42 Pile Foundation(Water Tank Foundation)

PILE FOUNDATION A B C Page 42 - 1 TANK SUPPORT D E F G H I J K L M N SUMMARY for TANK and FOUNDATION tare

Views 248 Downloads 1 File size 118KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

PILE FOUNDATION A

B

C

Page 42 - 1

TANK SUPPORT D

E

F

G

H

I

J

K

L

M

N

SUMMARY for TANK and FOUNDATION tare 741 k tank test 6254 k water weight LN2 5012 k liquid weight full test Normal W contents

6995 k 5753 k 4200 k

tank + weight at test normal max operating weight contents that move w/ tank during an event

diameter area q operate

53 ft 2206 ft2 2.61 k/ft2

approximate loaded diameter (53 /2)^2 * PI() Normal /area

3.5' Elevated Deck h 3.5 ft DL 1839 k area 3503 ft2

from AutoCAD massprop calculations 1,839 /(42 /12 * 0.15)

275490908.xls

60'

row 13

3.5' deck 15' 4' cap

Piling Top

row 23 1.59 k

24"Ф x 1/2" wall steel casing 0.5 * 24 * PI() /144 * 485 * 12.5 /1000

5.89 k

concrete top 12.5' 12^2 * PI() /144 * 0.15 * 12.5

7.48 k

per arbitrary 12.5' trib length of composite pile

21 each 157 k

above the pile cap sum of piling weight above pile cap

#VALUE! columns

4.0' Pile Cap h DL

gross opr

row 33 wt steel wt conc.

4 ft 2102 k

5753 1839 157 2102

k k k k

sum

9851 k

sum

11093 k

1k

tank + contents operating weight Liquid top deck columns pile cap

485 lb/ft3 150 lb/ft3 1000 lbs

row 43

operating load to bottom of pile cap test load H2O

A flat bottom 60 foot diameter, 60 foot tall, liquid nitrogen storage tank is supported on a pile foundation at 15' above grade. Pile foundation and pedestal structure to support: Tank and contents normal operating weight of 5,753,000 lbs. Test weight of 6,995,000 Lbs.

row 53

Life of the structure is 30 years. Planar tilt is limited to 1/2" in 60' during the life of the structure. Out-of-plane, differential settlement is limited to 1/8" in 30' and 1/4" in 60' during the life of the structure.' Settlements will govern this design as much or more than seismic and wind forces. row 63

PILE FOUNDATION A

B

C

Page 42 - 2

TANK SUPPORT D

E

F

G

H

I

J

K

DESIGN LOADS for FRAME ANALYSIS PROGRAM This frame is an elastic ordinary moment resiting frame. The design is for elastic response only and does not use yielding of any member for energy absorbtion. The value of R for ordinary moment resisting frames is the same as the R for elevated tanks on unbraced legs.

L

M

N

275490908.xls

Estimate story shear (V story) to the top of the pile cap Ca 0.36 factor for vertical accelerations I V ρ estimate C factor

tank W contents

1.25 0.304 *W 1 1.1

importance factor from seismic worksheet estimated redundancy factor '97 UBC 1612.2.2.1 Exception 2 for concrete columns

seismic DL shear ult 741

row 73

Structure Movement

33.85

5012

weight 741

32.1 ft CG of effective contents mass

5012 1183 k ASD API calculations 1656 k ult

and tank E tank and contents

692 49.10

deck

1839

1839

769

11.5 15.25

col/piles

157

15.0

157

66 2102 row 93 springs

V story

7749

pile cap

2102

D

9851

1527 k ult

to top of deck

inflection

879 restraint 2405 k ult

approximate DL + Liquid to top of piling #VALUE!

