๐’†๐‘– . Show that (a) div ๐’“ = ๐Ÿ‘, (b) div (๐’“ โŠ— ๐’“) = ๐Ÿ’๐’“, (c) div ๐’“ = 3, and (d) grad ๐’“ = ๐Ÿ and (e) curl (๐’“ โŠ— ๐’“) = โˆ’๐’“ ร— grad ๐’“ = ๐‘ฅ๐‘– ,๐’‹ ๐’†๐‘– โŠ— ๐’†๐’‹ = ๐›ฟ๐‘–๐‘— ๐’†๐‘– โŠ— ๐’†๐’‹ = ๐Ÿ div ๐’“ = ๐‘ฅ๐‘– ,๐’‹ ๐’†๐‘– โ‹… ๐’†๐’‹ = ๐›ฟ๐‘–๐‘— ๐›ฟ๐‘–๐‘— = ๐›ฟ๐‘—๐‘— = 3. ๐’“ โŠ— ๐’“ = ๐‘ฅ๐‘– ๐’†๐‘– โŠ— ๐‘ฅ๐‘— ๐’†๐‘— = ๐‘ฅ๐‘– ๐‘ฅ๐‘— ๐’†๐‘– โŠ— ๐’†๐’‹ grad(๐’“ โŠ— ๐’“) = (๐‘ฅ๐‘– ๐‘ฅ๐‘— ),๐‘˜ ๐’†๐‘– โŠ— ๐’†๐’‹ โŠ— ๐’†๐’Œ = (๐‘ฅ๐‘– ,๐‘˜ ๐‘ฅ๐‘— + ๐‘ฅ๐‘– ๐‘ฅ๐‘— ,๐‘˜ )๐’†๐‘– โŠ— ๐’†๐’‹ โ‹… ๐’†๐’Œ = (๐›ฟ๐‘–๐‘˜ ๐’™๐’‹ + ๐’™๐’Š ๐›ฟ๐‘—๐‘˜ )๐›ฟ๐‘—๐‘˜ ๐’†๐‘– = (๐›ฟ๐‘–๐‘˜ ๐’™๐’Œ + ๐’™๐’Š ๐›ฟ๐‘—๐‘— )๐’†๐‘–

= 4๐‘ฅ๐‘– ๐’†๐‘– = 4๐’“ curl(๐’“ โŠ— ๐’“) = ๐œ–๐›ผ๐›ฝ๐›พ (๐‘ฅ๐‘– ๐‘ฅ๐›พ ),๐›ฝ ๐’†๐›ผ โŠ— ๐’†๐’Š = ๐œ–๐›ผ๐›ฝ๐›พ (๐‘ฅ๐‘– ,๐›ฝ ๐‘ฅ๐›พ + ๐‘ฅ๐‘– ๐‘ฅ๐›พ ,๐›ฝ )๐’†๐›ผ โŠ— ๐’†๐’Š = ๐œ–๐›ผ๐›ฝ๐›พ (๐›ฟ๐‘–๐›ฝ ๐‘ฅ๐›พ + ๐‘ฅ๐‘– ๐›ฟ๐›พ๐›ฝ )๐’†๐›ผ โŠ— ๐’†๐’Š = ๐œ–๐›ผ๐‘–๐›พ ๐‘ฅ๐›พ ๐’†๐›ผ โŠ— ๐’†๐’Š + ๐œ–๐›ผ๐›ฝ๐›ฝ ๐‘ฅ๐‘– ๐’†๐›ผ โŠ— ๐’†๐’Š = โˆ’๐œ–๐›ผ๐›พ๐‘– ๐‘ฅ๐›พ ๐’†๐›ผ โŠ— ๐’†๐’Š = โˆ’๐’“ ร—

40.

