4 Turbinas de Gas

4 Turbinas de gas Una turbina de gas, es una turbomáquina motora, cuyo fluido de trabajo es un gas. Como la compresibil

Views 85 Downloads 3 File size 1MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

4 Turbinas de gas

Una turbina de gas, es una turbomáquina motora, cuyo fluido de trabajo es un gas. Como la compresibilidad de los gases no puede ser despreciada, las turbinas a gas son turbomáquinas térmicas. Comúnmente se habla de las turbinas a gas por separado de las turbinas ya que, aunque funcionan con sustancias en estado gaseoso, sus características de diseño son diferentes, y, cuando en estos términos se habla de gases, no se espera un posible cambio de fase, en cambio cuando se habla de vapores sí. Las turbinas de gas son usadas en los ciclos de potencia como el ciclo Brayton y en algunos ciclos de refrigeración. Es común en el lenguaje cotidiano referirse a los motores de los aviones como turbinas, pero esto es un error conceptual, ya que éstos son turborreactores los cuales son máquinas que, entre otras cosas, contienen una turbina de gas.

4.1 Ciclo Brayton. Definición El ciclo Brayton, también conocido como ciclo Joule o ciclo Froude, es un ciclo termodinámico consistente, en su forma más sencilla, en una etapa de compresión adiabática, una etapa de calentamiento isobárico y una expansión adiabática de un fluido termodinámico compresible. Es uno de los ciclos termodinámicos de más amplia aplicación, al ser la base del motor de turbina de gas, por lo que el producto del ciclo puede ir desde un trabajo mecánico que se emplee para la producción de energía eléctrica o algún otro aprovechamiento –caso de las industrias de generación eléctrica y de algunos motores terrestres o marinos, respectivamente–, hasta la generación de un empuje en un aerorreactor.

En el ciclo Brayton, como en la mayoría de los ciclos termodinámicos, es necesario distinguir el ciclo termodinámico en sí mismo de su aplicación tecnológica. Como ocurre en algunos otros motores térmicos, los motores basados en el ciclo Brayton han presentado diferentes soluciones formales, que básicamente se pueden reducir a los motores Brayton de pistones, de funcionamiento parecido a los modernos motores Diesel y gasolina, y que hoy en día apenas existen salvo en museos, y los motores Brayton de flujo continuo, en los que, a diferencia de los motores de pistones, la admisión del fluido termodinámico es continua, y que son la base de la turbina de gas. El ciclo Brayton aparece por primera vez asociado a la patente de una máquina de gas del inventor el inglés John Barber, en 1791. Formalmente, el motor de Barber podría ser clasificado como de flujo discontinuo, si bien su rudimentario sistema de compresión, incapaz de alcanzar siquiera las 2 atmósferas de presión, y las elevadísimas pérdidas de calor asociadas al sistema de calentamiento, así como las complicaciones asociadas con emplear aire en vez de vapor de agua, hicieron que el motor fracasara estrepitosamente frente a la mucho más eficaz máquina de vapor de James Watt. Del mismo modo en que ocurrió con otros motores de la época, como el motor Stirling, la idea de Barber cayó en el olvido. En la década de 1840 el físico británico James Prescott Joule planteó de manera teórica y formal, por primera vez, el ciclo Brayton. Su trabajo se limitó al ámbito teórico y termodinámico, al reconocer que la extracción de elevadas potencias mecánicas del ciclo exigiría o bien elevadísimos costes de combustible, o sistemas de compresión de gas extremadamente grandes y resistentes, ya que Joule planteó la implementación del ciclo Brayton como un ciclo de flujo discontinuo, en el que el gas debía ser comprimido por un cilindro y un pistón. Una vez delineadas las características del ciclo, el primer intento relevante por llevarlo a la práctica se produjo en 1872, cuando George Brayton patentó suReady Motor. En su patente, basada en un motor de pistones de flujo discontinuo, la compresión se realizaría en un cilindro, tras lo cual el aire comprimido, que habría pasado a una cámara de calentamiento, sería calentado por una fuente de calor externa, para finalmente expandirse en el cilindro de expansión, produciendo un