Check Redundancy Overly simplify the model: apply loads to the nodes of the mid-line frame. Area

3503 ft2

row 103

surface area of the deck and/or the pile cap

Redundancy factor for an ordinary moment frame ASCE 7-02 9.5.2.4.2 Item 3 Σ any two adjacent column shears / story shear column 4 column 7 sum cols V story

110 k ult 112 k ult 222 1527 k ult

from preliminary frame analysis

r

0.145

222 / 1,527 ratio of any two adjacent column shears to the sum of all column shears

ρ

ρ

112 + 110

row 113

-0.324 2 - 20 / (rmax x √ Ax ) 1.0 ≤ ρ ≤ 1.5 max 2 - 20 /[0.145 × 3,503^0.5 ] 1 unitless

minimum required ρ redundancy factor row 123

PILE FOUNDATION A

B

C

Page 42 - 3

TANK SUPPORT D

E

F

G

H

I

J

K

L

M

N

EXTEND PILING THROUGH PILE CAP to DECK Pile Lateral Resistance

82

45 piling total Pile lateral

90 k →

pile @ 14'

17 each 82 k/each 1387 k

275490908.xls

at 8 diameters through 1" deflection Structue

Earth Movement pile @ 7'

pile sum soil lat face depth soil p

28 each 52 k/each 1457 k

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

2843 k service pile soil lateral 250 78 4 156

pcf ft ft k

82 #VALUE! row 143

pile cap resistance

90 k 52 k

pile cap

2999 k ASD

V pile cap

2405 k ult

compare

1 logic 1718 k ASD

V pile cap

sum soil and pile lateral resist 16 k from calculations above

22.5

82 k

14 ft #VALUE! 2,405 /1.4 = 1,718 < 2,999 OK

7 ft

6k

versus capacity. row 153 structure seismic movement

Piling below the pile cap is considered to be buoyant. Top of piling fixed within pile cap.

grade

top moment at pile cap spring / soil

200 k-ft

Spring restraint to resemble soil lateral resistance applied at soil/pile cap interface. Concrete and rebar cage top 25' of pile. row 163 The deck is designed as a two-way slab supported by 21 columns. For this analysis, S-Frame 3D finite analysis program was used to calculate moments, axial loads, and deflections along the midline of the structure.

0.25 * top moment 50 k-ft #VALUE! forces.

row 173

row 183

PILE FOUNDATION A

B

C

Page 42 - 4

TANK SUPPORT D

E

F

G

H

I

J

K

L

M

N

LOADS to DECK MID-LINE Design for the '97 UBC ultimate strength of columns. Spring values at grade are given an arbitrary factor of 1.0. E = ρ Eh + Ev = ρ V D + 0.5 Ca I D E

horizontal component 1.0 * 1,527 * 1.1 1679

multiply this by 1.1 for concrete '97 UBC 1612.2.2.1 Exception 2

+ +

275490908.xls

vertical component 0.5 * 0.360 * 1.25 * 9,851 * 1.1 2438

row 193 Basic Load Combinations '97 UBC 1612 ratio 0.238 = 5 mid-line columns /21 columns total D 2345 ↓

horizontal component 400 ←

vertical component 581 ↕

Create load cases for D, Eh, and Ev where: hence: Eh

note that D = D + stored liquid

Eh / D

0.170 * D

row 203

400 /2,345 and Ev

Ev / D

0.248 * D

581 /2,345

Per '97 UBC (12-1)

1.4 D

(12-5)

1.2 D

+

1.0 Eh

+

1.0 Ev

(12-6)

0.9 D

±

1.0 Eh

±

1.0 Ev

The load cases are: 1 (12-1)

row 213

1.4 D

2 (12-5)