Define the magnitude of tensor ๐€ as, |๐€| = โˆštr(๐€๐€T ) Show that

โˆ‚|๐€| โˆ‚๐€

๐€

= |๐€|

By definition, given a scalar ๐›ผ, the derivative of a scalar function of a tensor ๐‘“(๐€) is โˆ‚๐‘“(๐€) โˆ‚ : ๐ = lim ๐‘“(๐€ + ๐›ผ๐) ๐›ผโ†’0 โˆ‚๐›ผ โˆ‚๐€ for any arbitrary tensor ๐. In the case of ๐‘“(๐€) = |๐€|, โˆ‚|๐€| โˆ‚ |๐€ + ๐›ผ๐| : ๐ = lim ๐›ผโ†’0 โˆ‚๐›ผ โˆ‚๐€ |๐€ + ๐›ผ๐| = โˆštr(๐€ + ๐›ผ๐)(๐€ + ๐›ผ๐)T = โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐ T + ๐›ผ 2 ๐๐ T )

Note that everything under the root sign here is scalar and that the trace operation is linear. Consequently, we can write, โˆ‚ tr (๐๐€T ) + tr (๐€๐ T ) + 2๐›ผtr (๐๐ T ) 2๐€: ๐ | | lim ๐€ + ๐›ผ๐ = lim = ๐›ผโ†’0 โˆ‚๐›ผ ๐›ผโ†’0 2โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐ T + ๐›ผ 2 ๐๐ T ) 2โˆš๐€: ๐€ ๐€ = :๐ |๐€| So that, โˆ‚|๐€| ๐€ :๐ = :๐ |๐€| โˆ‚๐€ or, โˆ‚|๐€| ๐€ = |๐€| โˆ‚๐€ as required since ๐ is arbitrary.

41.

Show that

๐œ•๐‘ฐ3 (๐‘บ) ๐œ•๐‘บ

=

๐œ•det(๐‘บ) ๐œ•๐‘บ

= ๐‘บ๐’„ the cofactor of ๐‘บ.

Clearly ๐‘บ๐’„ = det(๐‘บ) ๐‘บโˆ’T = ๐‘ฐ3 (๐‘บ) ๐‘บโˆ’T . Details of this for the contravariant components of a tensor is presented below. Let

det(๐‘บ) โ‰ก |๐‘บ| โ‰ก ๐‘† =

1 ๐‘–๐‘—๐‘˜ ๐‘Ÿ๐‘ ๐‘ก ๐œ– ๐œ– ๐‘†๐‘–๐‘Ÿ ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก 3!

Differentiating wrt ๐‘†๐›ผ๐›ฝ , we obtain, ๐œ•๐‘†๐‘—๐‘  ๐œ•๐‘† 1 ๐œ•๐‘†๐‘–๐‘Ÿ ๐œ•๐‘†๐‘˜๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐‘Ÿ๐‘ ๐‘ก [ ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ ๐‘†๐‘—๐‘  ] ๐  โŠ— ๐ ๐›ฝ ๐œ•๐‘†๐›ผ๐›ฝ 3! ๐œ•๐‘†๐›ผ๐›ฝ ๐œ•๐‘†๐›ผ๐›ฝ ๐œ•๐‘†๐›ผ๐›ฝ ๐›ผ 1 ๐›ฝ ๐›ฝ ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐‘Ÿ๐‘ ๐‘ก [๐›ฟ๐‘–๐›ผ ๐›ฟ๐‘Ÿ ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ ๐›ฟ๐‘—๐›ผ ๐›ฟ๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ ๐‘†๐‘—๐‘  ๐›ฟ๐‘˜๐›ผ ๐›ฟ๐‘ก ] ๐  ๐›ผ โŠ— ๐  ๐›ฝ 3! 1 ๐›ผ๐‘—๐‘˜ ๐›ฝ๐‘ ๐‘ก = ๐œ– ๐œ– [๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก ]๐  ๐›ผ โŠ— ๐  ๐›ฝ 3! 1 = ๐œ– ๐›ผ๐‘—๐‘˜ ๐œ– ๐›ฝ๐‘ ๐‘ก ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ โ‰ก [๐‘† c ]๐›ผ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ 2! Which is the cofactor of [๐‘†๐›ผ๐›ฝ ] or ๐‘บ