trabajo. El motor presentaba una severa problemática, al no poder garantizar a la perfección la constancia de la presión en la etapa de calentamiento del aire comprimido. Igualmente, y tal y como había previsto Joule, los motores de Brayton, para desarrollar una potencia razonable, debían de ser extremadamente grandes, con lo que, aunque llegarían a comercializarse, nunca gozaron de gran difusión. En la actualidad, el ciclo Brayton se asocia al motor de turbina de gas, si bien Brayton jamás diseñó otra cosa que un motor de pistones. Aunque el fluido termodinámico sufre los mismos procesos que aquellos a los que se sometía en su versión de motor de pistones, la turbina de gas presenta la característica diferencial de que es un motor de flujo continuo. Ello implica que el fluido, habitualmente aire, es continuamente admitido y continuamente expulsado del motor, a diferencia de en los motores de pistones, en los que la admisión y la expulsión es intermitente. El desarrollo de la turbina de gas se produce básicamente a principios del siglo XX, y viene a consecuencia de la solución de la principal problemática técnica asociada al ciclo Brayton, a saber, la etapa de compresión. La compresión de un fluido compresible no es sencilla: los motores de pistones solventan el problema confinando al gas en una cámara cerrada –el cilindro–, y reduciendo el volumen de la misma por medio de un pistón, lo cual produce un incremento de la presión; sin embargo, ello conduce a motores esencialmente pesados y de grandes dimensiones para grandes potencias, al requerirse una elevada inercia mecánica para poder garantizar su funcionamiento de manera continuada. La turbina de gas emplea, por el contrario, un compresor, consistente en uno o varios escalones de álabes rotatorios que empujan al aire, transmitiéndole una energía cinética que primero lo acelera y luego, por medio de unos álabes fijos, lo frenan para convertir el exceso de energía en presión. Como quiera que tal proceso implica trasladar a un fluido de una zona de bajas presiones a otra de altas presiones, proceso el cual poco favorecido por la termodinámica, la compresión de esa manera resultaba muy problemática y poco efectiva en el siglo XIX. Con el avance de la técnica, el desarrollo de nuevos materiales y la cada vez mejor comprensión de la mecánica de fluidos, a principios del siglo XX comenzaron a producirse los primeros compresores realmente eficaces, y no se tardó en plantear la construcción de las primeras turbinas de gas. En estos dispositivos, la compresión venía seguida de una combustión interna en una rudimentaria cámara de combustión, en la que se añadía combustible al aire comprimido para quemarlo, y la expansión se desarrollaba en una turbina, produciéndose un trabajo mecánico parte del cual se empleaba en accionar el compresor, y la remanente en accionar un generador eléctrico o algún otro dispositivo que requiriese trabajo mecánico. La aplicación de la turbina de gas basada en el ciclo Brayton a la propulsión aérea se debe al ingeniero inglés Frank Whittle, quien en 1927 patentó la idea y la propuso a la fuerza aérea inglesa. Una serie de expertos liderados por Alan Arnold Griffith habían estudiado en los años anteriores las posibilidades técnicas de la turbina de gas como medio de propulsión aérea, aunque su idea se basaba en emplear el trabajo mecánico obtenido para accionar una hélice. Whittle, por el contrario, proponía disponer de un ciclo Brayton tal que no se produjera ningún trabajo mecánico neto, de manera que la turbina generara tan solo la energía suficiente como para accionar el compresor. La propulsión se produciría, según él, debido a la elevada velocidad de los gases a la salida de la turbina, formándose un chorro propulsivo que generaría sobre el motor una fuerza de empuje. La idea de Whittle fue planteada casi al mismo tiempo por el alemán Hans von Ohain. Durante la Segunda Guerra Mundial se produciría una frenética carrera entre ambos bandos por el desarrollo de los primeros motores a reacción. Tras ésta, la turbina de gas basada en el ciclo de Brayton pasaría a dominar como sistema propulsivo de aeronaves, al tiempo que continuaría siendo aplicada dentro de la industria de generación. Igualmente, tiene aplicación como motor marino, en sistemas de bombeo, grandes maquinarias,..., constituyendo en la actualidad una de las máquinas más sofisticadas que existen. Al emplear como fluido termodinámico el aire, el ciclo Brayton puede operar a temperaturas elevadas, por lo que es idóneo para aprovechar fuentes térmicas de alta temperatura y obtener un altorendimiento termodinámico. Sobre el ciclo básico existen variantes que lo complican para mejorar alguna de sus prestaciones, como la potencia o el rendimiento. Ejemplos de estas variantes son el ciclo Brayton con regenerador, el ciclo Brayton de múltiples etapas (de compresión u expansión), o la combinación de un ciclo Brayton con un ciclo Rankine para dar lugar al denominado ciclo combinado.