1.2 D

+

0.170 D horizontal

+

1.0 E per API calc

+

0.248 D vertical

3 (12-6) a 4 (12-6) b

0.9 D 0.9 D

+ +

0.170 D horizontal 0.170 D horizontal

+ +

1.0 E per API calc 1.0 E per API calc

+ -

0.248 D vertical 0.248 D vertical

row 223

row 233

row 243

PILE FOUNDATION A

B

C

Page 42 - 5

TANK SUPPORT D

E

F

G

H

I

J

SUMMARY of LOADS to DECK MID-LINE for FINITE ELEMENT ANALYSIS Input D + stored liquid for these nodes: 1,656 * 0.238 ultimate load 394 ← API Calculations nodes 22 node 15 at CG of tank and contents ratio 0.238 tank + LN2 5753 1370 for tank + LN2 as DL only

deck columns sum

1839 79 1918

sum

7671

horizontal← vertical ↕ nodes

K

L

23

M

N

275490908.xls

for vertical loads including tank, LN2, deck, columns

row 253

457 1,918 * 0.238 for horizontal loads 457 + 1,370 1826 7,671 * 0.238 for vertical loads including tank, LN2, deck, and columns 57 228 3

114 457 6

114 457 12

114 457 18

57 k 228 21 node

457 1826 row 263

columns pile cap

79 2102 2181

sum ↕ nodes spring resistance

519 43 2 82

87 5 52

87 8 52

87 11 52

87 14 52

87 17 52

43 k 20 82 k/inch

519

row 273

nodes

1

4

7

9

13

16

19

row 283

row 293

row 303

PILE FOUNDATION A

B

C

Page 42 - 6

TANK SUPPORT D

E

F

G

H

I

J

K

L

M

N

LOADS to DECK MID-LINE by CASE and LOAD COMBINATIONS per '97 UBC Load combinations are: 1 (12-1) 1.4 x Case 1 D only node

1.4 D

node

2 (12-5) 1.448 x Case 1 D 0.148 x Case 2 E 1.0 x Case 3 E API node 1.448 x Case 1 D 0.148 x Case 2 E node

1.2 D

3 (12-6) a 1.148 x Case 1 D 0.148 x Case 2 E 1.0 x Case 3 E API node 1.448 x Case 1 D 0.148 x Case 2 E node

0.9 D

4 (12-6) b 0.652 x Case 1 D 0.148 x Case 2 E 1.0 x Case 3 E API node 0.652 x Case 1 D 0.148 x Case 2 E node

0.9 D

228 3

457 6

43 2

87 5

+ 228 57 3 43 43 2

+ 228 57 3 43 43 2

+ 228 57 3 43 43 2

457 12 87 8

87 11

0.170 D horizontal 457 114 394 6 15 87 87 87 87 5 8

+

0.170 D horizontal 457 114 394 6 15 87 87 87 87 5 8

+

0.170 D horizontal 457 114 394 6 15 87 87 87 87 5 8



87 14

457 18

228 21

87 17

43 20

275490908.xls

row 313

0.248 D vertical 457 114 12 87 87 11

87 87 14

457 114

228 where: 1.2 + 0.248 57

18 87 87 17

21 43 where: 1.2 + 0.248 43 20

457 114

228 where: 0.90 + 0.248 57

18 87 87 17

21 43 where: 0.90 + 0.248 43 20

457 114

228 where: 0.90 ─ 0.248 57

0.248 D vertical 457 114 12 87 87 11

87 87 14

0.248 D vertical 457 114 12 87 87 11

87 87 14

18 87 87 17

21 43 where: 0.90 ─ 0.248 43 20 row 343

Axial and moment forces were generated from a subsequent computer run. These loads are: axial moment

460 k ult 1174 k ult row 353

row 363

PILE FOUNDATION A

B

C

Page 42 - 7

TANK SUPPORT D

E

F

G

H

I

J

K

L

M

N

LOADS to DECK MID-LINE USING ASCE 7-02 STRENGTH DESIGN This frame is an elastic ordinary moment resisting frame. ρ.