42. ๐‘‘ ๐‘‘๐›ผ

๐‘‘๐“ For a scalar variable ๐›ผ, if the tensor ๐“ = ๐“(๐›ผ) and ๐“ฬ‡ โ‰ก ๐‘‘๐›ผ, Show that

det(๐“) = det(๐“) tr(๐“ฬ‡๐“ โˆ’๐Ÿ )

Let ๐‘จ โ‰ก ๐‘ปฬ‡๐‘ปโˆ’1 so that, ๐‘ปฬ‡ = ๐‘จ๐‘ป. In component form, we have ๐‘‡๐‘—ฬ‡ ๐‘– = ๐ด๐‘–๐‘š ๐‘‡๐‘—๐‘š . Therefore,

๐‘‘ ๐‘‘ ๐‘–๐‘—๐‘˜ 1 2 3 det(๐‘ป) = (๐œ– ๐‘‡๐‘– ๐‘‡๐‘— ๐‘‡๐‘˜ ) = ๐œ– ๐‘–๐‘—๐‘˜ (๐‘‡ฬ‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡๐‘˜3 + ๐‘‡๐‘–1 ๐‘‡๐‘—ฬ‡ 2 ๐‘‡๐‘˜3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ฬ‡๐‘˜3 ) ๐‘‘๐›ผ ๐‘‘๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ (๐ด1๐‘™ ๐‘‡๐‘–๐‘™ ๐‘‡๐‘—2 ๐‘‡๐‘˜3 + ๐‘‡๐‘–1 ๐ด2๐‘š ๐‘‡๐‘—๐‘š ๐‘‡๐‘˜3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐ด3๐‘› ๐‘‡๐‘˜๐‘› ) = ๐œ– ๐‘–๐‘—๐‘˜ [(๐ด11 ๐‘‡๐‘–1 + ๐ด12 ๐‘‡๐‘–2 + ๐ด13 ๐‘‡๐‘–3 ) ๐‘‡๐‘—2 ๐‘‡๐‘˜3 + ๐‘‡๐‘–1 ( ๐ด12 ๐‘‡๐‘—1 + ๐ด22 ๐‘‡๐‘—2 + ๐ด23 ๐‘‡๐‘—3 ) ๐‘‡๐‘˜3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ( ๐ด13 ๐‘‡๐‘˜1 + ๐ด32 ๐‘‡๐‘˜2 + ๐ด33 ๐‘‡๐‘˜3 )] All the boxed terms in the above equation vanish on account of the contraction of a symmetric tensor with an antisymmetric one. (For example, the first boxed term yields, ๐œ– ๐‘–๐‘—๐‘˜ ๐ด12 ๐‘‡๐‘–2 ๐‘‡๐‘—2 ๐‘‡๐‘˜3 Which is symmetric as well as antisymmetric in ๐‘– and ๐‘—. It therefore vanishes. The same is true for all other such terms.) ๐‘‘ det(๐“) = ๐œ– ๐‘–๐‘—๐‘˜ [(๐ด11 ๐‘‡๐‘–1 )๐‘‡๐‘—2 ๐‘‡๐‘˜3 + ๐‘‡๐‘–1 (๐ด22 ๐‘‡๐‘—2 )๐‘‡๐‘˜3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 (๐ด33 ๐‘‡๐‘˜3 )] ๐‘‘๐›ผ ๐‘–๐‘—๐‘˜ 1 2 3 = ๐ด๐‘š ๐‘‡๐‘– ๐‘‡๐‘— ๐‘‡๐‘˜ = tr(๐“ฬ‡๐“ โˆ’1 ) det(๐“) ๐‘š๐œ– as required.

43.