4.1.1 Eficiencia del ciclo

EFICIENCIA DEL CICLO Se encuentra que la eficiencia de las máquinas de Brayton en ciclo cerrado dependen únicamente de la relación de presiones isentrópicas. Si se aumenta la presión de entrada a la turbina, también se incrementa la temperatura en dicha entrada. La temperatura de entrada a la turbina, con frecuencia, está limitada por la propiedades de los álabes, lo que corresponde a un limite superior práctico en la eficiencia del ciclo. La máquina de Brayton con ciclo cerrado (adición externa de calor) ha recibido una atención considerable para emplearla en sistemas nucleares y, mas recientemente, en sistemas de energía solar a temperatura elevadas Efecto de las eficiencias reales de la turbina y el compresor Naturalmente las turbinas y los compresores reales no son isentrópicos. Para los ciclos de aire estándar, la eficiencia de cada componente se incluye fácilmente en los análisis. El compresor y la turbina reales tienen misma presión de salida que los aparatos isentrópicos correspondientes (las eficiencias de la turbina y el compresor de Brayton generalmente se dan con respecto a los aparatos isentrópicos y no a los isotérmicos).

4.2 Turbinas de gas 4.2.1 Clasificación y partes constitutivas. Dependiendo de su origen las podemos clasificar como: 1) Aeroderivadas: Son aquellas que tiene su origen en turbinas diseñadas para propulsar aviones, son compactas, robustas, tienen una alta relación potencia/peso, son versátiles de operar, ya que al derivar de aviones estos nos van siempre a un ritmo constante y pueden necesitar subidas o bajadas rápidas de potencia, su arranque es más sencillo que las diseñadas para uso industrial puro. Sus potencias rondan los 50 MW. Todas estas características las hacen fáciles de mantener y sustituir en caso necesario.

Figura 1. Turbina Aeroderivada

2) Industriales: Son turbinas diseñadas desde su origen para uso industrial por lo que su peso y tamaño es mayor al no estar limitadas por su lugar de utilización, por lo que al ser de gran tamaño en general las revisiones se llevan acabo en la misma planta. Se ha buscado siempre grandes potencias para producción eléctrica estas pueden llegar hasta unos 500 MW, también se ha buscado que estén operando el mayor tiempo posible de forma constante, ya que sus paradas son más largas que la de las aeroderivadas por lo que se pierde más dinero al no tenerla funcionando. Su rendimiento eléctrico es algo menos importante que en las aeroderivadas, ya que puede aprovechar el calor de sus gases de escape para cogeneración. Su velocidad de rotación es importante ya que al ser usadas para la producción de electricidad deben rondar los 50-60 Hz.

Figura 2. Turbina de uso industrial para producir electricidad. Dependiendo de su tipo de cámara de combustión las podemos clasificar en tres categorías: 1) Cámaras de combustión tipo Silo: Este tipo de turbinas tienen la cámara de combustión fuera del eje que une la turbina y el compresor, puesto en la parte superior, los inyectores se instalan atravesando el techo superior de la cámara, y los gases de escape llegan a la turbina de expansión por una abertura inferior conectada a ésta, son turbinas que por ahora se utilizan para combustibles experimentales como el hidrogeno.

Figura 3. Cámara de combustión tipo Silo. 2) Cámaras de combustión Anulares: En este tipo de cámara de combustión, la cámara forma un anillo continuo alrededor del eje entre el

compresor y la turbina, los quemadores los tiene dispuestos a lo largo de todo el anillo, la mezcla combustible/comburente y la distribución de temperaturas es menos uniforme que en las tuboanulares, aunque también son menores las perdidas de carga y tiene una buena refrigeración la cámara de combustión. Las turbinas con este diseño suelen ser aeroderivadas, principalmente utilizadas por los fabricantes Alstom y Siemens.