1.0 unitless

SDS

from above short period spectral response 9.4.1.2.5-1

Cs

0.719 g ult 0.299 g ult

D

9851 k

from above

Vert story

1417 k ult 2945 k ult

275490908.xls

seismic response coefficient 9.5.5

row 373 V story

0.2 * 0.719 * 9,851 0.299 * 9,851

Basic Load Combinations ASCE 7-02 ratio 0.238 = 5 mid-line columns /21 columns total D 2345 0.238 * 9,851

horizontal component 701 0.238 * 2,945

vertical component 337 0.238 * 1,417

ratioed loads row 383

Eρ1

ρQE + 0.2 SDS D

Case 5 2.3.2

1.2 D 2815 vertical 1.2 * 2,345

Eρ2

ρQE

- 0.2 SDS D

Case 8 2.3.2

0.9 D 2111 vertical 0.9 * 2,345

Eq. 9.5.2.7 - 1 ± ±

ρ Eρ1 701 horizontal 1.0 * 701

± ±

0.2 SDS D

± ±

0.2 SDS D

337 vertical 337

Eq. 9.5.2.7 - 2 ± ±

ρ Eρ2 701 horizontal 1.0 * 701

row 393

337 vertical 337

Create load cases for D, QE, and 0.2 SDS D where:

ρ QE /D =

701 /2,345 =

0.299 * D

and

0.2 SDS D /D =

337 /2,345 =

0.144 * D

These factors are to be used in the computer finite element analysis "Load Combinations."

row 403

The load cases are: 1 D only

1.4 D

2 5 2.3.2

1.2 D

+

0.299 D horizontal

+

1.0 E per API calc

+

0.299 D vertical

3 8 2.3.2 a 4 8 2.3.2 b

0.9 D

+

0.299 D horizontal

+

1.0 E per API calc

+

0.144 D vertical

0.9 D

+

0.299 D horizontal

+

1.0 E per API calc



0.144 D vertical

row 413

These results are slightly less conservative than the '97 UBC results above

row 423

PILE FOUNDATION A

B

C

Page 42 - 8

TANK SUPPORT D

E

F

G

H

I

J

K

L

M

N

LOADS to DECK MID-LINE USING ASCE 7-05 STRENGTH DESIGN for Comparison This frame is an elastic ordinary moment resisting frame. ρ. SDS

1.00 unitless

from above 275490908.xls

Cs

0.719 g ult 0.299 g ult

short period spectral response 9.4.1.2.5-1 seismic response coefficient 9.5.5

D

9851 k

from above

Vert story V story

1417 k ult 2945 k ult

0.2 * 0.719 * 9,851 7-05 0.2 SDS D 12.4-4 and 12.14-6 0.299 * 9,851 7-05 V = Cs W 12.8-1

row 433

Basic Load Combinations ASCE 7-05 Where 12.4.2.3 is used in lieu of 2.3.2 ratio 0.238 = 5 mid-line columns /21 columns total D 2345 0.238 * 9,851

horizontal component 701 0.238 * 2,945

vertical component 337 0.238 * 1,417

ratioed loads row 443

Case 5

(1.2 + 0.2 SDS) D + ρQE + L + 0.2 S 1.2 D 2815 vertical 1.2 * 2,345

Case 6

± ±

ρ Eρ5 701 horizontal 1.0 * 701

± ±

0.2 SDS D 337 vertical 337

± ±

- 0.2 SDS D 337 vertical 337

(0.9 - 0.2 SDS) D + ρQE + 1.6 H 0.9 D 2111 vertical 0.9 * 2,345

± ±

ρ Eρ6 701 horizontal 1.0 * 701

row 453

Create load cases for D, QE, and 0.2 SDS D where: and

ρ QE /D = 0.2 SDS D /D =

701 /2,345 = 337 /2,345 =

0.299 * D 0.144 * D row 463

These factors are to be used in the computer finite element analysis "Load Combinations."