Without breaking down into components, establish the fact that ๐œ•det(๐“) = ๐“๐’„ ๐œ•๐“

Start from Liouvilleโ€™s Theorem, given a scalar parameter such that ๐“ = ๐“(๐›ผ ), โˆ‚ โˆ‚๐“ โˆ‚๐“ (det(๐“)) = det(๐“) tr [( ) ๐“ โˆ’๐Ÿ ] = [det(๐“) ๐“ โˆ’๐“ ] : ( ) โˆ‚๐›ผ โˆ‚๐›ผ โˆ‚๐›ผ By the simple rules of multiple derivative, โˆ‚ โˆ‚ โˆ‚๐“ (det(๐“)) = [ (det(๐“))]: ( ) โˆ‚๐›ผ โˆ‚๐“ โˆ‚๐›ผ It therefore follows that, โˆ‚ โˆ‚๐“ โˆ’๐“ [ (det(๐“)) โˆ’ [det(๐“) ๐“ ]]: ( ) = 0 โˆ‚๐“ โˆ‚๐›ผ Hence โˆ‚ (det(๐“)) = [det(๐“) ๐“ โˆ’๐“ ] = ๐“ ๐œ โˆ‚๐“

44.

โˆ‚

[Gurtin 3.4.2a] If T is invertible, show that โˆ‚๐“ (log det(๐“)) = ๐“ โˆ’๐“ โˆ‚ โˆ‚(log det(๐“)) โˆ‚det(๐“) (log det(๐“)) = โˆ‚๐“ โˆ‚det(๐“) โˆ‚๐“

1 1 ๐œ = ๐“ = det(๐“) ๐“ โˆ’๐“ det(๐“) det(๐“) = ๐“ โˆ’๐“

45.

โˆ‚

[Gurtin 3.4.2a] If ๐“ is invertible, show that โˆ‚๐“ (log det(๐“ โˆ’1 )) = โˆ’๐“ โˆ’๐“ โˆ‚ โˆ‚(log det(๐“ โˆ’1 )) โˆ‚det(๐“ โˆ’1 ) โˆ‚๐“ โˆ’1 โˆ’1 (log det(๐“ )) = โˆ‚๐“ โˆ‚det(๐“ โˆ’1 ) โˆ‚๐“ โˆ’1 โˆ‚๐“ 1 = ๐“ โˆ’๐œ (โˆ’๐“ โˆ’2 ) โˆ’1 det(๐“ ) 1 = det(๐“ โˆ’1 ) ๐“ ๐“ (โˆ’๐“ โˆ’2 ) โˆ’1 det(๐“ ) = โˆ’๐“ โˆ’๐“

46.

โˆ‚

Given that ๐€ is a constant tensor, Show that โˆ‚๐’ tr(๐€๐’) = ๐€T

In invariant components terms, let ๐€ = A๐‘–๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— and let ๐’ = S๐›ผ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ . ๐€๐’ = A๐‘–๐‘— S๐›ผ๐›ฝ (๐  ๐‘– โŠ— ๐  ๐‘— )(๐  ๐›ผ โŠ— ๐  ๐›ฝ )

= A๐‘–๐‘— S๐›ผ๐›ฝ (๐  ๐‘– โŠ— ๐  ๐›ฝ )๐›ฟ๐‘—๐›ผ = A๐‘–๐‘— S๐‘—๐›ฝ (๐  ๐‘– โŠ— ๐  ๐›ฝ ) tr(๐€๐’) = A๐‘–๐‘— S๐‘—๐›ฝ (๐  ๐‘– โ‹… ๐  ๐›ฝ ) ๐›ฝ

= A๐‘–๐‘— S๐‘—๐›ฝ ๐›ฟ๐‘– = A๐‘–๐‘— S๐‘—๐‘– โˆ‚ โˆ‚ tr(๐€๐’) = tr(๐€๐’)๐  ๐›ผ โŠ— ๐  ๐›ฝ โˆ‚๐’ โˆ‚S๐›ผ๐›ฝ โˆ‚A๐‘–๐‘— S๐‘—๐‘– = ๐  โŠ— ๐ ๐›ฝ โˆ‚S๐›ผ๐›ฝ ๐›ผ =

๐›ฝ A๐‘–๐‘— ๐›ฟ๐‘—๐›ผ ๐›ฟ๐‘– ๐  ๐›ผ

โˆ‚ T (๐€ : ๐’) โŠ— ๐ ๐›ฝ = A ๐ ๐‘— โŠ— ๐ ๐‘– = ๐€ = โˆ‚๐’ ๐‘–๐‘—

T

as required.