Figura 4. Cámara de combustión Anular. 3) Cámaras de combustión Tuboanulares: Este tipo de cámaras de combustión esta formada por una serie de cilindros puestos alrededor del eje cada uno con su quemador y sistema de encendido, por lo que en caso de que uno no encienda puede provocar grandes diferencias de temperatura con lo problemas que esto puede acarrear. Son más pesadas al tener varias cámaras de combustión, pero tienen una mayor resistencia estructural. Sus fabricantes son General Electric y Mitshubishi.

Figura 5. Cámara de combustión Tuboanular. Dependiendo del número de ejes las podemos clasificar como:

1) Monoeje: En este tipo de turbinas el compresor, turbina y generador, están todo unidos en el mismo rotor girando de forma solidaria, son las más comunes para uso de generación eléctrica. Su velocidad de giro suele estar en 3000 rpm para ajustarse a los 50 Hz de la red eléctrica.

Figura 6. Turbina Monoeje.

2) Multieje: Este tipo de turbinas esta dividido el eje en dos, un eje en el que esta el compresor y la turbina de alta, que es la encargada de impulsar al compresor. En el otro eje se encuentran la turbina de potencia que es la que mueve el generador. Este tipo de configuración se usa en turbinas aeroderivadas y de pequeña potencia ya que tiene buen comportamiento frente a variaciones de carga.

Figura 7. Turbina Multieje.

4.2.2 Eficiencia y curvas de expansión real.

Un ciclo Brayton (o Joule) ideal modela el comportamiento de una turbina, como las empleadas en las aeronaves. Este ciclo está formado por cuatro pasos reversibles, según se indica en la figura. Pruebe que el rendimiento de este ciclo viene dado por la expresión

siendo r = pB / pA la relación de presión igual al cociente entre la presión al final del proceso de compresión y al inicio de él.. El método para obtener este resultado es análogo al empleado para el Ciclo Otto.

Admisión El aire frío y a presión atmosférica entra por la boca de la turbina

3 Eficiencia en función del calor 3.1 Intercambio de calor De los cuatro procesos que forman el ciclo cerrado, no se intercambia calor en los procesos adiabáticos A→B y C→D, por definición. Sí se intercambia en los dos procesos isóbaros. En la combustión B→C, una cierta cantidad de calor Qc (procedente de la energía interna del combustible) se transfiere al aire. Dado que el proceso sucede a presión constante, el calor coincide con el aumento de la entalpía

El subíndice "c" viene de que este calor se intercambia con un supuesto foco caliente.  En la expulsión de los gases D→A el aire sale a una temperatura mayor que a la entrada, liberando posteriormente un calor | Qf | al ambiente. En el modelo de sistema cerrado, en el que nos imaginamos que es el mismo aire el que se comprime una y otra vez en el motor, modelamos esto como que el calor | Qf | es liberado en el proceso D→A, por enfriamiento. El valor absoluto viene de que, siendo un calor que sale del sistema al ambiente, su signo es negativo. Su valor, análogamente al caso anterior, es El subíndice "f" viene de que este calor se cede a un foco frío, que es el ambiente.

3.2 Trabajo realizado En este ciclo (a diferencia de lo que ocurre en el ciclo Otto) se realiza trabajo en los cuatro procesos. En dos de ellos el gtrabajo es positivo y en dos es negativo.  En la compresión de la mezcla A→B, se realiza un trabajo positivo sobre el gas. Al ser un proceso adiabático, todo este trabajo se invierte en incrementar la energía interna, elevando su temperatura:



En la combustión el gas se expande a presión constante, por lo que el trabajo es igual a la presión por el incremento de volumen, cambiado de signo: Este trabajo es negativo, ya que es el aire, al expandirse, el que realiza el trabajo. Aplicando la ecuación de los gases ideales y que pB = pC, podemos escribir este trabajo como



En la expansión C→D es el aire el que realiza trabajo sobre el pistón. De nuevo este trabajo útil equivale a la variación de la energía interna

este trabajo es negativo, por ser el sistema el que lo realiza.



En el enfriamiento en el exterior tenemos una compresión a presión constante:



El trabajo neto realizado sobre el gas es la suma de los cuatro términos Aplicando la ley de Mayer

este trabajo se puede expresar como

Por tratarse de un proceso cíclico, la variación de la energía interna es nula al finalizar el ciclo. Esto implica que el calor neto introducido en el sistema esigual al trabajo neto realizado por este, en valor absoluto.