The load cases are: 1 D only

1.4 D

2 Case 5

1.2 D

+

0.299 D horizontal

+

1.0 E per API calc

+

0.299 D vertical

3 Case 6

0.9 D

+

0.299 D horizontal

+

1.0 E per API calc

+

0.144 D vertical

row 473

row 483

PILE FOUNDATION A

B

C

Page 42 - 9

TANK SUPPORT D

E

F

G

H

I

J

K

L

M

N

GENERATE ASD ASCE 7-02 LOADS for DEFLECTION CALCULATIONS ρ

1.0 unitless

SDS

from above

0.719 g ult 0.299 g ult

short period spectral response

Cs D

9851 k

from above

Vert story

1417 k ult 2945 k ult

0.2 * 9,851 * 0.719

V story

275490908.xls

seismic response coefficient

9,851 * 0.299

row 493

Basic Load Combinations ASCE 7-02 ratio 0.238 = 5 mid-line columns /21 columns total D 2345

Eρ1

horizontal component 701

ρQE + 0.2 SDS D

vertical component 337

Eq. 9.5.2.7 - 1 row 503

Case 5 2.4.1

Eρ2

1.0 D 2345 vertical

ρQE

Case 8 2.4.1

- 0.2 SDS D 0.6 D 1407 vertical

0.7 Eρ1

±

+

491 horizontal

0.2 SDS D 337 vertical

Eq. 9.5.2.7 - 2 0.7 Eρ2

± ±

491 horizontal

-

0.2 SDS D 337 vertical row 513

Create load cases for D, QE, and 0.2 SDS D

Note that the reciprocal of 0.7 is approximately 1.4. This is the standard

where:

ρ QE /D =

491 /2,345 =

0.209 * D

way to reduce LRFD seismic to

and

0.2 SDS D /D =

337 /2,345 =

0.144 * D

ASD levels.

The load cases are:

row 523

1 5 2.4.1 2 8 2.4.1 a

1.0 D

+

0.209 D horizontal

0.6 D

+

3 8 2.4.1 b

0.6 D

+

+

0.144 D vertical

0.209 D horizontal

+

0.144 D vertical

0.209 D horizontal



0.144 D vertical

Use these applied strength design (ASD) loads to compute deflections in the computer finite element analysis "Load Combinations."

row 533

PILE FOUNDATION A

B

C

Page 42 - 10

TANK SUPPORT D

E

F

G

H

I

J

K

L

M

N

GENERATE ASD ASCE 7-05 LOADS for DEFLECTION CALCULATIONS for Comparison ρ SDS

1.0 unitless

from above

0.719 g ult 0.299 g ult

short period spectral response

Cs D

9851 k

from above

QE

2945 k ult

9,851 * 0.299

275490908.xls

seismic response coefficient

where QE = V

row 543

Basic Load Combinations ASCE 7-05 Where 12.4.2.3 is used in lieu of 2.4.1 ratio 0.238 = 5 mid-line columns /21 columns total D 2345

Case 5

horizontal component 701

(1.0 + 0.14 SDS) D + H + F + 0.7 ρQE 0.7 QE 1.0 D + 2345 vertical

Case 6

0.2 SDS D

row 553

337 vertical

(1.0 + 0.105 SDS) D + H + F + 0.525 ρQE + 0.75 L + 0.75 (L r or S or R) 0.525 QE 0.105 SDS D 1.0 D + + 2345

Case 8

+

491 horizontal

368

177

(1.0 - 0.14 SDS) D + 0.7 ρQE + H 0.6 D 1407 vertical

+ +

0.7 QE 491 horizontal

─ ─

0.14 SDS D

row 563

236 vertical

Note that the reciprocal of 0.7 is approximately 1.4. This is the standard way to reduce LRFD seismic to ASD levels. The load cases are: 1 Case 5 2 Case 6 3 Case 8

1.0 D 0.6 D 0.6 D

+ + +

0.209 D horizontal 0.157 D horizontal 0.209 D horizontal

+ + ─

0.144 D vertical 0.075 D vertical 0.101 D vertical

row 573

Use these applied strength design (ASD) loads to compute deflections in the computer finite element analysis "Load Combinations."

row 583

row 593