47.

โˆ‚

Given that ๐€ and ๐ are constant tensors, show that โˆ‚๐’ tr(๐€๐’๐ T ) = ๐€T ๐

First observe that tr(๐€๐’๐ T ) = tr(๐ T ๐€๐’). If we write, ๐‚ โ‰ก ๐ T ๐€, it is obvious โˆ‚

from the above that โˆ‚๐’ tr(๐‚๐’) = ๐‚ T . Therefore,

โˆ‚ tr(๐€๐’๐ T ) = (๐ T ๐€)๐“ = ๐€T ๐ โˆ‚๐’

48.

โˆ‚

Given that ๐€ and ๐ are constant tensors, show that โˆ‚๐’ tr(๐€๐’ T ๐ T ) = ๐ T ๐€

Observe that tr(๐€๐’ T ๐ T ) = tr(๐ T ๐€๐’ T ) = tr[๐’(๐ T ๐€)T ] = tr[(๐ T ๐€)T ๐’] [The transposition does not alter trace; neither does a cyclic permutation. Ensure you understand why each equality here is true.] Consequently, โˆ‚ โˆ‚ T T) ( tr ๐€๐’ ๐ = tr[(๐ T ๐€)T ๐’] = [(๐ T ๐€)T ]๐“ = ๐ T ๐€ โˆ‚๐’ โˆ‚๐’

49.

Let ๐‘บ be a symmetric and positive definite tensor and let ๐ผ1 (๐‘บ), ๐ผ2 (๐‘บ)and๐ผ3 (๐‘บ)

be the three principal invariants of ๐‘บ show that (a) ๐œ•๐‘ฐ2 (๐‘บ) ๐œ•๐‘บ ๐œ•๐‘ฐ1 (๐‘บ) ๐œ•๐‘บ

= ๐ผ1 (๐‘บ)๐Ÿ โˆ’ ๐‘บ and (c)

๐œ•๐ผ3 (๐‘บ) ๐œ•๐‘บ

๐œ•๐‘ฐ1 (๐‘บ) ๐œ•๐‘บ

= ๐ผ3 (๐‘บ) ๐‘บโˆ’1

can be written in the invariant component form as, ๐œ•๐ผ1 (๐‘บ) ๐œ•๐ผ1 (๐‘บ) = ๐  ๐‘– โŠ— ๐ ๐‘— ๐‘— ๐œ•๐‘บ ๐œ•๐‘† ๐‘–

Recall that ๐ผ1 (๐’) = tr(๐’) = ๐‘†ฮฑฮฑ hence

= ๐Ÿ the identity tensor, (b)

๐œ•๐ผ1 (๐’) ๐œ•๐ผ1 (๐’) ๐œ•๐‘†ฮฑฮฑ ๐‘— ๐‘— = ๐  โŠ— ๐  = ๐  โŠ— ๐  ๐‘– ๐‘– ๐‘— ๐‘— ๐œ•๐’ ๐œ•๐‘†๐‘– ๐œ•๐‘†๐‘– = ๐›ฟ๐›ผ๐‘– ๐›ฟ๐‘—๐›ผ ๐  ๐‘– โŠ— ๐ ๐‘— = ๐›ฟ๐‘—๐‘– ๐  ๐‘– โŠ— ๐ ๐‘— = ๐Ÿ which is the identity tensor as expected. ๐œ•๐ผ2 (๐’) ๐œ•๐’

in a similar way can be written in the invariant component form as, ๐œ•๐ผ2 (๐’) 1 ๐œ•๐ผ1 (๐’) ฮฑ ๐›ฝ ฮฑ ๐›ฝ ๐‘— = [๐‘† ๐‘† โˆ’ ๐‘† ๐‘† ] ๐  โŠ— ๐  ฮฑ ๐‘– ฮฑ ๐›ฝ ๐›ฝ ๐œ•๐’ 2 ๐œ•๐‘† ๐‘— ๐‘–