3.3 Rendimiento El rendimiento (o eficiencia) de una máquina térmica se define, en general como “lo que sacamos dividido por lo que nos cuesta”. En este caso, lo que sacamos es el trabajo neto útil, | W | . Lo que nos cuesta es el calor Qc, que introducimos en la combustión. No podemos restarle el calor | Qf | ya que ese calor se cede al ambiente y no es reutilizado (lo que violaría el enunciado de Kelvin-Planck). Por tanto

Sustituyendo el trabajo como diferencia de calores

Esta es la expresión general del rendimiento de una máquina térmica.

4 Eficiencia en función de las temperaturas Sustituyendo las expresiones del calor que entra en el sistema, | Qc | , y el que sale de él, | Qf | , obtenemos la expresión del rendimiento

Vemos que el rendimiento no depende de la cantidad de aire que haya en la cámara, ya que n se cancela. Podemos simplificar estas expresiones observando que B→C y D→A son procesos isóbaros, por lo que

y que A→B y C→D son adiabáticos, por lo que cumplen la ley de Poisson (suponiéndolos reversibles)

con γ = 1.4 la relación entre las capacidades caloríficas a presión constante y a volumen constante. Sustituyendo aquí la ecuación de los gases ideales V= nRT / p nos quedan las relaciones entre presiones y temperaturas

Sustituyendo la igualdad de presiones

y dividiendo la segunda por la primera, obtenemos la igualdad de proporciones

Restando la unidad a cada miembro

Intercambiando el denominador del primer miembro, con el numerador del último llegamos a

y obtenemos finalmente el rendimiento

esto es, la eficiencia depende solamente de la temperatura al inicio y al final del proceso de compresión, y no de la temperatura tras la combustión, o de la cantidad de calor que introduce ésta. Puesto que TB < TC, siendo TC la temperatura máxima que alcanza el aire, vemos ya que este ciclo va a tener un rendimiento menor que un ciclo de Carnot que opere entre esas las temperaturas TA y TC.

5 Eficiencia en función de la relación de presión

Aplicando de nuevo la relación de Poisson

podemos expresar el rendimiento como

con r = pB / VA la relación de presión entre la presión final y la inicial. La eficiencia teórica de un ciclo Brayton depende, por tanto, exclusivamente de la relación de presiones. Para un valor típico de 8 esta eficiencia es del 44.8%. 4.2.3 Cámaras de combustión. Existen tres tipos de cámara de combustión para turbinas de gas, la tubular, la anular y la tuboanular. Aunque el funcionamiento es común en todas, su forma varía en función de su aplicación. Tubular Las cámaras de combustión tubulares tienen forma cilíndrica y están montadas de manera concéntrica en el interior de otro cilindro. Las principales ventajas que presentan son su simplicidad, su fácil diseño y su fácil acceso. Como problema presentan que son grandes y pesadas en comparación a otros tipos de cámara de combustión y por ello su aplicación está relegada únicamente a la industria. El flujo de comburente puede darse de manera directa o de manera inversa. En el caso del flujo inverso el aire comprimido entra a la cámara de combustión a través de un anillo que es concéntrico y exterior al cuerpo del quemador. Se conoce como flujo inverso debido a que el aire accede en dirección opuesta a la llama. El aire que circula entre la camisa y el quemador tiene varios puntos de entrada formando las distintas zonas de llama. Las cámaras de combustión de flujo inverso presentan la ventaja de ser más cortas que las de flujo directo y se utilizan en aplicaciones de gran tamaño.

Anular Estas cámaras de combustión suelen ser de flujo directo y son utilizadas principalmente en turbinas de aviación. El diámetro de estas cámaras de combustión es igual al del envolvente del compresor lo que hace que deba ser más aerodinámica. El flujo de aire entra a altas velocidades en estas cámaras y debe mezclarse correctamente con el combustible. El correcto funcionamiento de los inyectores influye mucho en el funcionamiento de la cámara de combustión en estos casos, debido a las altas velocidades y al poco tiempo del que se dispone para formar la mezcla. Estas cámaras de combustión requieren menos aire de refrigeración que las tuboanulares por lo que son indicadas para altas temperaturas de trabajo. Como inconveniente presentan el dificultoso mantenimiento y la dificultad de crear una distribución uniforme de temperatura.

