2.7. Special Integrating Factors

Consider M dx  N dy  0. Suppose u is an integrating factor of the equation. Then uM dx  uN dy  0 is exact. Unit 2.7

Views 108 Downloads 0 File size 45KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Consider M dx  N dy  0. Suppose u is an integrating factor of the equation. Then uM dx  uN dy  0 is exact.

Unit 2.7 Special Integrating Factors

   uM    uN  y x M u N u u M u N y y x x  M N  u u u  M N x  x y  y

 M N  u u u  M N y x x    y  

1  M N  du    dx  N  y u x 

Case 1. If u is a function of x alone,  M N  u u u  M N x  x y  y

If

1  M N      f  x  then N  y x  f  x  dx 

 M N  du u  N dx x   y

du u

 f  x  dx  ln u

1  M N  du    dx  N  y u x 

u  e

 M N  u u u  M N x  x y  y



f  x  dx

1  M N  du    dy  x  M  y u

Case 2. If u is a function of y alone,  M N  u u u  M N x  x y  y  M N  du u    M y x dy     

1  M N  du    dy  M  y u x 

If

1  M N     dy  g  y  , then x  M  y du  g  y  dy  u   g  y  dy ue

1

Summaryy

Example p 2.7 Solve the following. 1.

1. If

1  M N   f  x  dx .     f  x  , then u  e N  y x 

2. If

  g  y  dy 1  M N  .     g  y  , then u  e M  y x 

x

2

 y 2  1 dx  x  x  2 y  dy  0

M  x2  y 2  1 M  2y y

N  x 2  2 xy N  2x  2 y x

1  M N  1    4 y  2x     x  x 2  2 xy N  y 

x

2

 y 2  1 dx  x  x  2 y  dy  0

f  x 

2 x

For the integrating factor: e

2



dx x

e

2 ln x

2

 eln x 

1 x2

1 2  x  y 2  1 dx  1x  x  2 y  dy  0 x2 A solution is F  x, y   C where dF 

1 2  x  y 2  1 dx  1x  x  2 y  dy x2

2  x  2 y  x x  2y



2  f  x x

1 2  x  y 2  1 dx  1x  x  2 y  dy x2 y2  1 F 1 2  2  x  y 2  1  1  2 x x x

dF 

Integrating with respect to x,  y2  1  y2  1 F   1  2  dx  x   f  y x  x  2y 2y F   f ' y   1  x x y Therefore, f '  y   1.

2. y  2 x  y  1 dx  x  3x  4 y  3 dy  0 y 1  f  y x f ' y   1

M  2 xy  y 2  y

N  3x 2  4 xy  3x

M  2x  2 y  1 y

N  6x  4 y  3 x

f  y  y  C

1  M N  1   2  2 x  y  1   x  y  2 x  y  1 M  y 2   g  y y

F  x

2

y2  1  y  C1. Therefore, the general solution is x  x

2

y  2 x  y  1 dx  x  3x  4 y  3 dy  0 2 y

g  y 

dF  y 3  2 x  y  1 dx  xy 2  3x  4 y  3 dy F  2 xy 3  y 4  y 3 x

For the integrating factor, 

e



2 dy y

2

e

 y dy

e

2 ln y

 eln y  y 2 2

y 3  2 x  y  1 dx  xy 2  3x  4 y  3 dy  0 A solution is F  x, y   C where dF  y  2 x  y  1 dx  xy  3x  4 y  3 dy 3

Integrating with respect to x, F  x 2 y 3  xy 4  xy 3  f  x  F  3x 2 y 2  4 xy 3  3xy 2  f '  x   3x 2 y 2  4 xy 3  3xy 2 y Therefore, f '  x   0.

2

Required q Exercises

F  x 2 y 3  xy 4  xy 3  f  x  f ' x   0 f  x  C Therefore, the general solution is

Answer Exercises in Rainville 8th Ed Section 5.2, page 83-84. Check your answers on page 504.

x 2 y 3  xy 4  xy 3  C1.

End of Unit 2.7

3