1

where we have utilized the fact that ๐ผ2 (๐’) = 2 [tr 2 (๐’) โˆ’ tr(๐’ 2 )]. Consequently, ๐œ•๐ผ2 (๐’) 1 ๐œ• ฮฑ ๐›ฝ ฮฑ ๐›ฝ ๐‘— = [๐‘† ๐‘† โˆ’ ๐‘† ๐‘† ] ๐  โŠ— ๐  ฮฑ ๐‘– ฮฑ ๐›ฝ ๐›ฝ ๐œ•๐’ 2 ๐œ•๐‘† ๐‘— ๐‘–

1 ๐‘– ๐›ผ ๐›ฝ ๐›ฝ ๐›ฝ ๐›ฝ = [๐›ฟ๐›ผ ๐›ฟ๐‘— ๐‘†๐›ฝ + ๐›ฟ๐›ฝ๐‘– ๐›ฟ๐‘— ๐‘†ฮฑฮฑ โˆ’ ๐›ฟ๐›ฝ๐‘– ๐›ฟ๐‘—๐›ผ ๐‘†ฮฑ โˆ’ ๐›ฟ๐›ผ๐‘– ๐›ฟ๐‘— ๐‘†๐›ฝฮฑ ] ๐  ๐‘– โŠ— ๐ ๐‘— 2 1 ๐›ฝ ๐‘— ๐‘— ๐‘— = [๐›ฟ๐‘—๐‘– ๐‘†๐›ฝ + ๐›ฟ๐‘—๐‘– ๐‘†ฮฑฮฑ โˆ’ ๐‘†๐‘– โˆ’ ๐‘†๐‘– ] ๐  ๐‘– โŠ— ๐ ๐‘— = (๐›ฟ๐‘—๐‘– ๐‘†ฮฑฮฑ โˆ’ ๐‘†๐‘– )๐  ๐‘– โŠ— ๐ ๐‘— 2 = ๐ผ1 (๐’)๐Ÿ โˆ’ ๐’

det(๐‘บ) โ‰ก |๐‘บ| โ‰ก ๐‘† =

1 ๐‘–๐‘—๐‘˜ ๐‘Ÿ๐‘ ๐‘ก ๐œ– ๐œ– ๐‘†๐‘–๐‘Ÿ ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก 3!

Differentiating wrt ๐‘†๐›ผ๐›ฝ , we obtain, ๐œ•๐‘†๐‘—๐‘  ๐œ•๐‘† 1 ๐œ•๐‘†๐‘–๐‘Ÿ ๐œ•๐‘†๐‘˜๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐‘Ÿ๐‘ ๐‘ก [ ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ ๐‘†๐‘—๐‘  ] ๐  โŠ— ๐ ๐›ฝ ๐œ•๐‘†๐›ผ๐›ฝ 3! ๐œ•๐‘†๐›ผ๐›ฝ ๐œ•๐‘†๐›ผ๐›ฝ ๐œ•๐‘†๐›ผ๐›ฝ ๐›ผ 1 ๐›ฝ ๐›ฝ ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐‘Ÿ๐‘ ๐‘ก [๐›ฟ๐‘–๐›ผ ๐›ฟ๐‘Ÿ ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ ๐›ฟ๐‘—๐›ผ ๐›ฟ๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ ๐‘†๐‘—๐‘  ๐›ฟ๐‘˜๐›ผ ๐›ฟ๐‘ก ] ๐  ๐›ผ โŠ— ๐  ๐›ฝ 3! 1 ๐›ผ๐‘—๐‘˜ ๐›ฝ๐‘ ๐‘ก = ๐œ– ๐œ– [๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก ]๐  ๐›ผ โŠ— ๐  ๐›ฝ 3! 1 = ๐œ– ๐›ผ๐‘—๐‘˜ ๐œ– ๐›ฝ๐‘ ๐‘ก ๐‘†๐‘—๐‘  ๐‘†๐‘˜๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ โ‰ก [๐‘† c ]๐›ผ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ 2! Which is the cofactor of [๐‘†๐›ผ๐›ฝ ] or ๐‘บ

50.