Tuboanular Las cámaras de combustión tuboanulares están formadas por grupos de cámaras tubulares que se montan en el interior de un cilindro. Este diseño trata de combinar las virtudes de los anteriores buscando la robustez de las tubulares combinada con la compacidad de las anulares. Es frecuente encontrar entre seis y diez cámaras tubulares ensambladas en el interior de la envolvente anular. El flujo de aire puede ser directo o inverso dependiendo de la aplicación. En este tipo de cámara de combustión se requiere una mayor cantidad de aire de refrigeración que en las tubulares y las anulares ya que la superficie del quemador es mayor. El flujo de gases en estos equipos es más estable que en las anulares debido a que cada zona del anillo tiene su propia tobera y en consecuencia una primera zona independiente de las demás.

4.2.4 Compresores.

Compresor El aire es comprimido y dirigido hacia la cámara de combustión mediante un compresor (movido por la turbina). Puesto que esta fase es muy rápida, se modela mediante una compresión adiabática A→B. Cámara de combustión En la cámara, el aire es calentado por la combustión del queroseno. Puesto que la cámara está abierta el aire puede expandirse, por lo que el calentamiento se modela como un proceso isóbaro B→C. Turbina El aire caliente pasa por la turbina, a la cual mueve. En este paso el aire se expande y se enfría rápidamente, lo que se describe mediante una expansión adiabática C →D.

Escape Por último, el aire enfriado (pero a una temperatura mayor que la inicial) sale al exterior. Técnicamente, este es un ciclo abierto ya que el aire que escapa no es el mismo que entra por la boca de la turbina, pero dado que sí entra en la misma cantidad y a la misma presión, se hace la aproximación de suponer una recirculación. En este modelo el aire de salida simplemente cede calor al ambiente y vuelve a entrar por la boca ya frío. En el diagrama PV esto corresponde a un enfriamiento a presión constante D→A. Existen de hecho motores de turbina de gas en los que el fluido efectivamente recircula y solo el calor es cedido al ambiente. Para estos motores, el modelo del ciclo de Brayton ideal es más aproximado que para los de ciclo abierto.

Motor de turbina de gas de ciclo abierto.

Motor de turbina de gas de ciclo cerrado.

4.2.5 Regeneradores.

En los motores de las turbinas de gas, la temperatura de los gases de escape que salen de la turbina suelen ser bastante mayor que la temperatura del aire que abandona el compresor. Por consiguiente, el aire de alta presión que sale del compresor puede calentarse transfiriéndole calor de los gases de escape calientes en un intercambiador de calor a contraflujo, el cual se conoce también como un regenerador o recuperador. DIAGRAMA DE LA MÁQUINA DE TURBINA DE GAS CON REGENERADOR

La eficiencia térmica del ciclo Brayton aumenta debido a la regeneración, en virtud de que la porción de energía de los gases de escape que normalmente se libera en los alrededores ahora se usa para precalentar el aire que entra a la cámara de combustión. Esto, a su vez, disminuye los requerimientos de entrada de calor (y en consecuencia, de combustible) para la misma salida de trabajo neta. Observe, sin embargo que el empleo de un regenerador se recomienda solo cuando la temperatura de escape de la turbina es mas alta que la temperatura de salida del compresor. De otro modo, el calor fluirá en la dirección inversa (hacia los gases de escape), y reducirá eficiencia. Ésta relación se encuentra en las máquinas de turbina de gas que operan a relaciones de presión muy altas. Es evidente que un regenerador con una eficacia mas alta ahorrará una gran cantidad de combustible puesto, que precalentará el aire a una temperatura más elevada, antes de la combustión. Sin embargo, lograr una eficacia mayor requiere el empleo de un regenerador más grande, el cual implica un precio superior y provoca una caída de presión más grande. En consecuencia, el uso de un regenerador con eficacia muy alta no puede justificarse económicamente a menos que los ahorros de combustible superen los gastos adicionales involucrados. La mayoría de los regeneradores utilizados en la práctica tienen eficacias por debajo de 0.85. Por consiguiente la eficiencia térmica de un ciclo Brayton con regeneración depende de la relación entre la mínima y la máxima temperaturas, así como la relación de presión. CICLO BRAYTON CON INTERENFRIAMIENTO, RECALENTAMIENTO Y REGENERACIÓN El trabajo neto de un ciclo de turbina de gas es la diferencia entre la salida de trabajo de la turbina y la entrada de trabajo del compresor, y puede incrementarse si se reduce el trabajo del compresor o si aumenta el de la turbina o ambos. El trabajo requerido para comprimir un gas entre dos presiones especificadas puede disminuirse al efectuar el proceso de compresión en etapas y al enfriar el gas entre ellas, es decir, si se emplea con presión de etapas múltiples con interenfriamiento. Cuando aumenta el numero de etapas, el proceso de compresión se vuelve isotérmico a la temperatura de entrada del compresor y el trabajo de compresión disminuye. De igual modo, la salida de trabajo de un turbina que opera entra dos niveles de presión aumenta al expandir el gas en etapas y recalentarlo entre ellas, esto es, si se usa expansión de múltiples etapas con recalentamiento. Esto se lleva a cabo sin elevar la temperatura máxima en el ciclo. Cuando aumenta el número de etapas, el proceso de expansión se vuelve isotérmico. El argumento anterior se basa en un simple principio: el trabajo de compresión o expansión de flujo permanente es proporcional al volumen específico de fluido. Por consiguiente, el volumen especifico del fluido de trabajo debe ser los mas bajo posible durante un proceso de compresión y lo mas alto posible durante un proceso de expansión. Esto es precisamente lo que logran el interenfriamiento y el recalentamiento. El fluido de trabajo sale del compresor a una temperatura menor y de la turbina a una temperatura más alta, cuando se usa en interenfriamiento y recalentamiento. Esto hace que la regeneración sea más atractiva ya que existe un mayor potencial para ella. Además los gases que salen del compresor pueden calentarse a una temperatura más alta antes de que entren a la cámara de combustión debido a la temperatura mas elevada del escape de la turbina. Un diagrama esquemático del arreglo físico de un ciclo de turbina de gas de dos etapas con interenfriamiento, recalentamiento y regeneración se muestra en la figura:

el gas entra a la primera etapa del compresor en el estado 1, se comprime de modo isentrópico hasta una presión intermedia P2 ; se enfría hasta una presión constante hasta el estado 3 (T3 = T1 ) y se comprime en la segunda etapa isentrópicamente hasta la presión final P4. En el estado 4 el gas entra al regenerador, donde se calienta hasta T5 a una presión constante. En un regenerador ideal, el gas saldrá del regenerador a la temperatura del escape de la turbina, es decir, T5 = T9. El proceso de adición de calor (o combustión) primario toma lugar entre los estados 5 y 6. El gas entra a la primera etapa de la turbina en el estado 6 y se expande isentrópicamente hasta el estado 7, donde entra al recalentador. Se recalienta a presión constante hasta el estado 8 (T8 = T6), donde entra a la segunda etapa de la turbina. El gas sale de la turbina en el estado 9 y entra al regenerador, donde se enfría hasta el estado 1 a presión constante. El ciclo se completa cuando el gas enfría hasta el estado inicial. La relación de trabajo de retroceso de un ciclo de turbina de gas mejora debido al interenfriamiento y el recalentamiento. Sin embargo, esto no significa que la eficiencia térmica también mejorará. El hecho es que el interenfriamiento y el recalentamiento siempre disminuirán la eficiencia térmica a menos que se acompañen de la regeneración. Ya que el interenfriamiento disminuye la presión promedio a la cual se añade el calor, y el recalentamiento aumenta la temperatura promedio a la cual el calor se rechaza,. Por tanto, en centrales eléctricas de turbina de gas, el interenfriamiento y recalentamiento se utilizan siempre en conjunción con la regeneración

4.2.6 Curvas de operación.

4.2.7 Sistemas de regulación y Protección.

Las turbinas de gas incorporan sistemas de protección por vibración que pueden ser aprovechados además para supervisión y diagnóstico. A continuación se detalla un esquema de la instrumentación típica aplicada en un sistema de monitorizado para turbinas de gas:



Los parámetros recomendados para supervisar las turbinas de gas son los siguientes: Vibración relativa del eje con respecto al cojinete.



Empuje.



Velocidad.



Temperatura.



Fase.