For a tensor field ๐œฉ, The volume integral in the region ฮฉ โŠ‚ โ„ฐ, โˆซฮฉ(grad ๐œฉ) ๐‘‘๐‘ฃ =

โˆซโˆ‚ฮฉ ๐œฉ โŠ— ๐’ ๐‘‘๐‘  where ๐’ is the outward drawn normal to ๐œ•ฮฉ โ€“ the boundary of ฮฉ. Show that for a vector field ๐’‡ โˆซ (div ๐’‡) ๐‘‘๐‘ฃ = โˆซ ๐’‡ โ‹… ๐’ ๐‘‘๐‘  ฮฉ

๐œ•ฮฉ

Replace ๐œฉ by the vector field ๐’‡ we have, โˆซ (grad ๐’‡) ๐‘‘๐‘ฃ = โˆซ ๐’‡ โŠ— ๐’ ๐‘‘๐‘  ฮฉ

โˆ‚ฮฉ

Taking the trace of both sides and noting that both trace and the integral are linear operations, therefore we have, โˆซ (div ๐’‡) ๐‘‘๐‘ฃ = โˆซ tr(grad ๐’‡) ๐‘‘๐‘ฃ ฮฉ

ฮฉ

= โˆซ tr(๐’‡ โŠ— ๐’) ๐‘‘๐‘  โˆ‚ฮฉ

= โˆซ ๐’‡ โ‹… ๐’ ๐‘‘๐‘  ๐œ•ฮฉ

51.

Show that for a scalar function Hence the divergence theorem

becomes,โˆซฮฉ(grad ๐œ™) ๐‘‘๐‘ฃ = โˆซ๐œ•ฮฉ ๐œ™๐’ ๐‘‘๐‘  Recall that for a vector field, that for a vector field ๐’‡ โˆซ (div ๐’‡) ๐‘‘๐‘ฃ = โˆซ ๐’‡ โ‹… ๐’ ๐‘‘๐‘  ฮฉ

๐œ•ฮฉ

if we write, ๐Ÿ = ๐œ™๐’‚ where ๐’‚ is an arbitrary constant vector, we have, โˆซ (div[๐œ™๐’‚]) ๐‘‘๐‘ฃ = โˆซ ๐œ™๐’‚ โ‹… ๐ง ๐‘‘๐‘  = ๐’‚ โ‹… โˆซ ๐œ™๐ง ๐‘‘๐‘  ฮฉ

๐œ•ฮฉ

๐œ•ฮฉ

For the LHS, note that, div[๐œ™๐’‚] = tr(grad[๐œ™๐’‚]) grad[๐œ™๐’‚] = (๐œ™๐‘Ž๐‘– ),๐‘— ๐  ๐‘– โŠ— ๐ ๐‘— = ๐‘Ž๐‘– ๐œ™,๐‘— ๐  ๐‘– โŠ— ๐ ๐‘— The trace of which is, ๐‘—

๐‘Ž๐‘– ๐œ™,๐‘— ๐  ๐‘– โ‹… ๐ ๐‘— = ๐‘Ž๐‘– ๐œ™,๐‘— ๐›ฟ๐‘– = ๐‘Ž๐‘– ๐œ™,๐‘– = ๐’‚ โ‹… grad ๐œ™ For the arbitrary constant vector ๐’‚, we therefore have that, โˆซ (div[๐œ™๐’‚]) ๐‘‘๐‘ฃ = ๐’‚ โ‹… โˆซ grad ๐œ™ ๐‘‘๐‘ฃ = ๐’‚ โ‹… โˆซ ๐œ™๐ง ๐‘‘๐‘  ฮฉ

ฮฉ

๐œ•ฮฉ

โˆซ grad ๐œ™ ๐‘‘๐‘ฃ = โˆซ ๐œ™๐ง ๐‘‘๐‘  ฮฉ

๐œ•ฮฉ